
Chapter 3

Preliminaries

In this chapter we review the basic concepts and ideas used in the theorems and proofs in this

thesis. First, topology concepts and de�nitions from [25], [4] and [18] are presented, followed

by a brief overview of di¤erential calculus in Rn and convex analysis concepts, de�nitions

and theorems from [27] , [31] and [2]. Then we present a brief review of the de�nition and

properties of active constraints in the linear programming context. We then conclude by

presenting the de�nition of �active constraints in Linear Semi-In�nite Programming and

enunciate the properties proven in [10].

3.1 Topology

De�nition 3.1.1 A topology on a set X is a collection � of subsets of X having the following

properties

i) � and X are in �

ii) The union of any subcollection of � is in � .

iii) The intersection of any �nite subcollection of � is in � .

Remark 3.1.1 A topological space is an ordered pair (X; �) consisting of a set X and its

topology � . Any element A 2 � is referred to as an open set. A set B 2 � is closed if its

complement in X is open.
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Next, some of the topological characteristics of a given subset of X are de�ned.

De�nition 3.1.2 Given a subset A of a topological space (X; �),

i) A is a neighbourhood of a point x 2 X , A contains an open set to which x belongs to.

ii) The interior of A denoted as intA is de�ned as the union of all open sets contained in A.

iii) The closure of A denoted as clA is de�ned as the intersection of all closed sets containing

A.

iv) The boundary of A denoted as bdA is de�ned as clA n intA.

De�nition 3.1.3 Given a set S � Rn, the a¢ ne hull, denoted as a�(S) is de�ned as

a�(S) = f
kX
i=1

�ixij�i 2 R;
kX
i=1

�i = 1 and xi 2 Sg

De�nition 3.1.4 Given a convex set S � Rn its relative interior, denoted as riS is the

interior which results when S is regarded as a subset of its a¢ ne hull (i.e. riS = fx 2

a� Sj 9" > 0, (x+ "Bn) \ (a� S) � Sg)

Theorem 3.1.1 The intersection of an arbitrary number of closed sets is closed and the union

of a �nite number of closed sets is closed.

These de�nitions are used in establishing the topologic relations between a point x 2 Rn

and the feasible set F of a given inequality system �.

3.2 Calculus

Before elaborating on the study of convex analysis, we �rst present some of the basic calculus

concepts of functions f : S � Rn �! R such as f(x1; x2) = x21 + x1x2 + x22 (see Figure 3.1).

De�nition 3.2.1 f is continuous at a 2 Rn if 8" > 0;9� > 0 such that jjx � ajj < � =)

jf(x)� f(a)j < "
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Figure 3.1: Graph of f(x; y) = x21 + x1x2 + x
2
2

Remark 3.2.1 Any function that is di¤erentiable at a point x 2 Rn is continuous at that

point, however continuity at a point does not imply the di¤erentiablility of the function at that

point. An example of such a function is f(x) = jxj (see Figure 3.2) which is continuous at

x = 0 but it is not di¤erentiable at that point.

De�nition 3.2.2 The partial derivative of f with respect to the coordinate i at a point a =

(a1; a2; :::; an) is de�ned as

@f

@xi
(a1; a2; :::; an) = lim

�!0+
f(a1; :::; ai + �; :::; an)� f(a1; a2; :::; an)

�
(3.1)

De�nition 3.2.3 The gradient of a function f at a point x 2 dom f is de�ned as

rf(x) =
�
@f(x)

@x1
;
@f(x)

@x2
; :::;

@f(x)

@xn

�
(3.2)

De�nition 3.2.4 The directional derivative of a function f with respect to a direction d at

a point x is de�ned as

f 0(x; d) = lim
�!0+

f(x+ �d)� f(x)
�

(3.3)
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Figure 3.2: Graph of f(x) = jxj

Remark 3.2.2 The partial derivative @f(x)
@xi

is the directional derivative of a function f in

the direction of the vector (0; 0; :::1; :::; 0) where 1 is at the ith position of the vector.

