

RESULTADOS DE SPSS

Factor Analysis

KMO and Bartlett's Test

Kaiser-Meyer-Olkin M Adequacy.	Measure of Sampling	.608
Bartlett's Test of Sphericity	Approx. Chi-Square df	111.185 21
	Sig.	.000

Communalities

	Initial	Extraction
Tourist information available	1.000	.624
Attractiveness of its natural environment	1.000	.629
Quality of life	1.000	.433
Interest of cultural heritage	1.000	.594
Quality of tourism infrastructure	1.000	.472
Number of leisure and recreation activities	1.000	.791
Experience in general	1.000	.618

Extraction Method: Principal Component Analysis.

Total Variance Explained

				Extraction Sums of Squared		Rotation Sums of Squared			
	I	nitial Eigen	values		Loading	gs		Loading	gs
		% of	Cumulative		% of	Cumulative		% of	Cumulative
Component	Total	Variance	%	Total	Variance	%	Total	Variance	%
1	3.094	44.201	44.201	3.094	44.201	44.201	2.229	31.844	31.844
2	1.066	15.229	59.431	1.066	15.229	59.431	1.931	27.587	59.431
3	.885	12.640	72.071						
4	.792	11.318	83.389						
5	.593	8.466	91.855						
6	.365	5.214	97.069						
7	.205	2.931	100.000						

Extraction Method: Principal Component Analysis.

Component Matrix(a)

	Component		
	1	2	
Tourist information available	.705	.357	
Attractiveness of its natural environment	.645	461	
Quality of life	.655	061	
Interest of cultural heritage	.647	418	
Quality of tourism infrastructure	.661	.186	
Number of leisure and recreation activities	.564	.687	
Experience in general	.760	203	

Extraction Method: Principal Component Analysis.

Rotated Component Matrix(a)

	Component		
	1	2	
Tourist information available	.301	.730	
Attractiveness of its natural environment	.790	.072	
Quality of life	.536	.382	
Interest of cultural heritage	.763	.106	
Quality of tourism infrastructure	.380	.572	
Number of leisure and recreation activities	022	.889	
Experience in general	.708	.343	

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a Rotation converged in 3 iterations.

ŭ

Component Transformation Matrix

Component	1	2
1	.757	.653
2	653	.757

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a 2 components extracted.

Reliability

Warnings

The space saver method is used. That is, the covariance matrix is not calculated or used in the analysis.

Case Processing Summary

		N	%
Cases	Valid	53	100.0
	Excluded (a)	0	.0
	Total	53	100.0

a Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
.784	7

Factor Analysis

KMO and Bartlett's Test

Kaiser-Meyer-Olkin M Adequacy.	.568	
Bartlett's Test of	Approx. Chi-Square	
Sphericity	df	168.187 66
	Sig.	.000

Communalities

	Initial	Extraction
Beautiful landscape	1.000	.606
Weather is pleasant	1.000	.688
People are friendly and hospitable	1.000	.828
Opportunities for the adventure	1.000	.709
Interesting cultural and entertainment activities	1.000	.641
Gastronomy is rich and varied	1.000	.599
Access from Japan is easy	1.000	.433
Many shopping facilities	1.000	.762
Good quality accomodation	1.000	.589
Good value for money	1.000	.678
Safe place to visit	1.000	.653
Language is a barrier	1.000	.477

Extraction Method: Principal Component Analysis.

Total Variance Explained

			Extra	Extraction Sums of Squared		Rotation Sums of Squared			
	Initial Eigenvalues			Loadings		Loadings			
		% of	Cumulative		% of	Cumulative		% of	Cumulative
Component	Total	Variance	%	Total	Variance	%	Total	Variance	%
1	2.840	23.663	23.663	2.840	23.663	23.663	2.241	18.678	18.678
2	2.467	20.560	44.223	2.467	20.560	44.223	2.029	16.906	35.583
3	1.350	11.250	55.473	1.350	11.250	55.473	1.773	14.771	50.354
4	1.006	8.380	63.853	1.006	8.380	63.853	1.620	13.499	63.853
5	.840	6.996	70.850						
6	.791	6.588	77.438						
7	.730	6.085	83.523						
8	.601	5.009	88.532						
9	.536	4.463	92.995						
10	.408	3.402	96.397						
11	.224	1.870	98.267						
12	.208	1.733	100.000						

Extraction Method: Principal Component Analysis.

