Chapter 3

The scalar field in BF gravity

The main purpose of this thesis is to study an action principle that will
succesfully couple a scalar field to gravity in the framework of the CMPR
action principle. We take on this duty on this chapter.

The action of the BF type for gravity with cosmological constant and the

Immirzi parameter has the following form [11]:

1
SaB, A, Y, p] = /[BU N FrilA] — §1P1JKLBU ABEE — (a7
M4
+ agtbryrre’  —H) + 1By A B + 1,Br; A B
(3.1)

We would like to study an action for the scalar field, ¢, in terms of the

dynamical variables of the previous equation. The action proposed is:

S¢[B, ®, 7T] = / [(mlBU A B + moBry A *B”)wl‘ﬁucp
M4
+ (mgsaﬂ'yéB{LiBﬁ%]KBayKI + m460‘5763ﬁiB37JK * B(;VK[)W“W”d4x],
(3.2)
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where the four m; are coupling constants, BY is the antisymmetric 2-form
BT = a*(el Ae?) + Bel Ae’ as defined in the CMPR. action, and 7 is a
Lagrange multiplier. By the expanded form of the dynamical field, Blﬂg , we
mean

a
Bﬁidm” Adx” = [?sUKLeffef + ,Beiel{ dxt A dz". (3.3)

The action principle in Eq. (3.2) makes sense because the first two terms
(the ones multiplying m; and mg) are simply the two natural volume terms of
the theory, which play the role of \/—gd*z. As for the terms which multiply
mg and my, we have learned from [12] that the metric density is cubic in
the field variables of BF gravity. This identity holds in terms of the BY of
CMPR, but we also add a cubic term for the dual of the dynamical variable,
in correspondance with the second volume term Bjjy A «BT7 the one that
multiplies the constant mo.

We will verify that this action reduces effectively to the usual scalar field

action (2.6). The variation with respect to the Lagrange multiplier is

0= S,[B, ¢, + 0n] — Su[B, p, 7] = /(mlB,J A BY
M4
+maBry A*B')snt 0, + (m3e®° Bl Bg s Bs, i1

+ m4€a576BiiBﬁ,yJK * BgVK])((S?T“ﬂ'V + 7T#57Ty)d4$],
so we have the following equation of motion,

om : (mlB[J A B + moBrj A *BIJ>8M(,0
+2<m3€aﬂvaB(Ij|aB57JKB§|V)K[ + m4€aﬁ753{l‘jaBg,yJK * B(;‘V)KI)WVCZLLJZ = 0.
(3.4)

We would like to express the equation of motion of 7# in terms of the

expanded 2-forms, so we use Eq. (3.3) to rewrite Eq. (3.4) as
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d4l‘€a676[(m1Bé‘éB§.\/1J + mgBé‘é * B(;,Y[J)a‘u(p

~|—2(m3B(I,;]\aBﬁvJKBa|u)K1 + m4B(IMJ|aBﬁ7JK*B6|u)KI)7TV] =0, (3.5)

where we have written the Levi-Civita symbol that carries the antisymmetry
of the wedge products that multiply the coordinate basis on the terms that
multiply m; and mg in (3.4), explicitly:

dz* A dx’ A dzP A dx® = PP dal A dat A da? A da? = M0 di s

The next step is to substitute in the form of the B” field in terms of the
tetrad field. The calculations contain many terms, but become simplified
after a few steps. For this reason, we wish to analyse Eq. (3.5) by parts.

The term multiplying m; is:

a «
BhBoots = (! wnefiely + Befuei) (Gernaxelel + Beineqys)

2
_OﬁeleLg MN_|_% KoL oI o7
=3 LIMNC[a|K|€BILE} €5 T 5 E1TKLE[aC5)€],C5)

af
+ S ermneleen e + Blelaeeniness

K <L M _N I J K_L
= QQU(S[M(SN]e[a|K|eﬁ]L6[ry €5 + aﬂaIJKLe[aeB]ehe(;]

2.1 J
+ B €jaepeliries) -
Notice that we have explicitly shown the antisymmetries in the spacetime

indices. It also a good idea to point out that e,; = n; Jei . Following our

study of the first term, we have that
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d4x5°‘5763£‘éBMU = da® A dz® A da A da? [(Oz2 + BQ)G[QW‘%]N@{\V/‘[%\][
+ aBEUKLe[Iaeg]e[feéL]]
= (a®o + Bem Ney AeM ne
+ E[JKLO[,B@I Ael Aefael

= afBerrre’ Nel nef el (3.6)

In this expression we have made use of the antisymmetric property of the
wedge product, that only lets one term survive. We also switched back to a
non-coordinate basis using the inverse tetrad relation e/ = eﬁdw“.