De�nition 3.2.5 Let f : S � Rn �! R be a two time di¤erentiable function, therefore the

Hessian Matrix of f at x = (x1; x2; :::; xn) is de�ned as

H(f; x) :=

266666664

@2f
@x21

@2f
@x1x2

::: @2f
@x1xn

@2f
@x2x1

@2f
@x22

::: @2f
@x2xn

::: ::: ::: :::

@2f
@xnx1

@2f
@xnx2

::: @2f
@x2n

377777775
3.3 Convex Analysis

Given that the feasible set F � Rn and the functions ft in the problems presented are convex

for all t 2 T , it is necessary to review some of the concepts from convex analysis. This section

is dedicated to present basic de�nitions of convex sets, cones, half spaces, convex hulls and

convex functions in Rn. Theorems that will be used later on are enunciated, a few of them

with their corresponding proofs. The reader may consult [27] ,[1], [31], [16] and [2] for the
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proofs of the corresponding theorems.

De�nition 3.3.1 A set C � Rn is convex if (�x+(1��)y) 2 C for all x; y 2 C and � 2 [0; 1].

De�nition 3.3.2 The convex hull of a set S � Rn, denoted as convS is the intersection of

all convex sets in Rn that contain S.

De�nition 3.3.3 For any non zero vector b 2 Rn and any � 2 R the sets

fx 2 Rnjb0x � �g, fx 2 Rnjb0x � �g

are called closed half-spaces. The sets

fx 2 Rnjb0x < �g, fx 2 Rnjb0x > �g

are called open half-spaces.

De�nition 3.3.4 A set S � Rn is an a¢ ne set if given x1; x2; :::xm 2 S and �1; �2:::�m 2 R

such that
mX
i=1

�i = 1 then
mX
i=1

�ixi 2 S

Theorem 3.3.1 The intersection of any arbitrary set of convex sets is convex.

The following de�nitions provide a characterization that is useful in Linear Programming

(LP) problems.

De�nition 3.3.5 A set C � Rn that can be expressed as the intersection of �nitely many

closed half spaces in Rn is called a polyhedral convex set.

De�nition 3.3.6 A point x 2 Rn is an extreme point of a convex set C if Cnfxg is convex.

Next we de�ne the concept of a convex function. We present three equivalent de�nitions

of a convex function. The �rst based on a geometric characterization known as the epigraph,

the second based on the convex combination of two points and the last based on a generalized

convex combination of n points. Before presenting these we must �rst de�ne the concept of

the epigraph of a function.
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De�nition 3.3.7 Let f : S � Rn �! R,the epigraph of f is de�ned as

epi(f) = f(x; u) 2 Rn+1j x 2 S; u 2 R; u � f(x)g

We now present the three equivalent de�nitions of a convex function.

De�nition 3.3.8 Given a convex set S 6= ?, a function f : S � Rn �! R is convex if

epi(f) is a convex set in Rn+1.

De�nition 3.3.9 Given a convex set S 6= ?, a function f : S � Rn �! R is convex if

8n � 2;8x1; x2; :::; xn 2 S;8�1; �2; :::; �n 2 R+ :
nX
i=1

�i = 1

f(
nX
i=1

�ixi) �
nX
i=1

�if(xi)

De�nition 3.3.10 Given a convex set S 6= ?, a function f : S � Rn �! R is convex if 8

x1; x2 2 S; and � 2 (0; 1)

f(�x1 + (1� �)x2) � �f(x1) + (1� �)f(x2)

Remark 3.3.1 If a function f satis�es the strict inequalities presented in the de�nitions

3.3.9 and 3.3.10 then f is said to be strictly convex.

The following proposition proves the convexity of the feasible set F of any given CSIP

problem of the form (2.1).

Proposition 3.3.1 Given F = fx 2 Rnjfi(x) � 0; i 2 Ig where fi is convex for all i 2 I and

I is an arbitrary set of indices , F is a convex set.

Proof. Let x1 and x2 2 F then fi(x1) � 0 and fi(x2) � 0 for all i 2 I. Taking � 2 [0; 1],

since fi is convex for all i 2 I we have

fi(�x1) + (1� �)x2) � �fi(x1) + (1� �)fi(x2) � 0 for all i 2 I
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Therefore �x1 + (1� �)x2 2 F and hence F is a convex set.

