5. PLAN DE INVESTIGACIÓN

Con base en los objetivos planteados, se presenta el siguiente plan de investigación:

5.1 Establecimiento de la formulación y evaluación del néctar de guayaba

A partir de guayabas maduras, limpias y sanas se obtuvo un néctar, el cual se formuló de acuerdo con las especificaciones del Codex Alimentarius (1985) y los resultados obtenidos de una evaluación sensorial preliminar. Con la formulación elegida, se preparó néctar de guayaba y se determinó su pH, acidez titulable, contenido de vitamina C, actividad de la enzima pectinmetilesterasa, color, propiedades reológicas y cuenta total de microorganismos presentes.

5.2 Obtención de los parámetros cinéticos para la inactivación de pectinmetilesterasa

El néctar de guayaba se calentó a 60, 65 y 70 °C en un baño de agua. Los valores D y z se determinaron mediante el análisis de las curvas de inactivación de pectinmetilesterasa a cada una de las temperaturas.

5.3 Determinación de las condiciones de pasteurización con microondas

El néctar fresco se trató por calentamiento en un sistema de microondas por lotes a 90 °C usando dos niveles de potencia (500 y 950 W). Con los perfiles de temperatura obtenidos se establecieron las condiciones de pasteurización en función de la inactivación de la enzima pectinmetilesterasa.

5.4 Evaluación durante el almacenamiento

Los néctares pasteurizados se almacenaron a 4 °C y a los 0, 4, 8 y 12 días de almacenamiento se les determinó el pH, los grados Brix, la acidez titulable, el contenido

de vitamina C, el color, las propiedades reológicas y la cuenta total de microorganismos. Además, al octavo día de almacenamiento se realizaron evaluaciones sensoriales para conocer la aceptabilidad del producto y detectar diferencias entre el néctar fresco y el tratado con microondas.

5.5 Comparación con un método convencional

Los resultados de las pruebas fisicoquímicas y microbiológicas de los tratamientos con microondas se compararon con los resultados obtenidos de néctares pasteurizados en un intercambiador de calor de placas (ICP) a 90 °C y 0.8 L/min que fueron almacenados a 4 °C durante 12 días.