
Chapter 1

Vacuum BF Gravity

Vacuum gravity, in general, is understood as the description of the effects of
the gravitational field with not any form of matter coupled to it. In general
relativity and newer descriptions of gravity, matter is composed of four types
of fields, (i) the electromagnetic field, (ii) Yang-Mills fields, (iii) the scalar
field, and (iv) fermions. In this thesis, we are especially interested in coupling
the scalar field to a BF gravity formulation.

From a classical point of view, vacuum gravity obeys the Einstein field
equations in vacuum [5] [4]:

Rµν −
1

2
gµνR+ gµνΛ = 0, (1.1)

where Rµν is the Ricci tensor, contracted from the first and third indices
of the Riemann curvature tensor, Rρµσν → Rρµρν , gµν is the metric tensor,
R = gµνRµν is the Ricci scalar, and Λ is the cosmological constant, which is
interpreted as non-zero vacuum energy in field theory. We follow the notation
in which Greek indices stand for spacetime indices. The first two terms of
the left hand side of the previous equation are referred to together as the
Einstein tensor, Gµν = Rµν − 1

2gµνR.
If one finds the Einstein tensor to be an unsual mathematical entity, it

would be a good idea to state some of its properties to convince ourselves
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that it is the right choice to describe gravity. Gµν was constructed in order
to fulfill the following considerations, that [4]

1. Gµν = 0 in flat spacetime,

2. Gµν must be constructed out of the metric and the Riemann tensors,

3. and that Gµν be linear in the Riemann tensor, symetric and a second
degree tensor, in order of it to be compatible (in the colloquial sense
of the word) with the energy-momentum tensor from field theory, Tµν
, and have null divergence, div(Gµν) = 0.

A better description of the Einstein field equations can be written in
terms of a non-coordinate basis. Its vacuum form is:

∗ FIJKL + ∗FIKLJ + ∗FILJK − ΛεIJKL = 0. (1.2)

We call FIJ the curvature of the spin conection. Lorentz indices are rep-
resented by Latin letters. While the two descriptions are equivalent, it is
important to point out that there exists a fundamental difference in that
(1.2) makes no reference to the metric tensor field, but rather to the tetrad
field or vierbein, eI . Among other advantages, the tetrad formulation of
gravity admits the coupling of fermions, while the previous one fails to do
so.

Equations (1.1) and (1.2) can be obtained from variational principles,
Therefore with the appropriate choice of some Lagrangian (density) one can
make a full description of gravity. Hilbert was the first one to propose an
action principle for the equations of motion (1.1). He proposed [5] [4]

SH [g] =

∫
M4

√
−gR d4x, (1.3)

with g = det(gµν). As it turns out, the simplest Lagrangian density,
√
−gR
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yields (1.1) with zero vacuum energy when one performs the variation with
respect to the (inverse) metric tensor. (1.3) is known as the Einstein-Hilbert
action. Note that by making R→ R− 2Λ one obtains exactly (1.1).

Furthermore, one can make the connection independent of the metric
tensor, and therefore make the curvature exclusively dependent of the con-
nection. An action principle that allows for this is [5] [4]

SH [g,Γ] =

∫
M4

√
−ggµνRµν [Γ] d4x. (1.4)

This equation is known as the Hilbert-Palatini Action. The variation with
respect to the metric tensor yields (1.1), once again, up to the cosmological
constant, which can be introduced by adding −2

√
−gΛ to the lagrangian

in (1.4), while the variation with respect to the connection gives rise to the
torsion free condition,

∇gµν = 0, (1.5)

which indicates that Γ is the Levi-Civita connection. We call ∇ the covariant
derivative as defined by the Levi- Civita connection.

The Palatini formalism is more conveniently expressed in terms of the
tetrad field:

S[e,A] =

∫
M4

[
∗(eI ∧ eJ) ∧ FIJ [A]− Λ

12
εIJKLe

I ∧ eJ ∧ eK ∧ eL
]
. (1.6)

A is identified a posteriori as the spin connection when one performs the
variation of (1.6) with respect to the connection. The variation with respect
to the tetrad yields precisely (1.2).