Next we present some preliminary concepts that will be used in showing later on that the

feasible set de�ned in the problem (2.1) is a closed set in Rn.

De�nition 3.3.11 A convex function f is proper if its epigraph is non-empty and contains

no vertical lines, i.e. f(x) <1 for at least one x and f(x) > �1 for all x.

De�nition 3.3.12 A function f is said to be lower semi continuous at x 2 S if f(x) =

lim infy!x f(y). A function is said to be lower semi continuous in S if it is lower semi

continuous at all points in S.

De�nition 3.3.13 Given a function f : Rn ! R, the lower semi continuous hull of f is the

greatest lower semi continuous function majorized by f , namely the function whose epigraph

is the closure in Rn+1 of the epigraph of f .

Now we show that the feasible de�ned in the problem (2.1) is a closed set in Rn. For this

we must �rst de�ne the concept of the closure cl f of a function f then proceed to showing

that the functions ft as de�ned in the problem (2.1) are closed functions and through this

arrive to the conclusion that the feasible set of the the problem is closed.

De�nition 3.3.14 The closure of a proper convex function f denoted by cl f is the lower

semi continuous hull of the function f .

De�nition 3.3.15 A function f is closed if cl f = f .

Next we present a corollary that justi�es that all functions ft as de�ned in the problem

(2.1) are closed functions followed by another corollary which states that the solution set to

an inequality of the form f(x) � � where f is a closed function and � 2 R is a closed set.

Corollary 3.3.1 If f is a proper convex function such that dom f is an a¢ ne set (for example

dom f = Rn) then f is a closed function



CHAPTER 3. PRELIMINARIES 20

Corollary 3.3.2 If f is a closed function then the set

F = fxjf(x) � �g

is a closed set.

Having this and Theorem 3.1.1 we arrive to the conclusion that the feasible set F de�ned

as

F := fx 2 Rnjft(x) � 0 for all t 2 Tg

is a closed set in Rn.

Next we present other properties of convex functions that are used in later chapters. For

the following theorems and propositions we refer to f : S � Rn �! R where S is a non empty

set.

Theorem 3.3.2 If f is a proper convex function de�ned in S then

i) S is a convex set.

ii)f is continuous in intS

iii) If � � 0 then �f is convex

Theorem 3.3.3 Let S 6= ? , if f : S � Rn �! R and g : S � Rn �! R are convex functions

then f + g is a convex function.

Theorem 3.3.4 Let S 6= ? and f : S � Rn �! R be a proper convex function. If x� 2 S is

a local minimizer then x� is a global minimizer.

Proof. Suppose x� be a local minimizer then there 9 a neighbourhood U � Rn such that

f(x�) � f(z) 8z 2 U . Next we prove that for all y 2 S

f(x�) � f(y)
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We take the convex combination (1 � �)x� + �y where 0 � � � 1. Note that as � �! 0,

(1� �)x� + �y 2 U then

f(x�) � f((1� �)x� + �y) for � su¢ ciently small

� (1� �)f(x�) + �f(y) because f is a convex function

manipulating this inequality we obtain f(x�) � f(y) for all y 2 S therefore x� is a global

minimizer.

Theorem 3.3.5 Let S 6= ? and f : S � Rn �! R. If f is convex then the set of global

minimizers of f , F opt, is a convex set.

Proof. Let x1 and x2 be global minimizers of f then f(x1) = f(x2) = minx2S f(x) � f(x)

8x 2 S. Taking the convex combination of x1 and x2 we have

f(�x1 + (1� �)x2) � �f(x1) + (1� �)f(x2) =

= min
x2S

f(x)

on the other hand, minx2S f(x) � f(�x1+(1��)x2) (by de�nition of minx2S f(x)). Therefore

we have that f(�x1 + (1 � �)x2) = minx2S f(x), i.e. �x1 + (1 � �)x2 is a global minimizer,

hence the set of global minimizers is convex.

