
Chapter 3

The scalar field in BF gravity

The main purpose of this thesis is to study an action principle that will
succesfully couple a scalar field to gravity in the framework of the CMPR
action principle. We take on this duty on this chapter.

The action of the BF type for gravity with cosmological constant and the
Immirzi parameter has the following form [11]:

SG[B,A,ψ, µ] =

∫
M4

[BIJ ∧ FIJ [A]− 1

2
ψIJKLB

IJ ∧BKL − µ(a1ψIJ
IJ

+ a2ψIJKLε
IJKL −H) + l1BIJ ∧BIJ + l2BIJ ∧ ∗BIJ ].

(3.1)

We would like to study an action for the scalar field, ϕ, in terms of the
dynamical variables of the previous equation. The action proposed is:

Sϕ[B,ϕ, π] =

∫
M4

[
(m1BIJ ∧BIJ +m2BIJ ∧ ∗BIJ)πµ∂µϕ

+ (m3ε
αβγδBIJ

µαBβγJ
KBδνKI +m4ε

αβγδBIJ
µαBβγJ

K ∗BδνKI)πµπνd4x
]
,

(3.2)
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where the four mi are coupling constants, BIJ is the antisymmetric 2-form
BIJ = α∗(eI ∧ eJ) + βeI ∧ eJ as defined in the CMPR action, and πµ is a
Lagrange multiplier. By the expanded form of the dynamical field, BIJ

µν , we
mean

BIJ
µνdx

µ ∧ dxν =
[α

2
εIJKLe

K
µ e

L
ν + βeIµe

J
ν

]
dxµ ∧ dxν . (3.3)

The action principle in Eq. (3.2) makes sense because the first two terms
(the ones multiplyingm1 andm2) are simply the two natural volume terms of
the theory, which play the role of

√
−gd4x. As for the terms which multiply

m3 and m4, we have learned from [12] that the metric density is cubic in
the field variables of BF gravity. This identity holds in terms of the BIJ of
CMPR, but we also add a cubic term for the dual of the dynamical variable,
in correspondance with the second volume term BIJ ∧ ∗BIJ , the one that
multiplies the constant m2.

We will verify that this action reduces effectively to the usual scalar field
action (2.6). The variation with respect to the Lagrange multiplier is

0 = Sϕ[B,ϕ, π + δπ]− Sϕ[B,ϕ, π] =

∫
M4

(m1BIJ ∧BIJ

+m2BIJ ∧ ∗BIJ)δπµ∂µϕ+ (m3ε
αβγδBIJ

µαBβγJ
KBδνKI

+m4ε
αβγδBIJ

µαBβγJ
K ∗BδνKI)(δπµπν + πµδπν)d4x],

so we have the following equation of motion,

δπ : (m1BIJ ∧BIJ +m2BIJ ∧ ∗BIJ)∂µϕ

+2(m3ε
αβγδBIJ

(µ|αBβγJ
KBδ|ν)KI +m4ε

αβγδBIJ
(µ|αBβγJ

K ∗Bδ|ν)KI)π
νd4x = 0.

(3.4)

We would like to express the equation of motion of πµ in terms of the
expanded 2-forms, so we use Eq. (3.3) to rewrite Eq. (3.4) as
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d4xεαβγδ[(m1B
IJ
αβBδγIJ +m2B

IJ
αβ ∗BδγIJ)∂µϕ

+2(m3B
IJ
(µ|αBβγJ

KBδ|ν)KI +m4B
IJ
(µ|αBβγJ

K∗Bδ|ν)KI)π
ν ] = 0, (3.5)

where we have written the Levi-Civita symbol that carries the antisymmetry
of the wedge products that multiply the coordinate basis on the terms that
multiply m1 and m2 in (3.4), explicitly:

dxµ ∧ dxν ∧ dxρ ∧ dxσ = εµνρσdx0 ∧ dx1 ∧ dx2 ∧ dx3 = εµνρσd4x.

The next step is to substitute in the form of the BIJ field in terms of the
tetrad field. The calculations contain many terms, but become simplified
after a few steps. For this reason, we wish to analyse Eq. (3.5) by parts.
The term multiplying m1 is:

BIJ
αβBδγIJ = (

α

2
εIJKLe

K
[αe

L
β] + βeI[αe

J
β])(

α

2
εIJMNe

M
[γ e

N
δ] + βe[γ|I|eδ]J)

=
α2

4
εIJKLεIJMNe[α|K|eβ]Le

M
[γ e

N
δ] +

αβ

2
εIJKLe

K
[αe

L
β]e

I
[γe

J
δ]

+
αβ

2
εIJMNe

I
[αe

J
β]e

M
[γ e

N
δ] + β2eI[αe

J
β]e[γ|I|eδ]J

= α2σδK[Mδ
L
N ]e[α|K|eβ]Le

M
[γ e

N
δ] + αβεIJKLe

I
[αe

J
β]e

K
[γe

L
δ]

+ β2eI[αe
J
β]e[γ|I|eδ]J .

