
Chapter 4

Indexing service for dataspaces

This chapter describes the general architecture of an indexing service for managing and ex-

ploiting the multi-level index we proposed.

An indexing service is composed by a set of sub-services managing each layer in the index.

These sub-services implement a set of functions including: query answering, resources retrieval

and documents persistence. Additionally, the indexing service at each layer interact together

to (i) offer query services, (ii) manage the multi-level index, and (iii) optimize queries over

the multi-level index.

The following sections present the general architecture of the indexing service detailing

the components associated to each layer in order to manage and optimize the execution of

operations over its associated indexing structure.

4.1 General architecture

[13] define the minimal components of a dataspace environment (c.f. Figure 4.1) and sets the

indexing service as a component giving support capabilities for evaluating queries over the re-

lationships presented among the dataspace’s components (consumers, producers, documents,

data sources, etc.), thus allowing the consumers to retrieve data from these resources.

Within the context of this project, the indexing service has two main objectives:

1. To answer queries in a prompt way and to reduce the costs related to the global index

access. To achieve this, we introduced the notion of neighborhood and cache as two

49



50 CHAPTER 4. INDEXING SERVICE FOR DATASPACES

Replication
storage

Application
repository

Local store &
Index

Manager

Information
extraction

Data management
extension

Catalog

Information
Retrieval

Dataspace

Figure 4.1: Dataspace’s components

colaborative elements used to optimize index search. This elements implement a pay-

as-you-go strategy [26] to refine resources continuou

2. Resolver consultas en tiempo y reducir el acceso al ı́ndice global. Para lograrlo hemos

introducido la noción de vecindario y caché como dos elementos que colaboran para

optimizar búsquedas siguiendo el paradigma Pay-As-You-Go [26] como un refinamiento

de resultados incremental que recupera datos de consultas anteriores para mejorar las

siguientes. Tanto el vecindario y el caché están compuestos por sub-vecindarios y sub-

cachés de cada una de las capas. A reserva de que más adelante se detallen estas nociones

en cada capa, de manera general el caché es una versión resumida del ı́ndice que se

actualiza conforme a relaciones de vecindad entre los datos indexados. La intención es

tener pronto acceso a los elementos del ı́ndice que son más consultados y que guardan

una relación de cercańıa entre śı. Hay que notar que el caché no es un caché de datos

duros sino que es una parte resumida del ı́ndice. Los elementos en el caché resultan tener

cierta cercańıa (e.g., proximidad f́ısica, descripción similar, frecuencia de aparición en

los mismos resultados) para hacer al evaluador de consultas más eficiente.

3. To guarantee the validity of results by maintaining up-to-date the indexing structures

associated to each layer. To achieve this, we have identified a set of events triggering

updating actions along each layer. Events may be presented independently at each layer

triggering updating actions over other layers (e.g., a change within a document’s content

may require to modify the definition of certain concept. Additionally, events may be



4.1. GENERAL ARCHITECTURE 51

ExternalEventManagerExternalIndexManager

ExternalIndex ExternalQueryInterface

ExternalLayerManager
Cache Neighborhood

PhysicalEventManagerPhysicalIndexManager

PhysicalIndex PhysicalQueryInterface

PhysicalLayerManager
Cache Neighborhood

LogicalEventManagerLogicalIndexManager

LogicalIndex LogicalQueryInterface

LogicalLayerManager
Cache Neighborhood

Indexing Service

Accouontings
Production

Finances

Supply Chain

Technology

Global Annual Meeting
Human Resources

Events

Technical SupportSales
Credit ISO-9001

Internal Auditing

Quality Assurance

SAP migration 2009

Consumers Producers

Figure 4.2: Indexing service general architecture

presented outside the index (e.g., several queries over certain concepts may cause to

execute update actions over the caches managed at each layer).

