RESULTADOS DE SPSS

Factor Analysis

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy.		
		.608
Bartlett's Test of	Approx. Chi-Square	111.185
Sphericity	df	21
	Sig.	.000

Communalities

	Initial	Extraction
Tourist information available	1.000	.624
Attractiveness of its natural environment	1.000	.629
Quality of life Interest of cultural heritage Quality of tourism infrastructure Number of leisure and recreation activities Experience in general	1.000	.433

Extraction Method: Principal Component Analysis.

Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of SquaredLoadings			Rotation Sums of Squared Loadings		
	Total	\% of Variance	$\begin{gathered} \text { Cumulative } \\ \% \end{gathered}$	Total	\% of Variance	$\begin{gathered} \text { Cumulative } \\ \% \end{gathered}$	Total	\% of Variance	$\begin{gathered} \text { Cumulative } \\ \% \end{gathered}$
1	3.094	44.201	44.201	3.094	44.201	44.201	2.229	31.844	31.844
2	1.066	15.229	59.431	1.066	15.229	59.431	1.931	27.587	59.431
3	. 885	12.640	72.071						
4	. 792	11.318	83.389						
5	. 593	8.466	91.855						
6	. 365	5.214	97.069						
7	. 205	2.931	100.000						

Extraction Method: Principal Component Analysis.

Component Matrix(a)

	Component	
	1	2
Tourist information available	. 705	. 357
Attractiveness of its natural environment	. 645	-. 461
Quality of life	. 655	-. 061
Interest of cultural heritage	. 647	-. 418
Quality of tourism infrastructure	. 661	. 186
Number of leisure and recreation activities	. 564	. 687
Experience in general	. 760	-. 203

Extraction Method: Principal Component Analysis.
a 2 components extracted.

Rotated Component Matrix(a)

	Component	
	1	2
Tourist information available	. 301	. 730
Attractiveness of its natural environment	. 790	. 072
Quality of life	. 536	. 382
Interest of cultural heritage	. 763	. 106
Quality of tourism infrastructure	. 380	. 572
Number of leisure and recreation activities	-. 022	. 889
Experience in general	. 708	. 343

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a Rotation converged in 3 iterations.

Component Transformation Matrix

Component	1	2
1	.757	.653
2	-.653	.757

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

Reliability

Warnings

The space saver method is used. That is, the covariance matrix is not calculated or
used in the analysis.

Case Processing Summary

		N	$\%$
Cases	Valid	53	100.0
	Excluded	0	.0
	(a)	53	100.0

a Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
.784	7

Factor Analysis

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling		
Adequacy.		
		.568
Bartlett's Test of	Approx. Chi-Square	168.187
Sphericity	df	66
	Sig.	.000

Communalities

	Initial	Extraction
Beautiful landscape	1.000	. 606
Weather is pleasant	1.000	. 688
People are friendly and hospitable	1.000	. 828
Opportunities for the adventure	1.000	. 709
Interesting cultural and entertainment activities	1.000	. 641
Gastronomy is rich and varied	1.000	. 599
Access from Japan is easy	1.000	. 433
Many shopping facilities	1.000	. 762
Good quality accomodation	1.000	. 589
Good value for money	1.000	. 678
Safe place to visit	1.000	. 653
Language is a barrier	1.000	. 477

Extraction Method: Principal Component Analysis.
Total Variance Explained

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
	Total	\% of Variance	$\begin{gathered} \text { Cumulative } \\ \% \end{gathered}$	Total	\% of Variance	$\begin{gathered} \text { Cumulative } \\ \% \end{gathered}$	Total	\% of Variance	$\begin{gathered} \text { Cumulative } \\ \% \end{gathered}$
1	2.840	23.663	23.663	2.840	23.663	23.663	2.241	18.678	18.678
2	2.467	20.560	44.223	2.467	20.560	44.223	2.029	16.906	35.583
3	1.350	11.250	55.473	1.350	11.250	55.473	1.773	14.771	50.354
4	1.006	8.380	63.853	1.006	8.380	63.853	1.620	13.499	63.853
5	. 840	6.996	70.850						
6	. 791	6.588	77.438						
7	. 730	6.085	83.523						
8	. 601	5.009	88.532						
9	. 536	4.463	92.995						
10	. 408	3.402	96.397						
11	. 224	1.870	98.267						
12	. 208	1.733	100.000						

Extraction Method: Principal Component Analysis.