Theorem 3.3.6 Let f : S � Rn �! R, f 2 C1 be a convex function and x� 2 S. If

rf(x�) = 0 then x� is a global minimizer.

Next we present a concept that is essential to our �rst approach to extending �active

constraints to CSIP.

De�nition 3.3.16 A vector g 2 Rn is a sub-gradient of the function f at the point x if 8

z 2 dom f the following inequality is satis�ed

f(z) � f(x) + g0(z � x) (3.4)
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The set of all the sub-gradients of f at a point x is called the sub-di¤erential of f at x.

Remark 3.3.2 The sub-di¤erential of f at x denoted as @f(x) is a non empty compact set

if f is continuous at the point x.

We present some important properties of the subdi¤erential of a proper convex function

in Rn.

Theorem 3.3.7 Let f : Rn �! R be a proper convex function then at each point x 2 Rn,

@f(x) 6= ; and @f(x) is a closed bounded convex set.

Theorem 3.3.8 Let f : Rn �! R be a proper convex function. If f is di¤erentiable at x

then rf(x) is the unique subgradient of f at x, so that in particular

f(z) � f(x) +rf(x)0(z � x) for all z 2 Rn

Based on these properties we are able to state that given a problem of the form (2.1), the

set @ft(x) is a non empty compact convex set for all t 2 T and x 2 Rn.

The use of cones, convex cones, dual cones, polar cones and recession cones are important

as will be seen in future chapters. The following are the de�nitions of these concepts and

some useful theorems.

De�nition 3.3.17 A set K � Rn is a cone if it is closed under positive scalar multiplication

(i.e. �x 2 K for all x 2 K, � > 0).

Remark 3.3.3 A convex cone is a cone that is closed under convex combinations.

Theorem 3.3.9 The intersection of any arbitrary set of convex cones is convex.

De�nition 3.3.18 The convex cone generated by an arbitrary set S � Rn denoted as coneS

is the convex cone obtained by adjoining the origin to the smallest convex cone containing S

(i.e. coneS = f�sj � > 0; s 2 convSg [ f0ng).
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De�nition 3.3.19 Given a set S � Rn

i) The asymptotic cone of S is de�ned as the set of limits of the form limk!1 �kxk where

�k 2 R+; xk 2 S; k = 1; 2; ::; �k # 0.

De�nition 3.3.20 Given a convex cone K � Rn

i)The dual K�of the cone K is de�ned as

K� = fx 2 Rnjk0x � 0 for all k 2 Kg

iii) The polar Koof K is de�ned as

Ko = fx 2 Rnjk0x � 0 for all k 2 Kg

Remark 3.3.4 Another important property of the polar of a cone K are that the polar Koo

of Ko is clK, see [27] (the same applies for the dual cone K�). Another important property

of the polar of cones is the following.

Theorem 3.3.10 Let K, G � Rn be convex cones. If Ko � G then Go � cl coneK

Remark 3.3.5 An important property of the polar and dual of a convex cone is the fact

that since they are both closed sets (by de�nition) we then have that given a convex cone K,

(clK)o = Ko and (clK)� = K�.

Next we present the de�nitions as given in [1] of the tangent and normal cones of a given

subset S � Rn.

De�nition 3.3.21 Given S � Rn and a vector x 2 S, a vector y is said to be tangent to S at

x if either y = 0 or there exists a sequence fxkg � S such that xk 6= x for all k and xk �! x,

xk�x
jjxk�xjj �!

y
jjyjj . The set of all tangents of S at x is called the tangent cone of S at x denoted

by TS(x).
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De�nition 3.3.22 Given S � Rn and a vector x 2 S, a vector z is said to a normal of S at

x if there exist sequences fxkg � S and fzkg such that xk �! x, zk �! z, zk 2 TS(xk)o for

all k . The set of all normals of S at x is called the normal cone of S at x denoted by NS(x).

Next we present properties with respect to the tangent cone TF (x) and normal cone NF (x)

of a convex set F at a point x 2 F .