As we presented in the previous chapter, we prosed a three-level organization of the datas-

pace in order to solve the problems associated at each abstraction level (semantics, identi-

fication, and location). Each level is indexed with respect to its layer model and must be

managed using a layer management service defining and executing a set of query and man-

agement functions over the data structures associated to its model.

Figure reffig.IndexingServiceArchitecture presents the general architecture of an indexing

service. An indexing service is composed by a set of layer managers, where each manager:

(i) specializes an abstract architecture with respect to the model associated to the layer



52 CHAPTER 4. INDEXING SERVICE FOR DATASPACES

it manages, (ii) provide query processing capabilities over its indexing structures, and (iii)

manages the indexing structures, caches and neighborhood associated to the layer.

The rest of this section describes the main components of the indexing service. First, we

will present the structure of the interface exported by the indexing service so that consumers

and producers access to its functions(4.1.1). Then, we will describe the abstract architec-

ture of a layer manager (4.1.2). Sections 4.2, 4.3 and 4.4 presents the architecture of the

physical, logical, and external layer managers, which specialize the layer manager abstract

architecture and adapt the notion of cache and neighborhood according to the characteristics

of its associated layer. Finally, Section 4.5 describes how the indexing service is assembled by

coordinating each layer manager in order to implement its functions.

4.1.1 Indexing service interface

The indexing service interacts with the consumers and producers of the dataspace through

an exported interface and a data model. This interface is composed of two sub-interfaces,

each one oriented to the consumers and the producers respectively. The rest of this section

describes the data model and interfaces of the indexing service.

Data model. Figure 4.3 presents the data model used by the indexing service satisfying

the necessities of the dataspace’s consumers and producers. From a consumer perspective,

the data model allows to characterize a query (keyword-based or predicate-based) and its

associated results. Keyword queries are expressed as a set of terms (Term), while predicate

queries are expressed as a set of elements (Filter) associating attributes and values using

binary operations (e.g., salary > 30, 000, Autobus is Transport). A query is associated to

one or several results partially ordered according to its recall. A result can be defined as a set

of documents or terms, where terms may be knowledge domains (e.g., the term Industrial

production or Computing). From a producer perspective, the data model characterizes

documents with a name docName associated to a file, and a unique identifier GDL (see Section

3.1.1).

Consumer’s interface. Figure 4.4 presents the consumer’s interface providing a set of

query and document retrieval functions over the multi-level index. The main functions pro-



4.1. GENERAL ARCHITECTURE 53

AnswerSet

Domain

Document

docName:String
file:File

docKey:String

Term

term:String

Filter

filter:String

Attribute ValueBinaryOperator

1..*

1..*

1..*

1..* 1..*

0..*

1

AssociatedToAssociatedTo

BelongsTo

111

1..*

Figure 4.3: Indexing service data model

vided by a consumer’s interface are the following:

• getdomains():AnswerSet. Retrieves the knowledge domains defined over the datas-

pace. A domain is defined as a concept that overlaps all the concepts describing it,

giving an overview of the dataspace’s content.

• subsumption(Concept):AnswerSet. Retrieves the concepts subsuming a particular

concepts executing a Top-down search using the taxonomic relations defined over the

dataspace (e.g., Citizen is Person). The result is a set of terms and/or documents

related to the input concept.

• expand(Concept,scope):AnswerSet. Retrieves the concepts that are associated to the

input concept using a non-taxonomic relation (e.g., Citizen has Nationality). Retrieved

concepts may be associated to other concepts (e.g., Nacionality is SimpleNationality,

Nationality is DobleNationality). For this reason, the scope is used to determine the

amount of non-taxonomic relations to be taken into account given an input concept.