Component Matrix(a)

	Component				
	1		2		

Extraction Method: Principal Component Analysis. a 4 components extracted.

Rotated Component Matrix(a)

	Component			
	1	2	3	4
Beautiful landscape	-. 298	. 398	. 578	. 153
Weather is pleasant	-. 102	. 222	. 079	. 789
People are friendly and hospitable	-. 074	. 877	. 168	. 157
Opportunities for the adventure	. 271	-. 018	.795	-. 053
Interesting cultural and entertainment activities	. 153	. 781	. 051	. 069
Gastronomy is rich and varied	. 128	. 169	. 744	-. 012
Access from Japan is easy	. 410	-. 448	-. 246	-. 063
Many shopping facilities	. 781	. 245	. 083	-. 291
Good quality accomodation	. 753	. 050	. 101	. 093
Good value for money	. 306	. 269	. 235	. 676
Safe place to visit	. 745	-. 257	. 179	-. 013
Language is a barrier	. 169	. 101	. 223	-. 623

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a Rotation converged in 6 iterations.

Component Transformation Matrix

Component	1	2	3	4
1	.121	.723	.584	.350
2	.891	-.197	.252	-.321
3	.372	-.160	-.378	.833
4	.230	.643	-.673	-.285

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.
Reliability

Warnings

The space saver method is used. That is, the covariance matrix is not calculated or used in the analysis.

Case Processing Summary

		N	$\%$
Cases	Valid	53	100.0
	Excluded	0	.0
	(a)	53	100.0

a Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
.604	12

Regression

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.184(\mathrm{a})$.034	-.005	1.016
2	$.000(\mathrm{~b})$.000	.000	1.014

a Predictors: (Constant), BART factor score 2 for analysis 1 , BART factor score 1 for analysis 1
b Predictor: (constant)

ANOVA(c)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regressio	1.813	2	. 906	. 877	.422(a)
	Residual	51.659	50	1.033		
	Total	53.472	52			
2	Regressio n	. 000	0	$\begin{array}{r} .000 \\ 1.028 \end{array}$.(b)
	Residual	53.472	52			
	Total	53.472	52			

a Predictors: (Constant), BART factor score 2 for analysis 1 , BART factor score 1 for analysis 1
b Predictor: (constant)
c Dependent Variable: I will try to return to Mexico in the next years

Coefficients(a)

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	4.170	. 140		29.865	. 000
	BART factor score 1 for analysis 1	. 081	. 141	. 080	. 578	. 566
	score 2 for analysis 1	. 168	. 141	. 166	1.192	. 239
2	(Constant)	4.170	. 139		29.936	. 000

a Dependent Variable: I will try to return to Mexico in the next years

Excluded Variables(b)

		Beta In	t	Sig.	Partial Correlation	Collinearity Statistics
Model						Tolerance
2	BART factor					
	score 1 for analysis 1	.080(a)	. 576	. 567	. 080	1.000
	BART factor					
	score 2 for analysis 1	.166(a)	1.200	. 236	. 166	1.000

a Predictor: (constant)
b Dependent Variable: I will try to return to mexico in the next years

Regression

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.449(\mathrm{a})$.201	.186	.915
2	$.562(\mathrm{~b})$.315	.288	.856

a Predictors: (Constant), BART factor score 2 for analysis 2
b Predictors: (Constant), BART factor score 2 for analysis 2 , BART factor score 1 for analysis 2