Proposition 3.3.2 The tangent cone TF (x) of a closed convex set F at x is the closure of

the cone of feasible directions of F at x:

TF (x) = clD(F; x)

Proposition 3.3.3 The normal cone NF (x) of a closed convex set F at x is the negative

polar to the tangent cone TF (x).

The following proposition is a well known result in convex analysis that characterizes

optimality of a point in the feasible set of a given Convex Programming problem by means of

the normal cone of the feasible set.

Theorem 3.3.11 Let h : Rn �! R be a convex function which is to be minimized over a

closed convex set F . Given x 2 F , x minimizes h over F if and only if 0n 2 @h(x) +NF (x),

i.e. there exists bh 2 @h(x) such that �bh 2 NF (x).
A proof of proposition 3.3.11 can be found in [16] page 294.

Next we present an important tool used in the second de�nition of �active constraints

presented in this thesis as an extension of the linear case.

De�nition 3.3.23 Let f : Rn �! R then its conjugate f� is de�ned as

f�(u) := sup
x2Rn

fu0x� f(x)g

This de�nition can be interpreted in several ways, and is particular in the case of convex

functions since its existence arises from the fact that the epigraph of a convex function is
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convex in Rn+1. It is actually the pointwise supremum of the a¢ ne functions of the form

g(x�) = x0x� � u such that (x; u) belongs to epi f � Rn+1. An important property to note

about f� is that it is a closed convex function. Next we enunciate some other important

properties of f� as presented in [27].

Theorem 3.3.12 Let f be a convex function. The conjugate function f� is then a closed

convex function, proper if and only if f is proper. Moreover, (cl f)� = f� and f�� = cl f .

This theorem is very important since it will provide us with the base of our new de�nition

of �active constraints, more speci�cally the fact that f�� = cl f which in our case becomes

f�� = f since the functions ft are closed proper convex functions for all t 2 T .

The following theorem plays a very important role in the proof of one of the feasible set

theorems in Chapter 5. Let f 0(x; d) denote the directional derivative of f at x in the direction

d and @f(x) be the set of all subgradients of f at the point x.

Theorem 3.3.13 Given a proper convex function f : Rn ! R then any point x 2 int(dom f)

and any direction d 2 Rn satisfy

f 0(x; d) = maxfg0dj g 2 @f(x)g

It is common in optimization to study certain characteristics of the inequality system

that de�nes the feasible set. These characteristics known as Constraint Quali�cations often

provide su¢ cient conditions for the existence and uniqueness of solutions to the optimization

problem (see [23] and [22]). The following is a well known constraint quali�cation.

De�nition 3.3.24 The inequality system � satis�es the classical Slater condition if there

exists x 2 Rn such that ft(x) < 0; for all t 2 T

3.4 Active Constraints

Active constraints is a concept that is used in many branches of optimization theory. They

are used to determine the topological relation between a given point x 2 Rn and the solution
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set F of a system of inequalities �. Depending on the number of active constraints at a given

point x 2 Rn we can discover whether it is an interior point, exterior point, or boundary

point. Active constraints can also be used to determine the recession directions, and thus the

recession cone of a given system of inequalities �. They also determine the feasible directions

of a given point x 2 F � Rn with respect to �. The following are the de�nitions and a

proposition that allow us to use active constraints for the purposes previously stated.

We begin by de�ning feasible directions and the cone of feasible directions.

De�nition 3.4.1 Given x 2 F; a vector d 2 Rn is a feasible direction at x if x+ �d 2 F for

some � > 0.

De�nition 3.4.2 Let F � Rn: We de�ne the set of feasible directions at the point x 2 F as

follows

D(F; x) := fd 2 Rn j x+ �d 2 F; for a certain � > 0g:

Obviously D(F; x) = Rn if x is an interior point of F .

Next we de�ne active constraints for the linear inequality systems of LSIP problems of the

form 2.3.