• applyFilter(AnswerSet, Filter):AnswerSet. Given an answer set, this operator

applies a set of constraints (Filter) defined as tuples attribute-value. This operator

uses non-taxonomic relations to associate concepts (as terms) with values, thus applying



54 CHAPTER 4. INDEXING SERVICE FOR DATASPACES

IndexingService
<<interface>>

ConsumerInterface
<<interface>>

applyFilter(AnswerSet, Filter):AnswerSet

getDomains():AnswerSet

subsumption(Concept):AnswerSet

expand(Concept,scope):AnswerSet

retrieveDocument(docKey):File

ProducerInterface
<<interface>>

store(Document):GDL

update(GDL):GDL

delete(GDL)

Figure 4.4: Indexing service interface

binary operators (e.g., Nationality = Mexican, Age > 18). The output of this

operator is a subset of the answer set satisfying the constraints defined in Filter.

• retrieveDocument(docKey):File. Given a document key, this operator retrieves the

file containing the document from the storage space where it resides. This function can

be used when the key of a document satisfying a consumer’s requirement is known.

Producer’s interface. Figure 4.4 presents the producer’s interface describing the functions

(i) to make documents persistent, and (ii) to update and remove them from the storage space.

This interface is consider a ‘direct access’ to the persistence service provided by the physical

layer.

While the scope of this project does not involve managing the persistence services as a

shared storage space, it is important to specify the functions implemented by the indexing

service. This because documents’ storage is related to events influencing the behavior of the

physical and upper layers.

The main functions described by the producer’s interface and associated to the documents’

persistence are the following:

• store(Document):GDL. Stores a document into the storage space. The output of this

function is a key (GDL) identifying the document in a unique way within the storage

space.



4.1. GENERAL ARCHITECTURE 55

EventManagerIndexManager

QueryInterface

LayerManager
Cache Neighborhood

Index

Figure 4.5: Layer manager abstract architecture

• update(GDL,newDocument):GDL. Updates a document identified with a GDL key. The

output is a key whose value can be the same as the input one, or a new key according

to the result provided by the persistence service in the physical layer.

• delete(GDL). Removes a document identified with a GDL key from the storage space.

4.1.2 Layer manager abstract architecture

An abstract architecture describes the minimal components and functions provided by a layer

manager. Additionally, it models the communication protocols among the classes implement-

ing these functions and the minimal messages required to achieve the management and update

of the index associated to each layer.

The rest of this section focuses on describing our data model to characterize the notion

of cache and neighborhood. Additionally, we present the interface provided by a layer man-

ager service and the functions of each of its components. Finally, we describe a model to

characterize the messages interchanged among thse components.

Index management data structures

Data structures used by the manager aim to optimize the execution of queries over the index.

As the cache is defined as a summary of the general index, both the index and the cache

must be implemented using a same data structure (e.g., B-Tree, TV-Tree, DHT). A cache is

updated with respect to the probability a certain element has to be queried. As there are

document clusters having documents close to each other according to their content, physical

location or as they are the result of a specific query at certain instant (e.g., a requirement

associated to the term ‘YAGO’ involves all documents associated to the terms ‘YAGO’ and



56 CHAPTER 4. INDEXING SERVICE FOR DATASPACES

Index

IndexDataStructure

-insert(Item)

-delete(Item)
-update(Item)Cache

Neighborhood

neighborhood: ArrayList

+updateNeigborhood(Item)

Figure 4.6: Query optimization data structures

‘NAGA’ [37]). We model this relation as a neighborhood.

Cache. A cache represents a summary of a general index and must be defined using the

same data structure as the general index.

Neighborhood. A neighborhood is defined as a list composed by the most significant ele-

ments E of the index. Each element Ei has an associated list N of its neighbors. Neighbors

are partially ordered with respect to its closeness with Ei.

Layer manager interface

Figure 4.7 details the two minimal functions of a layer manager specified within its interface.

According to the managed layer, this interface can be specialized by adding other additional

functions.