The second term can be computed similarly, since it is the dual counter-

part of the first term. Multiplying ms we have

o p
Bi‘éBMIJ = (§5IJKL€[I§QLI§] + Be{aeé])(aoemnegw + §EIJMN€€;I€(]§\][)
2
a‘o af
76[][([,6{56516[[765]] + TEIJKLE{EGZQ]&]JMNB%G(]S\][
2
+ aﬂaefaeg}ehmegw + ?a‘UMNe[Iaeg}ef‘feé\{.

So together with the Levi-Civita symbol,

4 . _afyé plJ _ «a B8 0% 19 0420'4-62 I J _K_L
d*ze BQ/BBMU—d:U Adx” Ndx7 A dx [72 E1TKLE[6E5)C] Cs)

+ Qaﬁae[]aeé]em]‘e(;w]

2 2
a‘o +
= TﬁsijLeI/\eJ/\eK/\eL—i—ZaﬁeI/\eJ/\eI/\eJ
2 2
a“o +
= TBE[JKLel/\eJ Aef A el (3.7)

Not surprisingly, the symmetries killed the term that survived in (3.6)
and, instead, the remaining term was the one that was equal to zero in the

non-dual case.
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The computation of the third term requires special care. The steps are

the following for the term multiplying ms:

B(I;l]\aBBvJKBﬂu)KI (251JMN€[M Oé]~|—5el J)
«
(zes™ pge 56 + Begglze })( exIRsefe, + Bes k| i)
= Oz 17 K MNP QRS
T g ° MNEJ PQEKIRSC|Ca)€(5%) 5%

04275 ( GIIMN

o
2

+ sJKerMMea}Nef;eg]e[lgey}[

+ €IJMN5K[RS€[#|M‘ea]N€[6|J|€ﬁ€[}§€§] + €JKPQ5K]RS€[I“€i]€[%€%efgef])
- 1J M _N K K _ I _J_ P Q
+ 7(8 MNE€[, €4]€[8].7|€4) €[5| K| €v] T +eg PQE[,€0)€[64)C18| K| Ev]1

+ €K1R56{uei}e[ﬁ|J|e'ﬁef§ei) + /Bge[lluei]6[5‘J|eﬁ€[6|K|€u]I
3a3c K J sM N P _Q_E_F
= =1 €7 PQOKOE OF|E[M|CaNE[5E €[5
30%B0 1 N P QK
= =5 O Ip Sqepmcaln ejgey eis eulr

S
+ 6[K5R 551 [u|M|€a]N€E[B|J|E }6[56 ] + (5[1(5353e{ueawe[mpmﬂQefgey])

J M N K K I J P Q
+ T(E MNE€[, €4]€(8].7|€) €[5| K| €v] 1 +es PQE,€0)€[64)C18| K |Ev]1

I _J K_R_S 3.1 J K
+ €K1Rse[u€a}e[g|J|€,¥]6[661/]) + ,B €[M€a]€[5u|6ﬂ6[6|K|6u]1.

where in the last step we performed a contraction of the Levi-Civita tensor
densities. Together with the Levi-Civita symbol that multiplies ms in Eq.

(3.5) we have that the only surviving term is

d*xe° Bl Bao s By ey = da® Ada® A da A da® Bl Bae ™ By i
_Lys e eIeM/\eN/\ep/\eQ (38)
= Ty EMNPQCIC, » 9

o
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in account for the symmetries of the terms. Once again, we have expressed
Eq. (3.8) in terms of a non-coordinate basis.
The computation of the fourth and last term is similar to that one of the

third term. Multiplying m,4 we have

1J K & 1 M _N I_J
B(u|aBﬁ’YJ * B(S\V)KI = (55 MNE[, €4 + Be[uea])
a S
(§€JKPQ€§€% + Begg el (aoes jenr + EEKIRsefgey])

3

(62l

= T5UMN€JKPQ6f\geg]e[%e$]ewmey]l

o?f 1 N S

+ 5 (35" uwes " pasinse] eq) efzeSiener)

+ O'é‘IJMNe[# 6a]€[5‘J‘67]€[5|K‘6V][ + UaijQe[#ei]ef;e%e[g‘K‘ey]I)
aﬁ

1 (5 MN€KIRSC[M a]e[ﬁlJle} [565}

+eyg pQEK[RSe[Mea]e[Be%ewey]
3
I J K 1 _J K_R_S
+ 40’6[M6a]6[ﬁ|J‘67}6[5‘[(‘6,,]1) + ?EK]Rse[#ea]e[mﬂeﬂ6[561/]

3 3¢ sMsN P _Q K
=~ 5@ 0K OP 0Q)€lulM|€alN €[ Els EuT
+ﬁ(f§asK oL GM§N MNP Q

2 IRSO[KOP Q] [u “a)“[8%]
+o¢ JMNef\geév]e[mJ\eﬁe[ameu]z + oajKPQe{uei]efZeﬁe[m6:41)

2
+%(

efses
— 300761 Op €untCalNEBIEN Ef3ED
305[1535 €lu€a]1€[8|PICYQElED)

3

I J K I J K _R_S
+ ZUe[Mea]e[ﬁmeﬂewmey]l) + ?EK[Rge[#ea]e[mﬂe,y]6[561/].