1.1 Introducing BF gravity

A BF theory has the following structure:
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S[B,A,ψi] =

∫
M4

[
BIJ ∧ FIJ [A] +G[B,ψi]

]
, (1.7)

where BIJ is a 2-form which plays the role of the dynamical tensor field,
replacing the metric tensor, F IJ [A] represents the curvature of some con-
nection A, and G represents a constraint which depends of i = 1, . . . , n

multipliers ψi. The first term in (1.7) is said to be topological, for it conferes
no degrees of freedom to the theory. It is by introducing the constraint G to
the dynamical field that the theory acquires degrees of freedom, and hence
becomes physical.

The first action of the BF type proposed to describe gravity was con-
structed by Plebański, namely, [6]

SP [Σ, A] =

∫
M4

[
Σi ∧ F i[A] + ΛΣi ∧ Σi

]
, (1.8)

with i = 1, 2, 3, and satisfying the constraints

3Σi ∧ Σj = δijΣk ∧ Σk = δijΣ̃k ∧ Σ̃k = 0, (1.9)

and Ai is a complex self-dual connection in the form of 3 complex 1-forms
(as opposed to the spin connection with 6 real 1-forms). SP has come to be
known as the Plebański action, and became the first motivation to explore
the possibility of describing gravity with constrained BF theories. On this
matter, it can be readily noticed that different constraints G will produce
different action principles. Some succesful approaches include actions of the
type,

S[B,A,ψ, µ] =

∫
M4

[
BIJ ∧ FIJ [A] +−1

2
ψIJKLB

IJ ∧BKL + µH[ψ]

]
,

(1.10)
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with µ some Lagrange multiplier. Which can lead to two conditions through
the variation of µ, namely,

H1 = ψIJ
KL = 0,

H2 = εIJKLψIJKL = 0. (1.11)

One can recover the Holst Action Principle [7],

S[e,A] =

∫
M4

[∗(eI ∧ eJ) +
1

γ
eI ∧ eJ ] ∧ FIJ [A], (1.12)

by substituting the equations of motion into the original action (1.10), using
the conditions (1.11). Some comments on the Holst action principle will be
made at the end of section 1.2. There is however, another natural way to
recover (1.12), as we will see in the following section.

1.2 The CMPR action principle

This section is based on the original article [8].
As we have seen, conditions of the form (1.11) have been explored with

action principles of the BF type of the form of Eq. (1.10). The CMPR
action principle introduces a more general constraint that gives rise to the
Holst action in a natural fashion. In terms of six antisymmetric 2-forms,
BIJ = −BJI ; an SO(3,1) connection, AIJ which gives rise to the curvature
FIJ [A] = dAIJ + AIK ∧ AKJ ; a Lagrange multiplier ψIJKL which satisfies
ψIJKL = ψKLIJ , ψIJKL = −ψJIKL, and ψIJKL = −ψIJLK , leaving 21
independent components; and one Lagrange multiplier µ, the CMPR action
principle has the following form:
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S[B,A,ψ, µ] =

∫
M4

[BIJ ∧ FIJ [A]− 1

2
ψIJKLB

IJ ∧BKL

− µ(a1ψIJ
IJ + a2ψIJKLε

IJKL)]. (1.13)

The variation of with respect to the independent fields gives rise to the
equations of motion.

To first order, varying the dynamical field, BIJ , yields

δB : FIJ [A]− ψIJKLBKL = 0. (1.14)

The variation with respect to the connexion yiels

δA : DBIJ = 0, (1.15)

where D is the covariant derivative with respect to the Lorentz connection
A. In particular, the covariant derivative of a 2-form is defined as

DBIJ ≡ dBIJ +AIK ∧BKJ +AJK ∧BIK . (1.16)

Finally, one can obtain the following equations through the variation of
the multipliers:

δψ : BIJ ∧BKL + 2a1µη
[I|K|ηJ ]L + 2a2µε

IJKL = 0, (1.17)

and

δµ : a1ψIJ
IJ + a2ψIJKLε

IJKL = 0. (1.18)

In fact, we see that the variation with respect to µ imposes an additional
constraint to the Lagrange multiplier ψIJKL. Also, by solving Eq. (1.17) we
know the form of BIJ ,
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BIJ = α ∗ (eI ∧ eJ) + βeI ∧ eJ (1.19)

with the coefficients a2, a1, α, and β related by

a2

a1
=
α2 + σβ2

4αβ
. (1.20)