LayerManagerInterface
<<interface>>

+recieveMessage(IncomingMessage)
+lookup(String):AnswerSet

Figure 4.7: Interfaz de servicio administrador de capa



4.1. GENERAL ARCHITECTURE 57

• lookup(String):AnswerSet. This function is related to the execution of queries over

the index, allowing it to be queried using a string as input. This input is specialized

according to the managed layer and the characteristics of the keys identifying the index’s

components (e.g., set of terms at a logical layer, or a GDL at a physical layer). The

output of this function is an answer set.

• recieve(IncomingMessage). This function is related to the maintenance of the index-

ing structure. The input of this function is a notification message sent by the remaining

layers to trigger actions in order to update the indexing structure, a cache or a neighbor-

hood. The messages typification is partially described in Figure 4.8. However, messages

may be specialized according to each layer and the communication protocols among

layers.

Layer manager classes

QueryManager. This class analyzes the queries executed over the index (lookup(String)),

and executes a search over the cache in order to retrieve the element. If the query is not sat-

isfied by the cache, then the main index is queried. If the query is satisfied either using the

cache or the main index, the query manager generates a set of events that are sent to the

Event Manager. Some of these events are the following:

• The fact that a query over a particular event was received.

• The fact that an element was successfully found in the cache.

• The fact that an element was not found in the cache.

• The fact that an element was successfully found in the index.

• The fact that an element was not found in the index.

EventManager. This class receives local notifications (LocalMessage) provided by the

LayerManager, the IndexManager, and the QueryManager. Additionally, this class resends

messages to the requested layers (UpgoingMessage, DowngoingMessage) as well as to the

IndexManager.



58 CHAPTER 4. INDEXING SERVICE FOR DATASPACES

Q
u
e
r
y
M
a
n
a
g
e
r

+
l
o
o
k
u
p
(
S
t
r
i
n
g
)
:
A
n
s
w
e
r
S
e
t

-
l
o
o
k
u
p
A
t
C
a
c
h
e
(
S
t
r
i
n
g
)
:
A
n
s
w
e
r
S
e
t

-
s
e
n
d
M
e
s
s
a
g
e
(
L
o
c
a
l
M
a
s
s
a
g
e
)

-
l
o
o
k
u
p
A
t
I
n
d
e
x
(
S
t
r
i
n
g
)
:
A
n
s
w
e
r
S
e
t

L
a
y
e
r
M
a
n
a
g
e
r

I
t
e
m
N
o
t
F
o
u
n
d
e
d
A
t
C
a
c
h
e

i
t
e
m
 
:
 
S
t
r
i
n
gI
t
e
m
F
o
u
n
d
e
d
A
t
C
a
c
h
e

i
t
e
m
 
:
 
S
t
r
i
n
g

I
t
e
m
N
o
t
F
o
u
n
d
e
d
A
t
I
n
d
e
x

i
t
e
m
 
:
 
S
t
r
i
n
g

I
t
e
m
F
o
u
n
d
e
d
A
t
I
n
d
e
x

i
t
e
m
 
:
 
S
t
r
i
n
g

L
o
c
a
l
M
e
s
s
a
g
e

U
p
g
o
i
n
g
M
e
s
s
a
g
e

I
n
c
o
m
i
n
g
M
e
s
s
a
g
e

M
e
s
s
a
g
e

-
s
e
t
M
e
s
s
a
g
e
(
M
e
s
s
a
g
e
)

*
g
e
t
M
e
s
s
a
g
e
(
M
e
s
s
a
g
e
)

D
o
w
n
g
o
i
n
g
M
e
s
s
a
g
e

I
t
e
m
Q
u
e
r
i
e
d

i
t
e
m
 
:
 
S
t
r
i
n
g

A
n
s
w
e
r
S
e
t

-
a
d
d
A
n
s
w
e
r
(
)

+
g
e
t
A
n
s
w
e
r
(
)

E
v
e
n
t
M
a
n
a
g
e
r

+
r
e
c
i
e
v
e
M
e
s
s
a
g
e
(
M
e
s
s
a
g
e
)

