Chapter 3

Preliminaries

In this chapter we review the basic concepts and ideas used in the theorems and proofs in this
thesis. First, topology concepts and definitions from [25], [4] and [18] are presented, followed
by a brief overview of differential calculus in R™ and convex analysis concepts, definitions
and theorems from [27] , [31] and [2]. Then we present a brief review of the definition and
properties of active constraints in the linear programming context. We then conclude by
presenting the definition of y—active constraints in Linear Semi-Infinite Programming and

enunciate the properties proven in [10].

3.1 Topology

Definition 3.1.1 A topology on a set X is a collection T of subsets of X having the following
properties

i) ¢ and X are in T

it) The union of any subcollection of T is in T.

i11) The intersection of any finite subcollection of T is in T.

Remark 3.1.1 A topological space is an ordered pair (X,T) consisting of a set X and its
topology 7. Any element A € T is referred to as an open set. A set B € 1 is closed if its

complement in X is open.

13
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Next, some of the topological characteristics of a given subset of X are defined.

Definition 3.1.2 Given a subset A of a topological space (X, T),

i) A is a neighbourhood of a point x € X < A contains an open set to which x belongs to.
i1) The interior of A denoted as int A is defined as the union of all open sets contained in A.
iti) The closure of A denoted as cl A is defined as the intersection of all closed sets containing
A.

iv) The boundary of A denoted as bd A is defined as cl A\ int A.

Definition 3.1.3 Given a set S C R"™, the affine hull, denoted as aff(S) is defined as

k k
aff(S) = {Zaixilai € R,Zai =1 andz; € S}
i=1 i=1

Definition 3.1.4 Given a convex set S C R"™ its relative interior, denoted as riS is the
interior which results when S is regarded as a subset of its affine hull (i.e. riS = {z €

aff S| 3e > 0, (z +eBy,) N (aff S) C S})

Theorem 3.1.1 The intersection of an arbitrary number of closed sets is closed and the union

of a finite number of closed sets is closed.

These definitions are used in establishing the topologic relations between a point x € R™

and the feasible set F' of a given inequality system o.

3.2 Calculus

Before elaborating on the study of convex analysis, we first present some of the basic calculus

concepts of functions f : S C R® — R such as f(z1,72) = 2% + z172 + 23 (see Figure 3.1).

Definition 3.2.1 f is continuous at a € R™ if Ve > 0,35 > 0 such that ||z —al| < 6 =

[f(z) = fla)| <e
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Figure 3.1: Graph of f(z,y) = 23 + z172 + 23

Remark 3.2.1 Any function that is differentiable at a point x € R™ is continuous at that
point, however continuity at a point does not imply the differentiablility of the function at that
point. An example of such a function is f(x) = |z| (see Figure 3.2) which is continuous at

x = 0 but it is not differentiable at that point.

Definition 3.2.2 The partial derivative of f with respect to the coordinate i at a point a =

(a1, a2, ...,a,) is defined as

of L flay, ., ai 46, ., an) — fla, ag, ..., an)
axi (CLl,CLQ,...,CLn) _611)161+ 5 (31)
Definition 3.2.3 The gradient of a function f at a point x € dom f is defined as
_ (9f(z) Of(x)  Of(x)
Vf(zx) = < oL ory " O, (3.2)

Definition 3.2.4 The directional derivative of a function f with respect to a direction d at

a point x is defined as

Plody = iy L0 = 11) 53
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Figure 3.2: Graph of f(x) = ||

Remark 3.2.2 The partial derivative agi:f) is the directional derivative of a function f in

the direction of the vector (0,0, ...1,...,0) where 1 is at the ith position of the vector.

Definition 3.2.5 Let f : S C R" — R be a two time differentiable function, therefore the

Hessian Matriz of f at © = (x1,x2,...,x,) is defined as

_ o2 -y -y -
81% Oorize ' OxiTn
> f f > f
2 e
H(f,a:) — Ozxax1 23 Ox2Tn
9% f 92 f 9% f
| Oxnx1 Oxnxa ox2 |

3.3 Convex Analysis

Given that the feasible set F' C R™ and the functions f; in the problems presented are convex
for all ¢ € T', it is necessary to review some of the concepts from convex analysis. This section
is dedicated to present basic definitions of convex sets, cones, half spaces, convex hulls and
convex functions in R™. Theorems that will be used later on are enunciated, a few of them

with their corresponding proofs. The reader may consult [27] ,[1], [31], [16] and [2] for the
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proofs of the corresponding theorems.
Definition 3.3.1 A set C C R" is convez if (Ax+(1—N)y) € C for allz,y € C and X € [0, 1].