Component Matrix(a)

	Component					
	1	2	3	4		
Beautiful landscape	.643	248	266	245		
Weather is pleasant	.470	368	.553	159		
People are friendly and hospitable	.778	247	101	.390		
Opportunities for the adventure	.465	.462	242	470		
Interesting cultural and entertainment activities	.637	027	029	.483		
Gastronomy is rich and varied	.568	.272	271	359		
Access from Japan is easy	440	.412	.264	011		
Many shopping facilities	.218	.763	023	.364		
Good quality accomodation	.219	.657	.311	.111		
Good value for money	.605	.062	.544	107		
Safe place to visit	.004	.764	.239	111		
Language is a barrier	.005	.387	556	.131		

Extraction Method: Principal Component Analysis.

Rotated Component Matrix(a)

		Component					
	1	2	3	4			
Beautiful landscape	298	.398	.578	.153			
Weather is pleasant	102	.222	.079	.789			
People are friendly and hospitable	074	.877	.168	.157			
Opportunities for the adventure	.271	018	.795	053			
Interesting cultural and entertainment activities	.153	.781	.051	.069			
Gastronomy is rich and varied	.128	.169	.744	012			
Access from Japan is easy	.410	448	246	063			
Many shopping facilities	.781	.245	.083	291			
Good quality accomodation	.753	.050	.101	.093			
Good value for money	.306	.269	.235	.676			
Safe place to visit	.745	257	.179	013			
Language is a barrier	.169	.101	.223	623			

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a Rotation converged in 6 iterations.

a 4 components extracted.

Component Transformation Matrix

Component	1	2	3	4
1	.121	.723	.584	.350
2	.891	197	.252	321
3	.372	160	378	.833
4	.230	.643	673	285

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

Reliability

Warnings

The space saver method is used. That is, the covariance matrix is not calculated or used in the analysis.

Case Processing Summary

		N	%
Cases	Valid	53	100.0
	Excluded (a)	0	.0
	Total	53	100.0

a Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
.604	12

Regression

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.184(a)	.034	005	1.016
2	.000(b)	.000	.000	1.014

a Predictors: (Constant), BART factor score 2 for analysis 1 , BART factor score 1 for analysis 1

b Predictor: (constant)

ANOVA(c)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regressio n	1.813	2	.906	.877	.422(a)
	Residual	51.659	50	1.033		
	Total	53.472	52			
2	Regressio n	.000	0	.000		.(b)
	Residual	53.472	52	1.028		
	Total	53.472	52			

- a Predictors: (Constant), BART factor score 2 for analysis 1 , BART factor score 1 for analysis 1
- b Predictor: (constant)
- c Dependent Variable: I will try to return to Mexico in the next years

Coefficients(a)

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4.170	.140		29.865	.000
	BART factor score 1 for analysis 1	.081	.141	.080	.578	.566
	BART factor score 2 for analysis 1	.168	.141	.166	1.192	.239
2	(Constant)	4.170	.139		29.936	.000

a Dependent Variable: I will try to return to Mexico in the next years

Excluded Variables(b)

					Partial	Collinearity Statistics
Model		Beta In	t	Sig.	Correlation	Tolerance
2	BART factor score 1 for analysis 1	.080(a)	.576	.567	.080	1.000
	BART factor score 2 for analysis 1	.166(a)	1.200	.236	.166	1.000

- a Predictor: (constant)
- b Dependent Variable: I will try to return to mexico in the next years

Regression

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.449(a)	.201	.186	.915
2	.562(b)	.315	.288	.856

a Predictors: (Constant), BART factor score 2 for analysis 2

b Predictors: (Constant), BART factor score 2 for analysis 2 , BART factor score 1 for analysis 2

ANOVA(c)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regressio n	10.760	1	10.760	12.848	.001(a)
	Residual	42.712	51	.837		
	Total	53.472	52			
2	Regressio n	16.862	2	8.431	11.515	.000(b)
	Residual	36.610	50	.732		
	Total	53.472	52			

a Predictors: (Constant), BART factor score 2 for analysis 2

b Predictors: (Constant), BART factor score 2 for analysis 2, BART factor score 1 for analysis 2

c Dependent Variable: I will try to return to mexico in the next years

Coefficients(a)