-
s
e
n
d
M
e
s
s
a
g
e
(
M
a
s
s
a
g
e
)

I
n
d
e
x
M
a
n
a
g
e
r

*
r
e
c
i
e
v
e
M
e
s
s
a
g
e
(
L
o
c
a
l
M
e
s
s
a
g
e
)

-
u
p
d
a
t
e
C
a
c
h
e
(
)

-
u
p
d
a
t
e
N
e
i
g
h
b
o
r
h
o
o
d
(
)

-
i
n
s
e
r
t
(
I
t
e
m
)

-
d
e
l
e
t
e
(
I
t
e
m
)

c
a
c
h
e
:
 
C
a
c
h
e

n
e
i
g
b
o
r
h
o
o
d
:
 
N
e
i
g
h
b
o
r
h
o
o
d

i
n
d
e
x
:
 
I
n
d
e
x

-
u
p
d
a
t
e
(
I
t
e
m
)

L
a
y
e
r
M
a
n
a
g
e
r
I
n
t
e
r
f
a
c
e

<
<
i
n
t
e
r
f
a
c
e
>
>

+
r
e
c
i
e
v
e
M
e
s
s
a
g
e
(
I
n
c
o
m
i
n
g
M
e
s
s
a
g
e
)

+
l
o
o
k
u
p
(
S
t
r
i
n
g
)
:
A
n
s
w
e
r
S
e
t

+
i
n
s
e
r
t
I
t
e
m
(
I
t
e
m
)

+
d
e
l
e
t
e
I
t
e
m
(
I
t
e
m
)

h
a
s

1

1 1 1

Figure 4.8: Layer manager classes



4.1. GENERAL ARCHITECTURE 59

IndexManager. This class implements the index management operations (insert(),update());

receives local notifications (recieveMessage(LocalMessage)) triggering one or several man-

agement operations over the index (insert(), update(), delete()), the cache (updateCache()),

and the neighborhood (updateNeighborhood()). Cache update is controlled by a set of poli-

cies (selection, size, replacement). These policies are submitted into an experimental process

within each layer in order to obtain measures using different indexing structures; applying

centralized and distributed architectures to store the index; and combining three policies.

• Selection policy. This policy is tightly related to the notion of neighborhood. A

selection policy defines the semantic of a neighborhood among the index’s elements.

For instance, in the physical layer, a selection policy may state that a document and

its neighbors (according to a particular query) can be loaded into the cache. Another

selection policy may define that documents having a close physical relation are stored

in the cache.

• Size policy. This policy defines the maximum size of a cache (e.g., the cache size of

a mobile device may be limited by its storage capabilities), or the amount of elements

stored in the cache (e.g., a 10% of the elements stored in the index).

• Replacement policy. This policy defines how the elements to be removed from the

cache are going to be selected. For instance, a layer manager may adopt a LRU (Least

Recently Used) or a MRU (Most Recently Used) policy.

Abstract layer manager coordination

The main components of a layer manager interact with each other by sending messages, and

together implement the functions offered by a layer manager within its interface (see Figure

4.1.2). The following list establishes the main operations implemented by a layer manager.

LookUp. Figure 4.9 describes how the layer manager’s components interact together to

complete an element search over the index layer. In principle, it is assumed that a search

was requested to the layer manager. The layer manager delegates the action to the query

manager, who looks up the element in the cache and notifies the event manager that the



60 CHAPTER 4. INDEXING SERVICE FOR DATASPACES

element is being queried. If the cache search is not satisfied, then the query manager executes

a query over the index and notifies the event manager that the element was not found in the

cache and is been looked up in the index. If the query is not satisfied, then it is notified to

the event manager.