Definition 3.3.2 The convex hull of a set S C R", denoted as conv S is the intersection of

all convex sets in R™ that contain S.

Definition 3.3.3 For any non zero vector b € R™ and any § € R the sets
{z e R"|V'z < B}, {z e R"|V'z >3}

are called closed half-spaces. The sets
{z e R"|b'z < B}, {x e R"|Vz > B}

are called open half-spaces.

Deﬁnltlon 3.3.4 A set S C R™ is an affine set if given x1,xa,...Tm € S and A1, Ao.. A\, € R

such thatZ)\ =1 thenZ)\a:ZES
=1 =1

Theorem 3.3.1 The intersection of any arbitrary set of convex sets is convez.

The following definitions provide a characterization that is useful in Linear Programming

(LP) problems.

Definition 3.3.5 A set C C R" that can be expressed as the intersection of finitely many

closed half spaces in R™ s called a polyhedral conver set.
Definition 3.3.6 A point x € R™ is an extreme point of a convex set C if C\{x} is convexz.

Next we define the concept of a convex function. We present three equivalent definitions
of a convex function. The first based on a geometric characterization known as the epigraph,
the second based on the convex combination of two points and the last based on a generalized
convex combination of n points. Before presenting these we must first define the concept of

the epigraph of a function.
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Definition 3.3.7 Let f: S CR" — R,the epigraph of f is defined as
epi(f) = {(z,u) e R"'| z € S,u e R,u > f(x)}

We now present the three equivalent definitions of a convex function.

Definition 3.3.8 Given a convex set S # &, a function f : S C R" — R is conver if

epi(f) is a conver set in R" L.

Definition 3.3.9 Given a convexr set S # &, a function f : S C R" — R is convez if
n

Vn > 2,Vx1, 29, ..., Ty € S,V A1, A2, ..., A\ € Ry : Z)\Z =1
=1

FO - Xiwi) <Y Nif (i)
=1 =1

Definition 3.3.10 Given a convex set S # &, a function f: S CR" — R is conver if V

x1,x2 € S, and X € (0,1)
fOz1+ (1= Na) < Af(21) + (1= A)f(2)
Remark 3.3.1 If a function [ satisfies the strict inequalities presented in the definitions

3.3.9 and 3.3.10 then f is said to be strictly convex.

The following proposition proves the convexity of the feasible set F' of any given CSIP

problem of the form (2.1).

Proposition 3.3.1 Given F = {z € R"|f;(x) < 0,i € I} where f; is convex for alli € I and

I is an arbitrary set of indices , F' is a convex set.

Proof. Let 1 and 2o € F then fi(z1) < 0 and f;i(z2) < 0 for all i € I. Taking X\ € [0, 1],

since f; is convex for all ¢ € I we have

fz()\l‘l) + (1 — )\):L‘g) < )\fl(xl) + (1 - )\)f,(xg) <Oforalliel
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Therefore Az1 + (1 — A)xg € F and hence F' is a convex set. m
Next we present some preliminary concepts that will be used in showing later on that the

feasible set defined in the problem (2.1) is a closed set in R".

Definition 3.3.11 A convex function f is proper if its epigraph is non-empty and contains

no vertical lines, i.e. f(x) < oo for at least one x and f(x) > —oo for all x.

Definition 3.3.12 A function f is said to be lower semi continuous at x € S if f(x) =
liminf, ., f(y). A function is said to be lower semi continuous in S if it is lower semi

continuous at all points in S.

Definition 3.3.13 Given a function f : R — R, the lower semi continuous hull of f is the
greatest lower semi continuous function majorized by f, namely the function whose epigraph

is the closure in R™1 of the epigraph of f.

Now we show that the feasible defined in the problem (2.1) is a closed set in R™. For this
we must first define the concept of the closure cl f of a function f then proceed to showing
that the functions f; as defined in the problem (2.1) are closed functions and through this

arrive to the conclusion that the feasible set of the the problem is closed.

Definition 3.3.14 The closure of a proper convex function f denoted by cl f is the lower

semi continuous hull of the function f.
Definition 3.3.15 A function f is closed if cl f = f.

Next we present a corollary that justifies that all functions f; as defined in the problem
(2.1) are closed functions followed by another corollary which states that the solution set to

an inequality of the form f(z) < a where f is a closed function and « € R is a closed set.

Corollary 3.3.1 If f is a proper convex function such that dom f is an affine set (for example

dom f =R"™) then f is a closed function
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Corollary 3.3.2 If f is a closed function then the set

F={z|f(z) < a}

is a closed set.