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4.170	.126		33.171	.000
	BART factor score 2 for analysis 2	.455	.127	.449	3.584	.001
2	(Constant) BART factor	4.170	.118		35.477	.000
	score 2 for analysis 2	.455	.119	.449	3.833	.000
	BART factor score 1 for analysis 2	.343	.119	.338	2.887	.006

a Dependent Variable: I will try to return to mexico in the next years

Excluded Variables(c)

						Collinearity Statistics
Model		Beta In	t	Sig.	Partial Correlation	Tolerance
1	BART factor score 1 for analysis 2 BART factor	.338(a)	2.887	.006	.378	1.000
	score 3 for analysis 2 BART factor	.023(a)	.179	.859	.025	1.000
0	score 4 for analysis 2	.015(a)	.117	.908	.016	1.000
2	BART factor score 3 for analysis 2	.023(b)	.191	.849	.027	1.000
	BART factor score 4 for analysis 2	.015(b)	.125	.901	.018	1.000

- a Predictors in the Model: (Constant), BART factor score 2 for analysis 2
- b Predictors in the Model: (Constant), BART factor score 2 for analysis 2 , BART factor score 1 for analysis
- c Dependent Variable: I will try to return to mexico in the next years

Regression

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.338(a)	.114	.097	.820
2	.461(b)	.212	.181	.781

- a Predictors: (Constant), BART factor score 1 for analysis 2
- b Predictors: (Constant), BART factor score 1 for analysis 2, BART factor score 2 for analysis 2

ANOVA(c)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regressio n	4.422	1	4.422	6.576	.013(a)
	Residual	34.295	51	.672		
	Total	38.717	52			
2	Regressio n	8.220	2	4.110	6.738	.003(b)
	Residual	30.497	50	.610		
	Total	38.717	52			

- a Predictors: (Constant), BART factor score 1 for analysis 2
- b Predictors: (Constant), BART factor score 1 for analysis 2 , BART factor score 2 for analysis 2
- c Dependent Variable: I would recommend Mexico if someone request my advice

Coefficients(a)

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4.208	.113		37.354	.000
	BART factor score 1 for analysis 2	.292	.114	.338	2.564	.013
2	(Constant) BART factor	4.208	.107		39.221	.000
	score 1 for analysis 2	.292	.108	.338	2.693	.010
	BART factor score 2 for analysis 2	.270	.108	.313	2.495	.016

a Dependent Variable: I would recommend Mexico if someone request my advice

Excluded Variables(c)

						Collinearity Statistics
Model		Beta In	t	Sig.	Partial Correlation	Tolerance
1	BART factor score 2 for analysis 2	.313(a)	2.495	.016	.333	1.000
	BART factor score 3 for analysis 2 BART factor	.170(a)	1.301	.199	.181	1.000
2	score 4 for analysis 2 BART factor	023(a)	169	.866	024	1.000
2	score 3 for analysis 2 BART factor	.170(b)	1.369	.177	.192	1.000
	score 4 for analysis 2	023(b)	178	.860	025	1.000

a Predictors in the Model: (Constant), BART factor score 1 for analysis 2

b Predictors in the Model: (Constant), BART factor score 1 for analysis 2, BART factor score 2 for analysis

c Dependent Variable: I would recommend Mexico if someone request my advice

Regression

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.276(a)	.076	.058	.838

a Predictors: (Constant), BART factor score 2 for analysis 1

ANOVA(b)

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regressio n	2.940	1	2.940	4.191	.046(a)
	Residual	35.777	51	.702		
	Total	38.717	52			

- a Predictors: (Constant), BART factor score 2 for analysis 1
- b Dependent Variable: I would recommend Mexico if someone request my advice

Coefficients(a)

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	4.208	.115		36.572	.000
	BART factor score 2 for analysis 1	.238	.116	.276	2.047	.046

a Dependent Variable: I would recommend Mexico if someone request my advice

Excluded Variables(b)

						Collinearity Statistics
Model		Beta In	t	Sig.	Partial Correlation	Tolerance
1	BART factor score 1 for analysis 1	093(a)	684	.497	096	1.000

