
Conclusions

As we have verified, the Lagrangian proposed in Chapter 3 equation (3.2)
leads to the correct scalar field action in the CMPR framework. Furthermore,
we have found a condition on the coupling constants, mi, that predicts a
family of actions that accomplish this task. We would like to point out the
two special cases that one cannot avoid to notice.

The first case is that in which m2 = m4 = 0. This condition tells us
that we can neglect the dual part of the action, and still manage to perform
the scalar field coupling. In this case, the relation between m1 and m3 is
given by 4!αm2

1 = m3. Let us choose, for simplicity m1 = 1, then m3 = 4!α.
Equation (3.2) would have the form

Sϕ[B,ϕ, π] =

∫
M4

[
BIJ ∧BIJπµ∂µϕ+ 4!αεαβγδBIJ

µαBβγJ
KBδνKIπ

µπνd4x
]
,

(3.22)

This expression is remarkably more simple than 3, and yet the equations
of motion that result from it will be the same.

The second case is evidently that in which m1 = m3 = 0, meaning that
we only want to keep the dual part of the action. The condition between
m2 and m4 is given by 3![m2(α2σ + β2)]2 = m4α

2βσ. While this relation is
more complicated than in the previous case, the purely dual action principle
turns out to be relatively simple. For example, consider the particular case
m2 = (α2σ+β2)−1, thenm4 = 3!σ/α2β. This choice would lead to an action
of the form
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Sϕ[B,ϕ, π] =

∫
M4

[ 1

α2σ + β2
BIJ ∧ ∗BIJπµ∂µϕ

+
3!σ

α2β
εαβγδBIJ

µαBβγJ
K ∗BδνKIπµπνd4x

]
. (3.23)

Another feature of the action that we have constructed, is that once one
has established a good set of mi, a rescalement of the coupling constants
of the form m1 → nm1 with m2 → nm2, m3 → n2m3, and m4 → n2m4,
where n is some scalar number, will also be a good set of coupling constants.
This is by virtue of (3.20).

Finally, we would like to present a summary of the achievements of this
work.

1. BF gravity was introduced in the first chapter of this work, starting
out from the general structure of the theory: the BF term, and the
restrictions. We have also pointed out that different restrictions give
versatility to the theory and make it richer.

2. We looked at the form of the restriction of the CMPR action, which is
a linear combination of two invariants. We argued that this restriction
gives rise to a natural description of gravity with Immirzi parameter.
On this matter, we studied the Holst action to give perspective on
what the Immirzi parameter means, and pointed out the reason why
BF gravity is important to quantum gravity.

3. The coupling of the cosmological constant was explained in detail, as
first proposed by Montesinos and Velázquez, as this is a direct moti-
vation to seeing how matter is coupled in the CMPR framework.

4. The coupling of the scalar field was studied in the context of general
relativity. In order to do so, we looked at two different scalar field
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actions that give rise to the same equations of motion. We showed this
explicitly by computing the Klein-Gordon equation by performing the
variation of the scalar field in the second action.

5. We analyzed a scalar field action in terms of the dynamical 2-forms of
the BF type introduced in the CMPR framework. We partially showed
that this action principle is equivalent to the one that is usually treated
in the literature of general relativity. We also wrote down this action
in terms of the tetrad field. As we said earlier, a detailed analysis of
the coupling of matter fields (scalar, Maxwell, and Yang-Mills fields)
to BF gravity including the Immirzi parameter is contained in [1].
This Bachelor thesis only contains a part of the results of [1] – those
concerning the coupling of a scalar field – and has the goal of being an
introduction to the issue of the couplings of matter fields in BF gravity.


	Introduction
	1 Vacuum BF Gravity
	1.1 Introducing BF gravity
	1.2 The CMPR action principle
	1.3 The Montesinos-Velázquez action principle

	2 The scalar field in General Relativity
	3 The scalar field in BF gravity
	Conclusions