IndexManager

LayerManager QueryManager EventManager IndexManager

lookup(String)

lookupAtCache(String)

sendMessage(ItemQueried)

AnswerSet

sendMessage(LocalMessage)

sendMessage(LocalMessage)

sendMessage(LocalMessage)

Layeri+1 Layeri-1

sendMessage(UpgoingMessage)

sendMessage(DowngoingMessage)

sendMessage(UpgoingMessage)

sendMessage(DowngoingMessage)

if item not founded

lookupAtIndex(String)

updateNeighborhood()

updateCache()

updateNeighborhood()

updateCache()

Figure 4.9: Layer manager coordination - Look up

The event manager receives the notifications sent by the query manager stating which

elements are being queried and the success or failure of searching them in the cache or the

index. This data is sent to the upper layers to execute the pertinent operations, and to the

index manager managing the data structures (cache, index, neighborhood).

When the index manager is notified that an element was queried, it updates the data stored

in the neighborhood, and execute the pertinent updates over the cache (e.g., the substitution

of certain element frequently queried).

Insertion. Figure 4.10 presents the interact among the layer manager, the event manager

and the index manager to insert an element into the index.

The layer manager receives a request to insert a document into the index (e.g., a new

document is published in the dataspace, so the document must be inserted into the storage



4.1. GENERAL ARCHITECTURE 61

IndexManager

LayerManager EventManager IndexManager

sendMessage(LocalMessage)

Layeri+1

sendMessage(UpgoingMessage)

insertItem(Item)

insert(Item)

updateNeighborhood()

Figure 4.10: Layer manager coordination - Insertion

space, and the resource and the terms describing its content must be incorporated into the

term space). The layer manager delegates the insertion operation to the index manager. The

index manager inserts the element within the index and updates the neighborhood if it is

required (e.g., a new element has a physical closeness to another element). Once the element

has been inserted the layer manager notifies the event manager the success of the operation

in order to broadcast the message to the pertinent layers.

Removal. Figure 4.11 illustrates how the layer manager’s components interact together to

remove a particular element from the index.

The layer manager receives the request to remove an element from the index (e.g., a

document has been removed from the storage space, a resource has been removed and deleted

with their associated annotations). Then, the layer manager delegates this operation to

the index manager, who removes the element from the indexing structure and updates the

neighborhood if it is required (e.g., a resource having multiple neighbors has been removed).

Message reception. Figure 4.12 describes how the layer manager, the event manager and

the index manager interact together by passing local messages to manage pertinently its

associated layer. Additionally, these components communicate with the remaining layer using

messages. Message notification is oriented to the triggering of Event-Condition-Action rules



62 CHAPTER 4. INDEXING SERVICE FOR DATASPACES

IndexManager

LayerManager EventManager IndexManager

sendMessage(LocalMessage)

Layeri+1

sendMessage(UpgoingMessage)

deleteItem(Item)

delete(Item)

updateNeighborhood()

Figure 4.11: Layer manager coordination - Removal

IndexManager

LayerManager EventManager IndexManager

sendMessage(LocalMessage)

Layeri+1

sendMessage(UpgoingMessage)

recieveMessage(IncomingMessage)

 <some local operation>

Layeri-1

sendMessage(LocalMessage)

Figure 4.12: Layer manager coordination - Message reception

(ECA) in order to manage the index, the cache, and the neighborhood defined at each layer

given a set of events presented over the layers.

The layer manager may receive the messages from the outside or may generate them

according to the presence of a local event. These messages are notified to the event manager,

who broadcast the message to the other components of the layer manager or to another layers.

When the index manager receives a notification, it triggers a maintenance operation over the

index, the cache and the neighborhood.



4.2. PHYSICAL LAYER MANAGER 63

4.2 Physical layer manager

The physical layer manager receives the requests oriented to the persistence of a specific

document within the storage space. Given a certain request, a notification message (e.g., a

document has arrived, has been updated or has been removed) is sent to the upper layers.