- a Predictors in the Model: (Constant), BART factor score 2 for analysis 1
- b Dependent Variable: I would recommend Mexico if someone request my advice

T-Test

Group Statistics

	Gender	N	Mean	Std. Deviation	Std. Error Mean
I will try to return	Female	31	4.06	1.153	.207
to mexico in the next years	Male	22	4.32	.780	.166
I would	Female	31	4.23	.805	.145
recommend Mexico if someone request my advice	Male	22	4.18	.958	.204

Independent Samples Test

				t-test for Equality of Means						
									Confi Interva	5% dence Il of the rence
		F	Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	Lower	Upper
I will try to return to mexico in	Equal variances assumed	.861	.358	.896	51	.375	254	.283	822	.315
the next years	Equal variances not assumed			- .955	50.918	.344	254	.266	787	.279
I would recommend Mexico if	Equal variances assumed	1.718	.196	.181	51	.857	.044	.243	443	.531
someone request my advice	Equal variances not assumed			.176	40.229	.861	.044	.250	462	.550

Oneway

Descriptives

						95% Cor Interval f			
				Std.	Std.	Lower	Upper		
		N	Mean	Deviation	Error	Bound	Bound	Minimum	Maximum
I will try to	20 a 25	25	4.28	1.100	.220	3.83	4.73	1	5
return to mexico in	26 a 30	14	4.29	.726	.194	3.87	4.71	3	5
the next	31 a 35	14	3.86	1.099	.294	3.22	4.49	1	5
years	Total	53	4.17	1.014	.139	3.89	4.45	1	5
I would	20 a 25	25	4.32	.900	.180	3.95	4.69	2	5
recommend Mexico if	26 a 30	14	4.14	.770	.206	3.70	4.59	3	5
someone	31 a 35	14	4.07	.917	.245	3.54	4.60	2	5
request my advice	Total	53	4.21	.863	.119	3.97	4.45	2	5

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
I will try to return to mexico in the next years	.738	2	50	.483
I would recommend Mexico if someone request my advice	.453	2	50	.638

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
I will try to return to	Between Groups	1.860	2	.930	.901	.413
mexico in the next	Within Groups	51.611	50	1.032		
years	Total	53.472	52			
I would recommend Mexico if someone request my advice	Between Groups	.634	2	.317	.416	.662
	Within Groups	38.083	50	.762		
	Total	38.717	52			

Post Hoc Tests

Multiple Comparisons

Scheffe

			Mana			95% Confide	ence Interval
Dependent Variable	(I) Age	(J) Age	Mean Difference (I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
I will try to return to	20 a 25	26 a 30 31 a 35	006 .423	.339 .339	1.000 .465	86 43	.85 1.28
mexico in the next	26 a 30	20 a 25	.006	.339	1.000	85	.86
years		31 a 35	.429	.384	.541	54	1.40
	31 a 35	20 a 25 26 a 30	423 429	.339 .384	.465 .541	-1.28 -1.40	.43 .54
I would recommend Mexico if someone request my advice	20 a 25	26 a 30	.177	.291	.832	56	.91
		31 a 35	.249	.291	.697	49	.98
	26 a 30	20 a 25 31 a 35	177 .071	.291 .330	.832 .977	91 76	.56 .90
	31 a 35	20 a 25	249	.291	.697	98	.49
		26 a 30	071	.330	.977	90	.76

Homogeneous Subsets

I will try to return to mexico in the next years

Scheffe

Ochene		
		Subset for alpha = .05
Age	N	1
31 a 35	14	3.86
20 a 25	25	4.28
26 a 30	14	4.29
Sig.		.487

Means for groups in homogeneous subsets are displayed.

a Uses Harmonic Mean Sample Size = 16.406.

b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

I would recommend Mexico if someone request my advice

Scheffe

		Subset for alpha = .05
Age	N	1
31 a 35	14	4.07
26 a 30	14	4.14
20 a 25	25	4.32
Sig.		.719

Means for groups in homogeneous subsets are displayed.