Notice that we have explicitly shown the antisymmetries in the spacetime
indices. It also a good idea to point out that eµI = ηIJe

J
µ. Following our

study of the first term, we have that
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d4xεαβγδBIJ
αβBδγIJ = dxα ∧ dxβ ∧ dxγ ∧ dxδ

[
(α2 + β2)e[α|M |eβ]Ne

M
[γ e

N
δ]

+ αβεIJKLe
I
[αe

J
β]e

K
[γe

L
δ]

]
= (α2σ + β2)eM ∧ eN ∧ eM ∧ eN

+ εIJKLαβe
I ∧ eJ ∧ eK ∧ eL

= αβεIJKLe
I ∧ eJ ∧ eK ∧ eL. (3.6)

In this expression we have made use of the antisymmetric property of the
wedge product, that only lets one term survive. We also switched back to a
non-coordinate basis using the inverse tetrad relation eI = eIµdx

µ.
The second term can be computed similarly, since it is the dual counter-

part of the first term. Multiplying m2 we have

BIJ
αβBδγIJ = (

α

2
εIJKLe

K
[αe

L
β] + βeI[αe

J
β])(ασe[γ|I|eδ]J +

β

2
εIJMNe

M
[γ e

N
δ] )

=
α2σ

2
εIJKLe

K
[αe

L
β]e

I
[γe

J
δ] +

αβ

4
εIJKLe

K
[αe

L
β]εIJMNe

M
[γ e

N
δ]

+ αβσeI[αe
J
β]e[γ|I|eδ]J +

β2

2
εIJMNe

I
[αe

J
β]e

M
[γ e

N
δ] .

So together with the Levi-Civita symbol,

d4xεαβγδBIJ
αβBδγIJ = dxα ∧ dxβ ∧ dxγ ∧ dxδ

[α2σ + β2

2
εIJKLe

I
[αe

J
β]e

K
[γe

L
δ]

+ 2αβσeI[αe
J
β]e[γ|I|eδ]J

]
=
α2σ + β2

2
εIJKLe

I ∧ eJ ∧ eK ∧ eL + 2αβeI ∧ eJ ∧ eI ∧ eJ

=
α2σ + β2

2
εIJKLe

I ∧ eJ ∧ eK ∧ eL. (3.7)

Not surprisingly, the symmetries killed the term that survived in (3.6)
and, instead, the remaining term was the one that was equal to zero in the
non-dual case.
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The computation of the third term requires special care. The steps are
the following for the term multiplying m3:

BIJ
(µ|αBβγJ

KBδ|ν)KI = (
α

2
εIJMNe

M
[µ e

N
α] + βeI[µe

J
α])

(
α

2
εJ
K
PQe

P
[βe

Q
γ] + βe[β|J |e

K
γ])(

α

2
εKIRSe

R
[δe

S
ν] + βe[δ|K|eν]I)

=
α3

8
εIJMNεJ

K
PQεKIRSe

M
[µ e

N
α]e

P
[βe

Q
γ]e

R
[δe

S
ν]

+
α2β

4

(
εIJMNεJKPQe[µ|M |eα]Ne

P
[βe

Q
γ]e

K
[δ eν]I

+ εIJMNεKIRSe[µ|M |eα]Ne[β|J |e
K
γ]e

R
[δe

S
ν] + εJ

K
PQεKIRSe

I
[µe

J
α]e

P
[βe

Q
γ]e

R
[δe

S
ν]

)
+
αβ2

2

(
εIJMNe

M
[µ e

N
α]e[β|J |e

K
γ]e[δ|K|eν]I + εJ

K
PQe

I
[µe

J
α]e

P
[βe

Q
γ]e[δ|K|eν]I

+ εKIRSe
I
[µe

J
α]e[β|J |e

K
γ]e

R
[δe

S
ν]

)
+ β3eI[µe

J
α]e[β|J |e

K
γ]e[δ|K|eν]I

= −3α3σ

4
εJ
K
PQδ

J
[Kδ

M
E δ

N
F ]e[µ|M |eα]Ne

P
[βe

Q
γ]e

E
[δe

F
ν]

− 3α2βσ

2

(
δI[Kδ

M
P δ

N
Q]e[µ|M |eα]Ne

P
[βe

Q
γ]e

K
[δ eν]I

+ δJ[Kδ
M
R δ

N
S]e[µ|M |eα]Ne[β|J |e

K
γ]e

R
[δe

S
ν] + δJ[Iδ

P
Rδ

Q
S]e

I
[µeα]Je[β|P |eγ]Qe

R
[δe

S
ν]