The manager implements a function to retrieve documents from the persistence service where

it resides. Additionally, the physical layer manager receives, from the persistence services, the

notifications stating that a document has modified its physical address. These notifications

allow the physical manager to determine when to execute update operations over the indexing

structure.

In the physical layer, documents are associated to GDL (Global Document Locator) ad-

dresses that locate them globally. These addresses are associated to a segment within the

storage space managed by a persitence service.

The following lines describe the implementation of the notion of cache and neighborhood

in the physical layer used to optimize the execution of the document retrieval process.

4.2.1 Physical cache and neighborhood

The notion of neighborhood between two GDL δ(D1,D2) is defined as the probability that D2

is searched along with D1. Figure 4.13 presents the characterization of a GDL neighborhood

using load counters. For each pair of GDL, there exists a load probability formally defined

through the formula:

δ(D1,D2) =
loads count D2 with D1

loads count D1

Each time D1 is loaded, the counter loads count D1 is incremented. When D2 is loaded

along with D1, the counter loads count D2 with D1 is incremented.

4.3 Logical layer manager

The logical layer manager receives the notifications sent by the physical layer (document

inclusion, modification, and removal from the storage space). In this layer, we take into

account the term space of the dataspace. Terms describe the documents’ content using a

frequency matrix (3.2). The frequency matrix is built by setting the documents into a term



64 CHAPTER 4. INDEXING SERVICE FOR DATASPACES

GDL

GDL:int 
loads_count:int

Neighbor

loads_count_D2_when_D1:int

δ(D1,D2) 1..*

1..*

Figure 4.13: GDL neighborhood

Term

term:String
count:int

QueryNeighbor

count_T2_when_T1:int

GDLNeighbor

count_T2_where_T1:int

φ(Q)
(D1,D2)

1..*

1..*

φ(GDL)
(D1,D2)

1..*

1..*

Figure 4.14: Term neighborhood

harvesting process, and associating the retrieved terms to their GDLs. When a document is

inserted, modified, or removed, the term space is updated. For this reason, the logical layer

must notify this event to the external layer.

The logical layer indexes the term space using a TV-Tree (Telescopic vector) modeling each

GDL as a multidimensional resource where each term describing it is considered a dimension.

The rest of this section describes the implementation of a logical cache and neighborhood to

optimize the execution of queries over this structure.

4.3.1 Logical cache and neighborhood

The notion of neighborhood between two terms ϕ(T1, T2) is defined as the probability that T2

appears along with T1. In the logical layer, two types of neighborhood are defined (cf. Figure

4.14):



4.4. EXTERNAL LAYER MANAGER 65

Query occurrence (QueryNeighbor) . Let Qi be a query expressed as a set of terms T .

We state that T1 appears along with T2 in Qi if

T1 ∧ T2 ∈ Qi(T )

. This way, the neighborhood between T1 and T2 is defined as the probability that T2 occurs

along with T1 within a query Q:

ϕ(Q) =
counts T2 when T1

counts T1

GDL occurrence (GDLNeighbor) . Let GDLi be a locator associated to the document i

described by a set of terms T . We state that terms T1 and T2 appear in GDL if

T1 ∧ T2 ∈ GDLi

. This way, the neighborhood between T1 and T2 is represented as the probability that T2

occurs along with T1 in a GDL:

ϕ(GDL) =
counts T2 where T1

counts T1

4.4 External layer manager

The external layer manager receives the queries expressed by the consumers. This man-

ager provides an integrated view over the concepts evoking the dataspace’s content. These

concepts are semantically related among each other through taxonomic and non-taxonomic

relationships. Taxonomic relationships define a hierarchy among concepts and are of two main

types:

• Subsumption.A concept specializes another concept (e.g., Man Subsume Person,

Woman Subsume Person)

• Coverage. A concept generalizes a set of concepts (e.g.,Person Cover (Man,Woman))

Non-taxonomic relations represent a same-level semantic relationship between two con-

cepts and characterize the properties associated to a concept:



66 CHAPTER 4. INDEXING SERVICE FOR DATASPACES

• Equivalence. A concept is equivalent to another one (e.g., Human BeEquivalentHomosapiens)

• Disjointness. A concept is semantically disjoint to another concept (e.g., Hombre DisjointMujer)

• Attribute. A concept is characterized by a specific attribute (e.g.,Man AttributeAge)

Each concept is associated to a set of terms of the logical index. These associations are

defined as a mapping defined by a group of experts or through an inference process.