- a Uses Harmonic Mean Sample Size = 16.406.
- b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Oneway

Descriptives

						95% Confidence Interval for Mean			
		N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Good	20 a 25	25	3.64	1.114	.223	3.18	4.10	1	5
value for money	26 a 30	14	3.71	.825	.221	3.24	4.19	2	5
inoney	31 a 35	14	3.43	.852	.228	2.94	3.92	2	5
	Total	53	3.60	.968	.133	3.34	3.87	1	5
Experience	20 a 25	25	4.16	.987	.197	3.75	4.57	1	5
in general	26 a 30	14	4.07	.730	.195	3.65	4.49	3	5
	31 a 35	14	4.00	.679	.182	3.61	4.39	3	5
	Total	53	4.09	.838	.115	3.86	4.33	1	5

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
Good value for money	.671	2	50	.516
Experience in general	1.494	2	50	.234

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
Good value for	Between Groups	.634	2	.317	.330	.721
money	Within Groups	48.046	50	.961		
	Total	48.679	52			
Experience in	Between Groups	.240	2	.120	.165	.848
general	Within Groups	36.289	50	.726		
	Total	36.528	52			

Post Hoc Tests

Multiple Comparisons

Scheffe

Scheffe							
Dependent Variable	(I) Age	(J) Age	Mean Difference (I-J)	Std. Error	Sig.	95% Confide Lower Bound	ence Interval Upper Bound
Good value	20 a 25	26 a 30	074	.327	.975	90	.75
for money		31 a 35	.211	.327	.812	61	1.04
	26 a 30	20 a 25	.074	.327	.975	75	.90
		31 a 35	.286	.371	.744	65	1.22
	31 a 35	20 a 25	211	.327	.812	-1.04	.61
		26 a 30	286	.371	.744	-1.22	.65
Experience in general	20 a 25	26 a 30	.089	.284	.953	63	.81
		31 a 35	.160	.284	.854	56	.88
	26 a 30	20 a 25	089	.284	.953	81	.63
		31 a 35	.071	.322	.976	74	.88
	31 a 35	20 a 25	160	.284	.854	88	.56
		26 a 30	071	.322	.976	88	.74

Homogeneous Subsets

Good value for money

Scheffe

		Subset for alpha = .05
Age	N	1
31 a 35	14	3.43
20 a 25	25	3.64
26 a 30	14	3.71
Sig.		.707

Means for groups in homogeneous subsets are displayed.

- a Uses Harmonic Mean Sample Size = 16.406.
- b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

Experience in general

Scheffe

		Subset for alpha = .05
Age	N	1
31 a 35	14	4.00
26 a 30	14	4.07
20 a 25	25	4.16
Sig.		.866

Means for groups in homogeneous subsets are displayed.

- a Uses Harmonic Mean Sample Size = 16.406.
- b The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not guaranteed.

TwoStep Cluster

Cluster Distribution

		N	% of Combined	% of Total
Cluster	1	28	56.0%	52.8%
	2	22	44.0%	41.5%
	Combined	50	100.0%	94.3%
Excluded Case	es	3		5.7%
Total		53		100.0%

Cluster Profiles

Centroids

		Experience in general		-	eturn to Mexico next years	I would recommend Mexico if someone request my advice	
		Mean	Std. Deviation	Mean	Std. Deviation	Mean	Std. Deviation
Cluster	1	4.21	.787	4.36	1.026	4.25	.752
	2	4.05	.899	3.91	.971	4.09	1.019
	Combined	4.14	.833	4.16	1.017	4.18	.873

Frequencies

Main purpose of your last visit

			a rest or elax	To s	tudy		ess or ork		friends elatives	Other p	ourpose
		Frequency	Percent	Frequency	Percent	Frequency	Percent	Frequency	Percent	Frequency	Percent
Cluster	1	2	15.4%	18	85.7%	0	.0%	5	55.6%	3	100.0%
	2	11	84.6%	3	14.3%	4	100.0%	4	44.4%	0	.0%
	Combined	13	100.0%	21	100.0%	4	100.0%	9	100.0%	3	100.0%

Occupation

		Stu	udent	Emp	ployee	Profe	ssional	Hou	sewife		iness vner
		Frequency	Percent								
Cluster	1	19	79.2%	5	38.5%	2	25.0%	0	.0%	0	.0%
	2	5	20.8%	8	61.5%	6	75.0%	1	100.0%	2	100.0%
	Combined	24	100.0%	13	100.0%	8	100.0%	1	100.0%	2	100.0%