Having this and Theorem 3.1.1 we arrive to the conclusion that the feasible set F' defined
as

F:={zeR"|fi(x) <0 forallteT}

is a closed set in R".
Next we present other properties of convex functions that are used in later chapters. For
the following theorems and propositions we refer to f : S C R — R where S is a non empty

set.

Theorem 3.3.2 If f is a proper convex function defined in S then
i) S is a convex set.
it)f is continuous in int S

i11) If X > 0 then Af is convex

Theorem 3.3.3 Let S# @ ,if f: SCR" — R andg: S CR" — R are convex functions

then f + g is a convex function.

Theorem 3.3.4 Let S # & and f: S CR® — R be a proper convex function. If * € S is

a local minimizer then x* is a global minimizer.

Proof. Suppose z* be a local minimizer then there 3 a neighbourhood U C R”™ such that

f(z*) < f(z) Vz € U. Next we prove that for all y € S

f&") < fy)
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We take the convex combination (1 — A)z* + Ay where 0 < A < 1. Note that as A — 0,

(1= XN)z*+ Ay € U then

f(*)

IN

F((1=XNz* + \y) for A sufficiently small

IN

(1=XN)f(z*)+Af(y)  because f is a convex function

manipulating this inequality we obtain f(z*) < f(y) for all y € S therefore z* is a global

minimizer. ®

Theorem 3.3.5 Let S # & and f: S CR*" — R. If f is convex then the set of global

minimizers of f, F°Pt, is a convex set.

Proof. Let z; and z2 be global minimizers of f then f(x;) = f(x2) = mingegs f(x) < f(x)

Vx € S. Taking the convex combination of x; and x5 we have

JOz14+ (1= XNz2) < Af(z1) + (1= N)f(z2) =

= min f(z)

on the other hand, mingeg f(x) < f(Azx1+(1—N)z2) (by definition of mingcg f(z)). Therefore
we have that f(Az1 + (1 — N)xg) = mingeg f(x), i.e. Azq + (1 — AN)xg is a global minimizer,

hence the set of global minimizers is convex. m

Theorem 3.3.6 Let f : S C R* — R, f € C! be a convex function and z* € S. If

Vf(z*) =0 then x* is a global minimizer.

Next we present a concept that is essential to our first approach to extending y—active

constraints to CSIP.

Definition 3.3.16 A wvector g € R™ is a sub-gradient of the function f at the point x if V

z € dom f the following inequality is satisfied

f(z) = f(@) +4'(z — @) (3.4)
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The set of all the sub-gradients of f at a point x is called the sub-differential of f at x.

Remark 3.3.2 The sub-differential of f at x denoted as Of(x) is a non empty compact set

if f is continuous at the point x.

We present some important properties of the subdifferential of a proper convex function

in R™.

Theorem 3.3.7 Let f : R"™ — R be a proper conver function then at each point r € R™,

Of(x) #0 and Of () is a closed bounded convez set.

Theorem 3.3.8 Let f : R® — R be a proper convex function. If f is differentiable at x

then V f(x) is the unique subgradient of f at x, so that in particular

f(z)> f(@) +Vf(x)(z—=x) forall zeR"

Based on these properties we are able to state that given a problem of the form (2.1), the
set df;(z) is a non empty compact convex set for all ¢ € T and = € R™.

The use of cones, convex cones, dual cones, polar cones and recession cones are important
as will be seen in future chapters. The following are the definitions of these concepts and

some useful theorems.

Definition 3.3.17 A set K C R"™ is a cone if it is closed under positive scalar multiplication

(i.e. \x € K forallxz € K, A >0).
Remark 3.3.3 A convex cone is a cone that is closed under convex combinations.
Theorem 3.3.9 The intersection of any arbitrary set of convex cones is convex.

Definition 3.3.18 The convex cone generated by an arbitrary set S C R™ denoted as cone S
1s the convex cone obtained by adjoining the origin to the smallest convexr cone containing S

(i.e. cone S = {As| A >0, s € convS}U{0,}).
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Definition 3.3.19 Given a set S C R"
i) The asymptotic cone of S is defined as the set of limits of the form limy_,o A\pxp where

MER, eS8 k=1,2,.., A\ | 0.