De�nition 3.4.3 Given x 2 F the set of active constraints at x is de�ned as

T (x) := ft 2 T j atx = bg

An important set used to establish a relationship between T (x) and D(F; x) is

A(x) = conefat 2 Rnj t 2 T (x)g

Next is a proposition found in [10] that summarizes the usefulness of active constraints in

linear programming. In general, given x 2 F we have that clA(x) � D(F; x)�, however there

exists a class of systems that satisfy a bit more than the inclusion.
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De�nition 3.4.4 An optimization problem P is said to be Locally Farkas Minkowski at x 2 F

if A(x) = D(F; x)�.

Proposition 3.4.1 Given x 2 F , the following statements hold:

(i) F = fxg if and only if 0n 2 intD (F; x)�.

(ii) x 2 F opt if and only if c 2 D (F; x)�.

(iii) If dimD (F; x)� = n, then x 2 extrF:

These concepts and de�nitions form the basis of the theory of �active constraints in

LSIP problems and will be referred to in later chapters.

3.5 -Active Constraints in Linear Semi-In�nite Programming

The de�nition of �active constraints in LSIP along with some lemmas, propositions and their

respective proofs are presented in this section. The concepts and theory that are presented

in this section come from [30] for LSIP problems whose feasible set F is de�ned by a linear

inequality system � of the following form

� =
�
a0tx � bt; t 2 T

	
: (3.5)

De�nition 3.5.1 Given x 2 F and  > 0, we de�ne the set of  -active constraints at x 2 Rn

as

W (x; ) :=
�
at j t 2 T and a0ty = bt for a certain y 2 x+ Bn

	
:

In other words, if at 6= 0n, then at 2W (x; ) if and only if a0tx < bt +  katk. Obviously,

fatj t 2 T (x)g �W (x; ). Moreover, if x 2 intF there will exist 0 > 0 su¢ ciently small such

that W (x; ) n f0ng = ; for all  such that 0 <  < 0. Next we enunciate the propositions

and lemmas presented in [30] without their respective proofs.

The following lemma provides basic characteristics of the de�nition presented above.

Lemma 3.5.1 Given x 2 bdF , the following statements hold:
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(i) W (x; ) contains at least a nonzero vector for all  > 0.

(ii) If T (x) = ;, then W (x; ) is an in�nite set for all  > 0.

(iii) If jT j <1, then W (x; ) = fat; t 2 T (x)g for  > 0 su¢ ciently small.

The following lemmas show that the �active constraints at x 2 F allow us to check the

feasibilty of points in the open ball x+ Bn and of given directions at x.

Lemma 3.5.2 Let x 2 F and y 2 x+ Bn,  > 0. Then y 2 F if and only if a0ty � bt for all

at 2W (x; ).

Lemma 3.5.3 Let x 2 F and d 2 Rn. The following statements are true:

(i) If for a certain  > 0 we have a0td � 0 for all at 2 W (x; ), then d 2 D (F; x). So

D (F; x)� � cl coneW (x; ) for all  > 0.

(ii) If d 2 D (F; x) and jT j < 1, then there exists some 0 > 0 such that a0td � 0 for all

at 2W (x; ) and all positive  < 0. In such a case, D (F; x)
� = coneW (x; ).

The following proposition provides necessary conditions for optimality and for certain

characteristics of the feasible set.

Proposition 3.5.1 Given x 2 F and  > 0, the following statements hold:

(i) If F = fxg, then 0n 2 int coneW (x; ).

(ii) If x 2 F opt, then c 2 cl coneW (x; ).

(iii) If x 2 extrF , then dim coneW (x; ) = n:

The following proposition shows that the conditions presented in Proposition 3.5.1 are

both necessary and su¢ cient in the Finite Linear Programming Case.

Proposition 3.5.2 Let x 2 F and jT j <1. The following statements hold:

(i) If 0n 2 int coneW (x; ) for all  > 0, then F = fxg.

(ii) If c 2 cl coneW (x; ) for all  > 0, then x 2 F opt.

(iii) If dim coneW (x; ) = n for all  > 0, then x 2 extrF:
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These de�nitions and theory have been studied only in the LSIP case, in the following

chapters, these concepts will be extended to the CSIP case with proofs that will hold for the

both the CSIP and the LSIP case.