How many times have you visited mexico

		1 to 2 times		3 to 4 times	
		Frequency Percent		Frequency	Percent
Cluster	1	22	56.4%	6	54.5%
	2	17	43.6%	5	45.5%
	Combined	39	100.0%	11	100.0%

Travel agency

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	25	56.8%	3	50.0%
	2	19	43.2%	3	50.0%
	Combined	44	100.0%	6	100.0%

TV or radio

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	20	47.6%	8	100.0%
	2	22	52.4%	0	.0%
	Combined	42	100.0%	8	100.0%

Travel guide

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	23	63.9%	5	35.7%
	2	13	36.1%	9	64.3%
	Combined	36	100.0%	14	100.0%

Internet

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	17	48.6%	11	73.3%
	2	18	51.4%	4	26.7%
	Combined	35	100.0%	15	100.0%

Suggestion of friends

		0		1	
		Frequency Percent		Frequency	Percent
Cluster	1	13	40.6%	15	83.3%
	2	19	59.4%	3	16.7%
	Combined	32	100.0%	18	100.0%

Food

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	22	61.1%	6	42.9%
	2	14	38.9%	8	57.1%
	Combined	36	100.0%	14	100.0%

Atmosphere

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	15	50.0%	13	65.0%
	2	15	50.0%	7	35.0%
	Combined	30	100.0%	20	100.0%

Folklore and traditions

		0		1	
		Frequency	Percent	Frequency	Percent
Cluster	1	21	52.5%	7	70.0%
	2	19	47.5%	3	30.0%
	Combined	40	100.0%	10	100.0%

Beaches and other natural attractions

		0		1	
		Frequency Percent		Frequency	Percent
Cluster	1	21	56.8%	7	53.8%
	2	16	43.2%	6	46.2%
	Combined	37	100.0%	13	100.0%

Entertainment and sport activities

		0		1		
		Frequency	Percent	Frequency	Percent	
Cluster	1	28	58.3%	0	.0%	
	2	20	41.7%	2	100.0%	
	Combined	48	100.0%	2	100.0%	

Museums and historical places

		0		1		
		Frequency	Percent	Frequency	Percent	
Cluster	1	22	57.9%	6	50.0%	
	2	16	42.1%	6	50.0%	
	Combined	38	100.0%	12	100.0%	

Gender

		Fem	nale	Male		
		Frequency	Percent	Frequency	Percent	
Cluster	1	22	73.3%	6	30.0%	
	2	8	26.7%	14	70.0%	
	Combined	30	100.0%	20	100.0%	

Age

			25	26 a	30	31 a 35		
		Frequency Percent		Frequency	Percent	Frequency	Percent	
Cluster	1	19	76.0%	7	53.8%	2	16.7%	
	2	6	24.0%	6	46.2%	10	83.3%	
	Combined	25	100.0%	13	100.0%	12	100.0%	

Marital status

		Sing	gle	Married		
		Frequency	Percent	Frequency	Percent	
Cluster	Cluster 1		62.2%	0	.0%	
	2	17	37.8%	5	100.0%	
	Combined	45	100.0%	5	100.0%	

T-Test

Group Statistics

	Food	N	Mean	Std. Deviation	Std. Error Mean
. ,	0	39	4.15	.988	.158
to mexico in the next years	1	14	4.21	1.122	.300
I would	0	39	4.23	.842	.135
recommend Mexico if	1				
someone		14	4.14	.949	.254
request my advice					

Independent Samples Test

		Tes Equa	ene's t for lity of inces		t-test for Equality of Means						
									Confi Interva	5% dence Il of the rence	
		F	Sig.	t	df	Sig. (2- tailed)	Mean Difference	Std. Error Difference	Lower	Upper	
I will try to return to mexico in	Equal variances assumed	.001	.982	190	51	.850	060	.319	701	.580	
the next years	Equal variances not assumed			178	20.696	.860	060	.339	766	.645	
I would recommend Mexico if	Equal variances assumed	.028	.868	.324	51	.747	.088	.271	457	.632	
someone request my advice	Equal variances not assumed			.306	20.807	.763	.088	.287	510	.686	