ANOVA(c)

a Predictors: (Constant), BART factor score 2 for analysis 2
b Predictors: (Constant), BART factor score 2 for analysis 2 , BART factor score 1 for analysis 2
c Dependent Variable: I will try to return to mexico in the next years
Coefficients(a)

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	4.170	. 126		33.171	. 000
	BART factor score 2 for analysis 2	. 455	. 127	. 449	3.584	. 001
2	(Constant)	4.170	. 118		35.477	. 000
	BART factor score 2 for analysis 2 BART factor	. 455	. 119	. 449	3.833	. 000
	score 1 for analysis 2	. 343	. 119	. 338	2.887	. 006

a Dependent Variable: I will try to return to mexico in the next years

Excluded Variables(c)

a Predictors in the Model: (Constant), BART factor score 2 for analysis 2
b Predictors in the Model: (Constant), BART factor score 2 for analysis 2 , BART factor score 1 for analysis 2
c Dependent Variable: I will try to return to mexico in the next years

Regression

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.338(\mathrm{a})$.114	.097	.820
2	$.461(\mathrm{~b})$.212	.181	.781

a Predictors: (Constant), BART factor score 1 for analysis 2
b Predictors: (Constant), BART factor score 1 for analysis 2 , BART factor score 2 for analysis 2

ANOVA(c)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regressio	4.422	1	4.422	6.576	.013(a)
	Residual	34.295	51	. 672		
	Total	38.717	52			
2	Regressio n	8.220	2	$\begin{array}{r} 4.110 \\ .610 \end{array}$	6.738	.003(b)
	Residual	30.497	50	. 610		
	Total	38.717	52			

a Predictors: (Constant), BART factor score 1 for analysis 2
b Predictors: (Constant), BART factor score 1 for analysis 2 , BART factor score 2 for analysis 2
c Dependent Variable: I would recommend Mexico if someone request my advice

Coefficients(a)

Model		Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
		B	Std. Error			
1	(Constant)	4.208	. 113		37.354	. 000
	BART factor score 1 for analysis 2	. 292	. 114	. 338	2.564	. 013
2	(Constant)	4.208	. 107		39.221	. 000
	BART factor score 1 for analysis 2 BART factor	. 292	. 108	. 338	2.693	. 010
	score 2 for analysis 2	. 270	. 108	. 313	2.495	. 016

a Dependent Variable: I would recommend Mexico if someone request my advice

Excluded Variables(c)

Model		Beta In	t	Sig.	Partial Correlation	Collinearity Statistics
						Tolerance
1	BART factor	.313(a)	2.495	. 016	. 333	1.000
	score 2 for					
	analysis 2					
	BART factor					
		.170(a)	1.301	. 199	. 181	1.000
	analysis 2					
	BART factor					
	score 4 for analysis 2	-.023(a)	-. 169	. 866	-. 024	1.000
2	BART factor					
	score 3 for	.170(b)	1.369	. 177	. 192	1.000
	analysis 2					
	BART factor score 4 for					
	score 4 for analysis 2	-.023(b)	-. 178	. 860	-. 025	1.000

a Predictors in the Model: (Constant), BART factor score 1 for analysis 2
b Predictors in the Model: (Constant), BART factor score 1 for analysis 2 , BART factor score 2 for analysis 2
c Dependent Variable: I would recommend Mexico if someone request my advice

Regression

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	$.276(a)$.076	.058	.838

a Predictors: (Constant), BART factor score 2 for analysis 1

ANOVA(b)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regressio	2.940	1	2.940	4.191	$.046(\mathrm{a})$
	n	35.777	51	.702		
	Residual	38.717	52			
	Total	3				

a Predictors: (Constant), BART factor score 2 for analysis 1
b Dependent Variable: I would recommend Mexico if someone request my advice

Coefficients(a)

a Dependent Variable: I would recommend Mexico if someone request my advice

Excluded Variables(b)