)
+
αβ2

2

(
εIJMNe

M
[µ e

N
α]e[β|J |e

K
γ]e[δ|K|eν]I + εJ

K
PQe

I
[µe

J
α]e

P
[βe

Q
γ]e[δ|K|eν]I

+ εKIRSe
I
[µe

J
α]e[β|J |e

K
γ]e

R
[δe

S
ν]

)
+ β3eI[µe

J
α]e[β|J |e

K
γ]e[δ|K|eν]I .

where in the last step we performed a contraction of the Levi-Civita tensor
densities. Together with the Levi-Civita symbol that multiplies m3 in Eq.
(3.5) we have that the only surviving term is

d4xεαβγδBIJ
(µ|αBβγJ

KBδ|ν)KI = dxα ∧ dxβ ∧ dxγ ∧ dxδBIJ
(µ|αBβγJ

KBδ|ν)KI

=
αβ2

2
εMNPQeIµe

I
µe
M ∧ eN ∧ eP ∧ eQ, (3.8)
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in account for the symmetries of the terms. Once again, we have expressed
Eq. (3.8) in terms of a non-coordinate basis.

The computation of the fourth and last term is similar to that one of the
third term. Multiplying m4 we have

BIJ
(µ|αBβγJ

K ∗Bδ|ν)KI = (
α

2
εIJMNe

M
[µ e

N
α] + βeI[µe

J
α])

(
α

2
εJ
K
PQe

P
[βe

Q
γ] + βe[β|J |e

K
γ])(ασe[δ|K|eν]I +

β

2
εKIRSe

R
[δe

S
ν])

=
α3σ

4
εIJMNεJ

K
PQe

M
[µ e

N
α]e

P
[βe

Q
γ]e[δ|K|eν]I

+
α2β

2

(1

4
εIJMNεJ

K
PQεKIRSe

M
[µ e

N
α]e

P
[βe

Q
γ]e

R
[δe

S
ν]

+ σεIJMNe
M
[µ e

N
α]e[β|J |e

K
γ]e[δ|K|eν]I + σεJ

K
PQe

I
[µe

J
α]e

P
[βe

Q
γ]e[δ|K|eν]I

)
+
αβ2

4

(
εIJMNεKIRSe

M
[µ e

N
α]e[β|J |e

K
γ]e

R
[δe

S
ν]

+ εJ
K
PQεKIRSe

I
[µe

J
α]e

P
[βe

Q
γ]e

R
[δe

S
ν]

+ 4σeI[µe
J
α]e[β|J |e

K
γ]e[δ|K|eν]I

)
+
β3

2
εKIRSe

I
[µe

J
α]e[β|J |e

K
γ]e

R
[δe

S
ν]

= −3

2
α3δI[Kδ

M
P δ

N
Q]e[µ|M |eα]Ne

P
[βe

Q
γ]e

K
[δ eν]I

+
α2β

2

(
− 3

2
σεKIRSδ

I
[Kδ

M
P δ

N
Q]e

M
[µ e

N
α]e

P
[βe

Q
γ]e

R
[δe

S
ν]

+ σεIJMNe
M
[µ e

N
α]e[β|J |e

K
γ]e[δ|K|eν]I + σεJ

K
PQe

I
[µe

J
α]e

P
[βe

Q
γ]e[δ|K|eν]I

)
+
αβ2

2

(
− 3σδJ[Kδ

M
E δ

N
F e[µ|M |eα]Ne[βJe

K
γ]e

R
[δe

S
ν

− 3σδJ[Iδ
P
Rδ

Q
S e

I
[µeα]Je[β|P |eγ]Qe

R
[δe

S
ν]

+ 2σeI[µe
J
α]e[β|J |e

K
γ]e[δ|K|eν]I

)
+
β3

2
εKIRSe

I
[µe

J
α]e[β|J |e

K
γ]e

R
[δe

S
ν].

So we have that, on account of the symmetries, the non-zero terms are
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d4xεαβγδBIJ
(µ|αBβγJ

K ∗Bδ|ν)KI = dxα ∧ dxβ ∧ dxγ ∧ dxδ

BIJ
(µ|αBβγJ

K ∗Bδ|ν)KI

=
α2βσ

2
εMNPQeIµe

I
µe
M ∧ eN ∧ eP ∧ eQ.

(3.9)

Having computed all four terms [Equations (3.6), (3.7), (3.8), and (3.9)],
the proposed scalar field action in Eq. (3.2) can be written as

Sϕ[e, ϕ, π] =

∫
M4

[
1

2
[2m1αβ +m2(α2σ + β2)]πµ(∂µϕ) +

1

2
[m3αβ

2

+m4α
2βσ]eIµeIνπ

µπν ]εJKLMe
J ∧ eK ∧ eL ∧ eM . (3.10)

On the same line, the variation of π can be written in a compact way in
terms of the tetrad field.

