
Chapter 2

The scalar field in General
Relativity

The purpose of this work is to perform the coupling of the scalar field to BF
gravity, it is therefore an important matter to discuss how the scalar field is
usually coupled in the context of the general theory of relativity.

The full form of the Einstein field equations is

Gµν + Λgµν = Rµν −
1

2
Rgµν + Λgµν = 8πGTµν , (2.1)

with Tµν , the energy-momentum tensor, being a conserved quantity, such
that ∇µTµν = 0, that describes the matter effects in field theory, and G

Newton’s gravitational constant. The factor that determines the intensity of
the gravitational effects, 8πG, is determined by matching the Einstein field
equations in the Newtonian weak field limit, in which gµν = ηµν + hµν , the
second term being a small perturbation that makes the metric tensor deviate
from flat spacetime.

It is possible to obtain the Einstein field equations from a variational
principle. The general form of the action is

S = SG + SM , (2.2)
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with SG the vacuum contribution, which may as well be decomposed into a
gravitational part and the cosmological term, SG = Sg + SΛ, and SM is the
matter contribution, related to the energy-momentum tensor like [5]

Tµν ≡ −2
1√
−g

δSM
δgµν

. (2.3)

Following this convention, the action principles that we studied in vac-
uum should be normalized like SG → 1

16πGSG to account for the 8πG factor
in the Einstein field equations.

We are currently concerned with the coupling of the scalar field. The
energy momentum tensor associated with it is

T(ϕ)µν = ∇µϕ∇νϕ−
1

2
gµνg

ρσ∇ρϕ∇σϕ− gµνV [ϕ]. (2.4)

We call ϕ the scalar field and V [ϕ] is some potential that depends on the
scalar field.

Let us derive an action principle for ϕ that will yield the energy momen-
tum tensor of Eq. (2.4). This task is straightforward and can be found in
the literature. The canonical Lagrangian from classical mechanics can be
rewritten in the context of classical field theory [5]:

L =
1

2
mq̇2 − V (q)→ L =

1

2
ϕ̇2 − 1

2
[grad(ϕ)]2 − V (ϕ).

In the former expresion the first term on the right hand side corresponds
to the kinetic energy, the second term is the gradient energy, and the third
term is the usual potential energy. The next step is to rewrite the Lagrangian
density, L, by taking the advantage of the fact that the Minkowski metric
ηµν is diagonal, ηµν = diag(σ, 1, 1, 1), with σ = −1:

1

2
ϕ̇2 − 1

2
[grad(ϕ)]2 − V (ϕ) = −1

2
ηIJ(∂Iϕ)(∂Jϕ)− V (ϕ).

Finally, having constructed a Lagrangian on a local frame, one can use
the colon goes to semicolon rule to write down the Lagrangian in a fully
covariant form:
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L =
1

2
gµν(∇µϕ)(∇νϕ)− V (ϕ). (2.5)

So the scalar field action is

Sϕ = −
∫
M4

d4x
√
−g
[

1

2
gµν(∂µϕ)(∂νϕ) + V (ϕ)

]
. (2.6)

The square root of the negative determinant of the metric,
√
−g comes

into play to account for the fact that Eq. (2.5) is a Lagrangian density. Let
us show how the variation of this action principle with respect to the inverse
metric is:

δSϕ = −1

2

∫
M4

d4x
√
−g(∂µϕ)(∂νϕ)δgµν

+

∫
M4

d4x

[
1

2
gαβ(∂αϕ)(∂βϕ) + V (ϕ)

](
1

2

√
−ggµνδgµν

)
. (2.7)

So indeed the energy momentum tensor of Eq. (2.4) is recovered by using
the definition (2.3).

Let us study another action principle for the scalar field. The reason for
this, is that the form of this Lagrangian most closely resembles the scalar
field Lagrangian in the BF theory. For simplicity, we can make V [ϕ] = 0.
Let

Sϕ[g, ϕ, π] =

∫
M4

d4x
√
−g
[
πµ∂µϕ−

1

2
gµνπ

µπν
]
, (2.8)

where πµ is a Lagrange multiplier. We can show that this action is equivalent
to (2.6) by computing the equation of motion for the πµ:

δπ : gµν(∂νϕ)− πµ = 0. (2.9)

Plugging this equation of motion into Eq. (2.8) results in
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Sϕ = −
∫
M4

d4x
√
−g1

2
gµν(∂µϕ)(∂νϕ), (2.10)

which is equation (2.6). This is sufficient to show that the latter scalar field
action has the same features as the usual one. However, we would like to see
that the equation of motion of the scalar field, ϕ, in Eq. (2.8) is indeed the
Klein-Gordon equation.

The variation with respect to ϕ yields the following equation:

δϕ : ∂µ(
√
−gπµ) = 0. (2.11)

Plugging in the form of the multiplier,

∂µ[
√
−ggµν(∇νϕ)] = 0. (2.12)

We have used the fact ∇νϕ = ∂νϕ for a scalar quantity. This expression
can be rewritten in terms of only covariant derivatives by using the definition
of the covariant derivative of a tensor density [2]. For a tensor of rank 1:

∇µ[
√
gTµ] = (∂µ

√
g)Tµ − Γρρµ

√
gTµ +

√
g∇µTµ. (2.13)

So we have that

0 = δµ[
√
−ggµν(∇νϕ)] = (δµ

√
−g)gµν(∇νϕ) +

√
g[(δµg

µν)(∇νϕ)]

= +Γρρµ
√
−ggµν(∇νϕ)− Γρρµ

√
ggµν(∇νϕ)

= [δµ
√
−g − Γρρµ

√
−g]gµν(∇νϕ)

= +
√
−g∇µ[gµν(∇νϕ)]

= ∇µ[
√
−ggµν(∇νϕ)].

By the metric compatibility of the Levi-Civita connection,

∇µ[
√
−ggµν(∇νϕ)] =

√
−ggµν∇µ(∇νϕ) =

√
−g�ϕ, (2.14)
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where we used the definition of the d’Alembertian � = gµν∇µ∇ν .
Finally, droping the

√
−g, we obtain

�ϕ = 0, (2.15)

which is the Klein-Gordon equation.
As we have seen, equations (2.6) and (2.8) are equivalent both on an

action level, as well as in the equations of motion they produce.
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