						Collinearity Statistics
					Partial Correlation	Tolerance

a Predictors in the Model: (Constant), BART factor score 2 for analysis 1
b Dependent Variable: I would recommend Mexico if someone request my advice

T-Test

Group Statistics

	Gender				

Independent Samples Test

Oneway

Descriptives

		N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum
						Lower Bound	Upper Bound		
I will try to	20 a 25	25	4.28	1.100	. 220	3.83	4.73	1	5
return to	26 a 30	14	4.29	. 726	. 194	3.87	4.71	3	5
the next	31 a 35	14	3.86	1.099	. 294	3.22	4.49	1	5
years	Total	53	4.17	1.014	. 139	3.89	4.45	1	5
I would	20 a 25	25	4.32	. 900	. 180	3.95	4.69	2	5
recommend	26 a 30	14	4.14	. 770	. 206	3.70	4.59	3	5
someone	31 a 35	14	4.07	. 917	. 245	3.54	4.60	2	5
request my advice	Total	53	4.21	. 863	. 119	3.97	4.45	2	5

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
I will try to return to mexico in the next years	.738		2	50
I would recommend Mexico if someone request my advice	.453	2	50	.483

ANOVA						
		Sum of Squares	df	Mean Square	F	Sig.
I will try to return to mexico in the next years I would recommend Mexico if someone request my advice	Between Groups	1.860	2		. 901	413
	Within Groups	51.611	50	1.032		
	Total	53.472	52			
	Between Groups	. 634	2	. 317	. 416	. 662
	Within Groups	38.083	50	. 762		
	Total	38.717	52			

Post Hoc Tests

Multiple Comparisons

Scheffe

Dependent Variable	(I) Age	(J) Age	Mean Difference (I-J)	Std. Error	Sig.	95\% Confidence Interval	
						Lower Bound	Upper Bound
I will try to return to mexico in the next years	20 a 25	26 a 30	-. 006	. 339	1.000	-. 86	. 85
		31 a 35	. 423	. 339	. 465	-. 43	1.28
	26 a 30	20 a 25	. 006	. 339	1.000	-. 85	. 86
		31 a 35	. 429	. 384	. 541	-. 54	1.40
	31 a 35	20 a 25	-. 423	. 339	. 465	-1.28	. 43
		26 a 30	-. 429	. 384	. 541	-1.40	. 54
I would recommend Mexico if someone request my advice	20 a 25	26 a 30					
			. 177	. 291	. 832	-. 56	. 91
		31 a 35	. 249	. 291	. 697	-. 49	. 98
	26 a 30	20 a 25	-. 177	. 291	. 832	-. 91	. 56
		31 a 35	. 071	. 330	. 977	-. 76	. 90
	31 a 35	20 a 25	-. 249	. 291	. 697	-. 98	. 49
		26 a 30	-. 071	. 330	. 977	-. 90	. 76

Homogeneous Subsets

I will try to return to mexico in the next years
Scheffe

		Subset for alpha $=$.05
Age	N	1
31 a 35	14	3.86
20 a 25	25	4.28
26 a 30	14	4.29
Sig.		.487

Means for groups in homogeneous subsets are displayed.
a Uses Harmonic Mean Sample Size $=16.406$.
b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

I would recommend Mexico if someone request my advice

Scheffe

		Subset for alpha $=$.05
Age	N	1
31 a 35	14	4.07
26 a 30	14	4.14
20 a 25	25	4.32
Sig.		.719

Means for groups in homogeneous subsets are displayed.
a Uses Harmonic Mean Sample Size $=16.406$.
b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Oneway