4.4.1 Concept neighborhood

The notion of neighborhood within the external layer is defined wiht respect to the semantic

relationships presented among terms. The neighborhood between two concepts C1 and C2

(σ(C2, C1)) is defined as the probability that C2 appears along with C1 in an answer A. When

a semantic relationship is defined between C1 and C2, then σ = 1. As queries are evaluated,

the neighborhood relation increases or decreases. The neighborhood relation between C1 and

C2 is closer if C2 along with C1 belongs to the answer A if

(C1 ∧ C2 ∈ A) ∧ A → Q

when A satisfies Q (satisfiability may be determined through user feedback). This way, the

neighborhood between C1 and C2 is defined as the probability that C2 co-exists along with

C1 within a query Q:

ϕ(Q) =
counts C2 when C1

counts C1

4.5 Indexing service coordination

Layer managers interact together in order to provide the main operations of the indexing

service (cf. Figura 4.4). Each manager receives requests to trigger a set of operations according

to the layer they manage. For instance, the physical layer faces the requests associated to the

persistence of documents offered to data producers (store, update, delete)y la recuperación

de los documentos (retrieveDocument); the external layer faces the requests related to the

dataspace’s semantic (getDomains, subsumption, expand, applyFilter); and the logical

layer defines the mapping between the external and physical layers, so the operations it



4.5. INDEXING SERVICE COORDINATION 67

Concept

concept:String

Query

query:String

Answer

σ(A)
(C1,C2)

1..*

1..*

1..*

1..*

taxonomic

non-taxonomic

sati!es

ConceptNeighbor

count_C2_when_C1:int

belongs

1 1

1

1..*

Figure 4.15: Concept neighborhood

IndexService

ExternalLayerManager LogicalLayerManager PhysicalLayerManager BreafcaseBreafcaseBreafcase

lookUp(Terms)

BreafcaseBreafcaseConsumer

query(Query)

lookUp(GDL)
retrieve(address)

document

document

documents
documents

Figure 4.16: Indexing query articulation for query answering

implements are those related to the indexation of the term space associating the concepts in

the external layer with the documents in the physical layer.

Figure 4.16 describe the sequence diagram related to the evaluation of a query expressed

over the dataspace by exploiting the indexing service. A query is presented by a consumer and

may involve the execution of operations over the physical, logical, and external layers of the

index. However, there may exists more specialized queries where queries are expressed as a set

of terms, similar as search engines; or where queries specify the addresses of the documents

to be retrieved. In both cases, queries are evaluated by the pertinent layer manager.

Moreover, consumers may require to enrich their queries over time as the retrieved re-

sources do not totally satisfy its requirements. In this cases, other interface methods within



68 CHAPTER 4. INDEXING SERVICE FOR DATASPACES

the indexing services are applied like a subsumption, expand, applyFilter method.

4.6 Conclusions

This chapter presented an architecture for the construction of an indexing service organized

into three main levels. Each level characterizes a set of management functions defined with

respect to its associated layer model. Each manager functions involve: (i) index layer updating

in order to maintain it up-to-date respect to the dataspace’s evolution, (ii) query processing

over the layer, and (iii) layer communication in order to achieve an effective management of

the dataspace’s index. All layers managers compose the indexing service of the dataspace.

This service allows to identify the concepts describing the dataspace’s content, as well as

its associated terms describing the resource’s content to be retrieved from their persistence

services.