So we have that, on account of the symmetries, the non-zero terms are
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d4fc5°‘5"’6B(]lf|aB57JK * Bs|yykr = dx® A daz? A dxY A da®

B(ilaBsvs™ * Bsjyk1
B a?fo

2

sMNerIMeLeM AeN Ael A eQ.
(3.9)

Having computed all four terms [Equations (3.6), (3.7), (3.8), and (3.9)],

the proposed scalar field action in Eq. (3.2) can be written as

1 1
Selevpm) = [l52mas + ma(a?o + #))(0,0) + 3 lmsas?
M4
+ m4a2ﬁa]eiel,,7r“7r”]5JKLMe‘] Aef Al neM. (3.10)

On the same line, the variation of m can be written in a compact way in

terms of the tetrad field.

om : [(miaB + ma (oo + B)) (Oup) + [m3aB?

+m4a2ﬁa]e£ejy7r”]5JKLMeJ ANefael neM =0, (3.11)

which implies that

[miaB + ma(a?s + B)](0up) = —[maaf® + m4a260]nueﬁeiw”. (3.12)

From this equation, we are ready to solve for the Lagrange multiplier 7#:

12miafB + ma(a?o + ?2) IJ _p v
1 9.0. 3.13
2 mgaf® +mga’Be | TINY (3:19)

v _

Having computed the form of the multiplier, the job is almost complete.
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Let us feed the information contained in the multiplier into equation (3.23).

1[2miaB + ma(a?o + A2, 1
Syle,pl = | = — el (0 10)
Jle ] / e [yt el (0,0)(01)
M
1
+ §n]J€£GZHIK€?€§<nJL€Z€%(8p§0)(80-90)]6PQRS€P ANeQ Aeft A ed
1 [277110&5 + m2(oz20 + B2)]2 IJ u v
. - 0,0)(0
/4 S [ (0 (01)
M
1
+ 55?77‘”6’;(6%(8,,@)((%go)]f-:pQRSEO‘BV‘Segegefegdﬂ‘x, (3.14)

where we have canceled out the tetrad fields that appear together with their

I
w

the covariant and (inverse) contravariant form of the Minkowski metric 77,

inverse in the second term on the first line, e.g. €,/ = 1, and contracted
into a Kronecker delta on the second line.

We would like to see this equation in terms of the metric tensor, rather
than the tetrad field, so we can compare it to the usual scalar field action
introduced in Chapter 2 in equation (2.6). In order to achieve this, we have
to remember that the tetrad is defined as 3]

gler,ey) = gu,,e’;ef} =nrJ. (3.15)

For this reason, by the way, eli is usually referred to as the square root
of the metric in a colloquial sense. Furthermore, this definition allows us
to relate the determinant of the metric tensor, g, to the determinant of the

tetrad field,

g =det(gu) = det(eﬁel{nu) = a[det(ei)]? (3.16)
On the other hand, the determinant of some n X n square matrix, A,
obeys the identity

det(Al) = gnozan AL A2 A

(e HRS Qn,?

(3.17)
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which allows us to calculate the determinant of the tetrad with some alge-

braic manipulation. We have that

1
det(el) = EesijLeéeéefefsaﬁW. (3.18)

where € = 1 in our convention.Using equations (3.15), (3.16), and (3.18), we

can write down Eq. (3.14) in terms of the metric tensor and the scalar field:

[2miaB + ma(a?o + 5%))? / 1
2

Lo —
msa B2 + mya2Bo g (au@)(&/@)\/ gdx.
M4
(3.19)

This is precisely the usual scalar field action, as in equation (2.6), multi-
plied by a constant factor. It cannot be ignored that Eq. (3.19) also dictates
the correct relationship between the four coupling constants, m;. The rela-

tion is

3I2miafB + mo(a®o + B*)]? = mzaf® + mya?fo. (3.20)

So equation (3.19) is the scalar field action in the CMPR framework with
the relation (3.20) determining a family of scalar field actions from which
one can recover the old action on the right scale.

It is clear that the equations of motion fall immediately once the coupling
constants have been correcly chosen in accordance with Eq. (3.20).

Having pointed out the relevance of the tetrad, it is impossible to resist
the temptation of writing Eq. (3.2) in terms of this field. While in principle
Eq. (3.14) does the job, it is possible to write down a cleaner expression.
We simply have to work our way backwards from equation (3.19) and take
into account the relation of Eq. (3.20). We find that
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Sole, o]l = —= /det(eﬁ) nt’ el €7 (0,) (Ouyp) d*z.

Final remarks are made in the Conclusions Chapter.

(3.21)
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