Descriptives

		N	Mean	Std. Deviation	Std. Error	95\% Confidence Interval for Mean		Minimum	Maximum
						Lower Bound	Upper Bound		
Good value for money	20 a 25	25	3.64	1.114	. 223	3.18	4.10	1	5
	26 a 30	14	3.71	. 825	. 221	3.24	4.19	2	5
	31 a 35	14	3.43	. 852	. 228	2.94	3.92	2	5
	Total	53	3.60	. 968	. 133	3.34	3.87	1	5
Experience in general	20 a 25	25	4.16	. 987	. 197	3.75	4.57	1	5
	26 a 30	14	4.07	. 730	. 195	3.65	4.49	3	5
	31 a 35	14	4.00	. 679	. 182	3.61	4.39	3	5
	Total	53	4.09	. 838	. 115	3.86	4.33	1	5

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
Good value for money	.671	2	50	.516
Experience in general	1.494	2	50	.234

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
Good value for	Between Groups	.634	2	.317	.330	.721
money	Within Groups	48.046	50	.961		
	Total	48.679	52			
Experience in	Between Groups	.240	2	.120	.165	.848
general	Within Groups	36.289	50	.726		
	Total	36.528	52			

Post Hoc Tests

Multiple Comparisons

Scheffe

Dependent Variable	(I) Age	(J) Age	Mean Difference (I-J)	Std. Error	Sig.	95\% Confidence Interval	
						Lower Bound	Upper Bound
Good value for money	20 a 25	26 a 30	-. 074	. 327	. 975	-. 90	. 75
		31 a 35	. 211	. 327	. 812	-. 61	1.04
	26 a 30	20 a 25	. 074	. 327	. 975	-. 75	. 90
		31 a 35	. 286	. 371	. 744	-. 65	1.22
	31 a 35	20 a 25	-. 211	. 327	. 812	-1.04	. 61
		26 a 30	-. 286	. 371	. 744	-1.22	. 65
Experience in general	20 a 25	26 a 30	. 089	. 284	. 953	-. 63	. 81
		31 a 35	. 160	. 284	. 854	-. 56	. 88
	26 a 30	20 a 25	-. 089	. 284	. 953	-. 81	. 63
		31 a 35	. 071	. 322	. 976	-. 74	. 88
	31 a 35	20 a 25	-. 160	. 284	. 854	-. 88	. 56
		26 a 30	-. 071	. 322	. 976	-. 88	. 74

Homogeneous Subsets

Good value for money

Scheffe

		Subset for alpha $=$.05
Age	N	1
31 a 35	14	3.43
20 a 25	25	3.64
26 a 30	14	3.71
Sig.		.707

Means for groups in homogeneous subsets are displayed.
a Uses Harmonic Mean Sample Size $=16.406$.
b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Experience in general

Scheffe

		Subset for alpha $=$.05
Age	N	1
31 a 35	14	4.00
26 a 30	14	4.07
20 a 25	25	4.16
Sig.		.866

Means for groups in homogeneous subsets are displayed.
a Uses Harmonic Mean Sample Size $=16.406$.
b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

TwoStep Cluster

Cluster Distribution

			\% of Combined	\% of Total
Cluster	1	28	56.0%	52.8%
	2	22	44.0%	41.5%
Excluded Cases	Combined	50	100.0%	94.3%
Total	3		5.7%	

Cluster Profiles

Centroids

		Experience in general		I will try to return to Mexico in the next years		I would recommend Mexico if someone request my advice	
		Mean	Std. Deviation	Mean	Std. Deviation	Mean	Std. Deviation
Cluster	1	4.21	. 787	4.36	1.026	4.25	. 752
	2	4.05	. 899	3.91	. 971	4.09	1.019
	Combined	4.14	. 833	4.16	1.017	4.18	. 873

Frequencies

Main purpose of your last visit

Occupation

	Student		Employee		Professional		Housewife		Business owner	
	Frequency	Percent								
Cluster 1	19	79.2\%	5	38.5\%	2	25.0\%	0	.0\%	0	.0\%
2	5	20.8\%	8	61.5\%	6	75.0\%	1	100.0\%	2	100.0\%
Combined	24	100.0\%	13	100.0\%	8	100.0\%	1	100.0\%	2	100.0\%