Definition 3.3.20 Given a convexr cone K C R"

i)The dual K*of the cone K is defined as

K*={z e R"|k'z >0 for allk € K}

i11) The polar K°of K is defined as

K°={x e R"|K'z <0 forallk € K}

Remark 3.3.4 Another important property of the polar of a cone K are that the polar K°°
of K° is cl K, see [27] (the same applies for the dual cone K*). Another important property

of the polar of cones is the following.
Theorem 3.3.10 Let K, G C R"™ be convex cones. If K° C G then G° C clcone K

Remark 3.3.5 An important property of the polar and dual of a convex cone is the fact

that since they are both closed sets (by definition) we then have that given a convex cone K,

(clK)°=K° and (clK)* = K*.

Next we present the definitions as given in [1] of the tangent and normal cones of a given

subset S C R™.

Definition 3.3.21 Given S C R" and a vector x € S, a vector y is said to be tangent to S at

x if either y = 0 or there exists a sequence {xy} C S such that x, # x for all k and zj, — =z,

Tp—T
[z —=]

by Ts(x).

— ﬁ The set of all tangents of S at x is called the tangent cone of S at x denoted
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Definition 3.3.22 Given S C R"™ and a vector x € S, a vector z is said to a normal of S at
x if there exist sequences {xy} C S and {z;} such that xp, — x, 2z, — 2, 2z € Ts(xy)° for

all k . The set of all normals of S at x is called the normal cone of S at x denoted by Ng(x).

Next we present properties with respect to the tangent cone Tr(z) and normal cone Np(x)

of a convex set F' at a point z € F.

Proposition 3.3.2 The tangent cone Tr(x) of a closed convex set F at x is the closure of

the cone of feasible directions of ' at x:
Tr(z) =clD(F, z)

Proposition 3.3.3 The normal cone Np(x) of a closed convex set F' at x is the negative

polar to the tangent cone Tp(x).

The following proposition is a well known result in convex analysis that characterizes
optimality of a point in the feasible set of a given Convex Programming problem by means of

the normal cone of the feasible set.

Theorem 3.3.11 Let h : R™ — R be a convex function which is to be minimized over a
closed convex set F. Given T € F, T minimizes h over F if and only if 0,, € Oh(T) + Np(T),

i.e. there exists h € O(T) such that —h € Np(Z).

A proof of proposition 3.3.11 can be found in [16] page 294.
Next we present an important tool used in the second definition of y—active constraints

presented in this thesis as an extension of the linear case.

Definition 3.3.23 Let f : R" — R then its conjugate f* is defined as

f*(u) := sup {u'z — f(x)}

reR™”

This definition can be interpreted in several ways, and is particular in the case of convex

functions since its existence arises from the fact that the epigraph of a convex function is
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convex in R"*1. It is actually the pointwise supremum of the affine functions of the form
g(z*) = a'z* — u such that (z,u) belongs to epi f C R""1. An important property to note
about f* is that it is a closed convex function. Next we enunciate some other important

properties of f* as presented in [27].

Theorem 3.3.12 Let f be a convex function. The conjugate function f* is then a closed

convex function, proper if and only if f is proper. Moreover, (cl f)* = f* and f** =clf.

This theorem is very important since it will provide us with the base of our new definition
of y—active constraints, more specifically the fact that f** = cl f which in our case becomes
f** = f since the functions f; are closed proper convex functions for all ¢t € T'.

The following theorem plays a very important role in the proof of one of the feasible set
theorems in Chapter 5. Let f’(x,d) denote the directional derivative of f at x in the direction

d and 0f(x) be the set of all subgradients of f at the point z.

Theorem 3.3.13 Given a proper convez function f : R™ — R then any point x € int(dom f)

and any direction d € R™ satisfy

f(z,d) = max{g'd| g € 0f(z)}

It is common in optimization to study certain characteristics of the inequality system
that defines the feasible set. These characteristics known as Constraint Qualifications often
provide sufficient conditions for the existence and uniqueness of solutions to the optimization

problem (see [23] and [22]). The following is a well known constraint qualification.

Definition 3.3.24 The inequality system o satisfies the classical Slater condition if there

exists x € R™ such that fi(x) <0, for allt € T

3.4 Active Constraints

Active constraints is a concept that is used in many branches of optimization theory. They

are used to determine the topological relation between a given point x € R™ and the solution
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set F' of a system of inequalities 0. Depending on the number of active constraints at a given
point x € R™ we can discover whether it is an interior point, exterior point, or boundary
point. Active constraints can also be used to determine the recession directions, and thus the
recession cone of a given system of inequalities 0. They also determine the feasible directions
of a given point z € F C R™ with respect to o. The following are the definitions and a
proposition that allow us to use active constraints for the purposes previously stated.