δπ : [
(
m1αβ +m2(α2σ + β)

)
(∂µϕ) + [m3αβ

2

+m4α
2βσ]eIµeIνπ

ν ]εJKLMe
J ∧ eK ∧ eL ∧ eM = 0, (3.11)

which implies that

[m1αβ +m2(α2σ + β)](∂µϕ) = −[m3αβ
2 +m4α

2βσ]ηIJe
I
µe
J
νπ

ν . (3.12)

From this equation, we are ready to solve for the Lagrange multiplier πµ:

πν = −1

2

2m1αβ +m2(α2σ + β2)

m3αβ2 +m4α2βσ
ηIJeµI e

ν
J∂µϕ. (3.13)

Having computed the form of the multiplier, the job is almost complete.
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Let us feed the information contained in the multiplier into equation (3.23).

Sϕ[e, ϕ] =

∫
M4

1

4

[2m1αβ +m2(α2σ + β2)]2

m3αβ2 +m4α2βσ
[−ηIJeµI e

ν
J(∂µϕ)(∂νϕ)

+
1

2
ηIJe

I
µe
J
ν η

IKeµI e
ρ
Kη

JLeνJe
σ
L(∂ρϕ)(∂σϕ)]εPQRSe

P ∧ eQ ∧ eR ∧ eS

=

∫
M4

1

4

[2m1αβ +m2(α2σ + β2)]2

m3αβ2 +m4α2βσ
[−ηIJeµI e

ν
J(∂µϕ)(∂νϕ)

+
1

2
δKJ η

JLeρKe
σ
L(∂ρϕ)(∂σϕ)]εPQRSε

αβγδePα e
Q
β e

R
γ e

S
δ d

4x, (3.14)

where we have canceled out the tetrad fields that appear together with their
inverse in the second term on the first line, e.g. eIµe

µ
I = 1, and contracted

the covariant and (inverse) contravariant form of the Minkowski metric ηIJ ,
into a Kronecker delta on the second line.

We would like to see this equation in terms of the metric tensor, rather
than the tetrad field, so we can compare it to the usual scalar field action
introduced in Chapter 2 in equation (2.6). In order to achieve this, we have
to remember that the tetrad is defined as [3]

g(eI , eJ) = gµνe
µ
I e
ν
J = ηIJ . (3.15)

For this reason, by the way, eIµ is usually referred to as the square root
of the metric in a colloquial sense. Furthermore, this definition allows us
to relate the determinant of the metric tensor, g, to the determinant of the
tetrad field,

g = det(gµν) = det(eIµe
J
ν ηIJ) = σ[det(eIµ)]2. (3.16)

On the other hand, the determinant of some n × n square matrix, A,
obeys the identity

det(Aµν ) = εα1α2...αnA1
α1
A2
α2
, Anαn

, (3.17)
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which allows us to calculate the determinant of the tetrad with some alge-
braic manipulation. We have that

det(eIν) =
1

4!
εεIJKLe

I
αe
J
βe
K
µ e

L
ν ε

αβµν . (3.18)

where ε = 1 in our convention.Using equations (3.15), (3.16), and (3.18), we
can write down Eq. (3.14) in terms of the metric tensor and the scalar field:

Sϕ[g, ϕ] = −3!
[2m1αβ +m2(α2σ + β2)]2

m3αβ2 +m4α2βσ

∫
M4

1

2
gµν(∂µϕ)(∂νϕ)

√
−gd4x.

(3.19)

This is precisely the usual scalar field action, as in equation (2.6), multi-
plied by a constant factor. It cannot be ignored that Eq. (3.19) also dictates
the correct relationship between the four coupling constants, mi. The rela-
tion is

3![2m1αβ +m2(α2σ + β2)]2 = m3αβ
2 +m4α

2βσ. (3.20)

So equation (3.19) is the scalar field action in the CMPR framework with
the relation (3.20) determining a family of scalar field actions from which
one can recover the old action on the right scale.

It is clear that the equations of motion fall immediately once the coupling
constants have been correcly chosen in accordance with Eq. (3.20).

Having pointed out the relevance of the tetrad, it is impossible to resist
the temptation of writing Eq. (3.2) in terms of this field. While in principle
Eq. (3.14) does the job, it is possible to write down a cleaner expression.
We simply have to work our way backwards from equation (3.19) and take
into account the relation of Eq. (3.20). We find that
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Sϕ[e, ϕ] = −1

2

∫
M4

det(eIµ) ηIJ eµI e
ν
J (∂µϕ) (∂νϕ) d4x. (3.21)

Final remarks are made in the Conclusions Chapter.
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