How many times have you visited mexico

		1 to 2 times		3 to 4 times	
		Frequency	Percent	Frequency	Percent
Cluster	1	22	56.4%	6	54.5%
	2	17	43.6%	5	45.5%
	Combined	39	100.0%	11	100.0%

Travel agency

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	25	56.8%	3	50.0%
	2	19	43.2%	3	50.0%
	Combined	44	100.0%	6	100.0%

TV or radio

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	20	47.6%	8	100.0%
	2	22	52.4%	0	$.0 \%$
	Combined	42	100.0%	8	100.0%

Travel guide

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	23	63.9%	5	35.7%
	2	13	36.1%	9	64.3%
	Combined	36	100.0%	14	100.0%

Internet

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	17	48.6%	11	73.3%
	2	18	51.4%	4	26.7%
	Combined	35	100.0%	15	100.0%

Suggestion of friends

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	13	40.6%	15	83.3%
	2	19	59.4%	3	16.7%
	Combined	32	100.0%	18	100.0%

Food

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	22	61.1%	6	42.9%
	2	14	38.9%	8	57.1%
	Combined	36	100.0%	14	100.0%

Atmosphere

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	15	50.0%	13	65.0%
	2	15	50.0%	7	35.0%
	Combined	30	100.0%	20	100.0%

Folklore and traditions

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	21	52.5%	7	70.0%
	2	19	47.5%	3	30.0%
	Combined	40	100.0%	10	100.0%

Beaches and other natural attractions

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	21	56.8%	7	53.8%
	2	16	43.2%	6	46.2%
	Combined	37	100.0%	13	100.0%

Entertainment and sport activities

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	28	58.3%	0	$.0 \%$
	2	20	41.7%	2	100.0%
	Combined	48	100.0%	2	100.0%

Museums and historical places					
		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	22	57.9\%	6	50.0\%
	2	16	42.1\%	6	50.0\%
	Combined	38	100.0\%	12	100.0\%

Gender					
		Female		Male	
		Frequency	Percent	Frequency	Percent
Cluster	1	22	73.3\%	6	30.0\%
	2	8	26.7\%	14	70.0\%
	Combined	30	100.0\%	20	100.0\%

		Age					
		20 a 25		26 a 30		31 a 35	
		Frequency	Percent	Frequency	Percent	Frequency	Percent
Cluster	1	19	76.0\%	7	53.8\%	2	16.7\%
	2	6	24.0\%	6	46.2\%	10	83.3\%
	Combined	25	100.0\%	13	100.0\%	12	100.0\%

Marital status

		Single		Married	
		Frequency	Percent	Frequency	Percent
Cluster	1	28	62.2%	0	$.0 \%$
	2	17	37.8%	5	100.0%
	Combined	45	100.0%	5	100.0%

T-Test

Group Statistics

	Food	N	Mean	Std. Deviation	Std. Error Mean
I will try to return	0	39	4.15	. 988	. 158
to mexico in the next years	1	14	4.21	1.122	. 300
I would	0	39	4.23	. 842	. 135
recommend Mexico if someone request my advice	1	14	4.14	. 949	. 254

Independent Samples Test

		Levene's Test for Equality of Variances		t-test for Equality of Means						
									Confi Interva Diffe	\% dence of the ence
		F	Sig.	t	df	Sig. (2tailed)	Mean Difference	Std. Error Difference	Lower	Upper
I will try to return to mexico in the next	Equal variances assumed Equal	. 001	. 982	-. 190	51	. 850	-. 060	. 319	-. 701	. 580
years	variances not assumed			-. 178	20.696	. 860	-. 060	. 339	-. 766	. 645
I would recommend Mexico if	Equal variances assumed	. 028	. 868	. 324	51	. 747	. 088	. 271	-. 457	. 632
someone request my advice	Equal variances not assumed			$.306$	20.807	. 763	. 088	. 287	-. 510	. 686