We begin by defining feasible directions and the cone of feasible directions.

Definition 3.4.1 Given T € F, a vector d € R™ is a feasible direction at T if T+ Ad € F for

some X > 0.

Definition 3.4.2 Let ' C R™. We define the set of feasible directions at the point T € F as
follows

D(F,z):={d e R" | T+ \d € F, for a certain X > 0}.
Obviously D(F,T) = R"™ if T is an interior point of F.

Next we define active constraints for the linear inequality systems of LSIP problems of the

form 2.3.

Definition 3.4.3 Given T € F the set of active constraints at T is defined as

T@):={teT | ;T =b}

An important set used to establish a relationship between T'(Z) and D(F,Z) is

A(Z) = cone{a; e R"| t € T'(Z)}

Next is a proposition found in [10] that summarizes the usefulness of active constraints in
linear programming. In general, given T € F' we have that cl A(T) C D(F,T)*, however there

exists a class of systems that satisfy a bit more than the inclusion.
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Definition 3.4.4 An optimization problem P is said to be Locally Farkas Minkowski at T € F
if A(T) = D(F,T)*.

Proposition 3.4.1 Given T € F, the following statements hold:
(i) F = {z} if and only if 0,, € int D (F,T)".
(ii) T € FPt if and only if c € D (F,x)".
(iii) If dim D (F,Z)* = n, then T € extr F.

These concepts and definitions form the basis of the theory of y—active constraints in

LSIP problems and will be referred to in later chapters.

3.5 ~v-Active Constraints in Linear Semi-Infinite Programming

The definition of y—active constraints in LSIP along with some lemmas, propositions and their
respective proofs are presented in this section. The concepts and theory that are presented
in this section come from [30] for LSIP problems whose feasible set F' is defined by a linear

inequality system o of the following form
o= {aw>b,teT}. (3.5)

Definition 3.5.1 GivenT € F and~y > 0, we define the set of v -active constraints at T € R”
as

W (z,~) = {at |t € T and ayy = by for a certain y € f—i—an}.

In other words, if a; # 0,,, then a; € W (%, ) if and only if a}T < by + v||at|. Obviously,
{a¢|t € T (Z)} € W (T, ). Moreover, if T € int F' there will exist v, > 0 sufficiently small such
that W (Z,v)\ {0,} = 0 for all v such that 0 < v < 7,. Next we enunciate the propositions
and lemmas presented in [30] without their respective proofs.

The following lemma provides basic characteristics of the definition presented above.

Lemma 3.5.1 Given T € bd F, the following statements hold:
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(i) W (Z,7) contains at least a nonzero vector for all v > 0.
(ii) If T () = 0, then W (Z,~) is an infinite set for all v > 0.
(iii) If |T'| < oo, then W (z,7v) = {at, t € T (T)} for v > 0 sufficiently small.

The following lemmas show that the y—active constraints at T € F allow us to check the

feasibilty of points in the open ball T + vB,, and of given directions at T.

Lemma 3.5.2 Let T € F andy € T+ By, v > 0. Theny € F if and only if ajy > by for all

a; € W(Z,7).

Lemma 3.5.3 Letx € F and d € R". The following statements are true:

(i) If for a certain v > 0 we have ajd > 0 for all ay € W (Z,7), then d € D (F,Z). So
D (F,z)" C clcone W (Z,7) for all v > 0.

(it) If d € D (F,Z) and |T| < oo, then there exists some g > 0 such that ayd > 0 for all

ar € W (x,7) and all positive v < vo. In such a case, D (F,T)* = cone W (T,7).

The following proposition provides necessary conditions for optimality and for certain

characteristics of the feasible set.

Proposition 3.5.1 Given ® € F and v > 0, the following statements hold:
(i) If F = {z}, then 0,, € int cone W (T, ).
(ii) If T € FPt, then c € clcone W (T, 7).

(iii) If T € extr F', then dim cone W (T, ) = n.

The following proposition shows that the conditions presented in Proposition 3.5.1 are

both necessary and sufficient in the Finite Linear Programming Case.

Proposition 3.5.2 Let T € F and |T| < co. The following statements hold:
(i) If 0, € int cone W (T, ) for all v > 0, then F = {T}.
(ii) If ¢ € clcone W (T,v) for all v > 0, then T € FPL.

(i) If dim cone W (Z,~v) = n for all v > 0, then T € extr F.
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These definitions and theory have been studied only in the LSIP case, in the following
chapters, these concepts will be extended to the CSIP case with proofs that will hold for the
both the CSIP and the LSIP case.





