16. REFERENCIAS

Señalización de Ca\(^{2+}\) intracelular en endotelio in situ de aorta de rata con diabetes mellitus tipo II

Señalización de Ca^{2+} intracelular en endotelio in situ de aorta de rata con diabetes mellitus tipo II

Señalización de Ca$^{2+}$ intracelular en endotelio in situ de aorta de rata con diabetes mellitus tipo II

Señalización de Ca\(^{2+}\) intracelular en endotelio in situ de aorta de rata con diabetes mellitus tipo II

Hecker M. Endothelium-derived hyperpolarizing factor-fact or fiction? News in Physiological Sciences. 15: 1-5.

Señalización de Ca$^{2+}$ intracelular en endotelio in situ de aorta de rata con diabetes mellitus tipo II

- Malek A, Greene A e Izumo S. Regulation of endothelin 1 gene by fluid shear stress is transcriptionally mediated and independent of protein kinase C and cAMP. PNAS. 90: 5999-6003.

Mogami H, Tapikin A y Petersen O. Termination of cytosolic Ca2+ signals: Ca2+ reuptake into intracellular stores is regulated by the free Ca2+ concentration in the store lumen. The EMBO Journal. 17: 435-442, 1998.

Señalización de Ca$^{2+}$ intracellular en endotelio
in situ de aorta de rata con diabetes mellitus tipo II

Tang Y y Li GD. Chronic exposure to high glucose impairs bradykinin-stimulated nitric oxide production by interfering with the phospholipase-C-implicated signaling pathway in endothelial cells: evidence for the involvement of protein kinase C. Diabetologia. 47: 2093-2104, 2004.

Tang Y y Li GD. Chronic exposure to high glucose impairs bradykinin-stimulated nitric oxide production by interfering with the phospholipase-C-implicated signalling pathway in endothelial cells: evidence for the involvement of protein kinase C. Diabetologia. 47: 2093-104, 2004.

Señalización de Ca2+ intracelular en endotelio
\textit{in situ} de aorta de rata con diabetes mellitus tipo II