We can now plug in the form of the dynamical field (1.19) into the equa-
tion of motion (1.15):

d[α ∗ (eI ∧ eJ) + βeI ∧ eJ ] +AIK ∧ [α ∗ (eI ∧ eJ) + βeI ∧ eJ ]

+AJK ∧ [α ∗ (eI ∧ eJ) + βeI ∧ eJ ] = 0. (1.21)

This equation is equivalent to

deI +AIK ∧ eK = 0, (1.22)

if det(eIµ) 6= 0. This is the exact definition of the spin connection A = A[e].
We can verify that this is true by performing a counting argument: The
expression (1.21) are 6 equations for 3-forms on a 4-dimentional manifold,
yielding a total of 6 × 4!/(4 − 3)!3! = 24 independent equations, and in
(1.22) there are 4 equations for 2-forms on a 4-dimentional manifold, yielding
4× 4!/(4− 2)!2! = 24 independent equations.

We notice that the second and third term of (1.13) vanish by virtue the
equations of motion of ψ and µ, (1.18) and (1.17). Having identified the
connection, we can now subsitute for the form of BIJ , Eq. (1.19), into the
first and only surviving term of the CMPR action principle (1.13). We obtain

S[e,A] = α

∫
M4

[∗(eI ∧ eJ) +
β

α
eI ∧ eJ ] ∧ FIJ [A]. (1.23)

This is exactly the Holst action principle multiplied by an arbitrary con-
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stant α. We identify the Immirzi parameter as α/β.
As claimed, one can fully recover the Holst action purely from the CMPR

action principle. For its importance, we wish to discuss on the importance of
this action. It was proposed in 1996 by Sören Holst as a generalization of the
Hilbert-Palatini action principle in order to derive Barbero’s Hamiltonian,
which gives rise to the canonical variables of the phase space of general
relativity, from a variational principle.

Ashtekar proposed a pair of geometrical variables for general relativity
which led to a simple Hamiltonian. These, known as Ashtekar variables, are
succesful in that they allow the use of loop variables at classical and quantum
level. However, a difficuly arose in that the variables must be complex in
order to describe Lorentzian spacetime, therefore asking for additional reality
conditions to be imposed. Later, Barbero proposed a new set of variables,
known as Ashtekar-Barbero variables, which lead to a real formulation of
general relativity, without the need to impose additional constraints [9] -
although the simplicity of Ashtekar’s Hamiltonian is lost.

The variational principle from which Barbero’s formulation is derived
includes a non-zero parameter, known as the Immirzi parameter. It reads as
follows [7]:

S[e,A] =

∫
M4

[∗(eI ∧ eJ) +
1

γ
eI ∧ eJ ] ∧ FIJ [A]. (1.24)

The Immirzi parameter appears as γ in the so-called Holst term in the
previous equation. One can see that the structure of the Holst action is
a natural extension of the Hilbert-Palatini action. As a matter of fact, by
making 1/γ = 0 one can recover the latter.

Another interesting case consists in making 1/γ = ı, the imaginary unit.
This is equivalent to writing down a Hilbert-Palatini Lagrangian in which
the curvature FIJ is replaced by its self-dual form. This would lead to
Ashtekar’s Hamiltonian. The most interesting case is when one sets γ to
be a real number. This gives rise to a plethora of quantum theories of
gravity. As it turns out, the parameter is typically normalized to match the
Berkenstein-Hawking entropy of a black hole.
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A fundamental feature of the Holst action is that the Holst term is exactly
equal to zero from a classical point of view, making the action equivalent to
Hilbert-Palatini. This property is guaranteed by the curvature which has
to obey the Bianchi identities, once the spin connection has been idetified,
namely, it satifies the following equation:

FIJKL + FIKLJ + FILJK = 0. (1.25)

By virtue of this identity, the Holst term in (1.24) is:

∫
M4

eI ∧ eJ ∧ FIJ [A] =

∫
M4

eIµe
J
νFIJαβε

αβµνd4x

= σε

∫
M4

det(eIµ)eIµe
J
ν e
α
Ke

β
Le

µ
Me

ν
NFIJαβε

KLMNd4x

= σε

∫
M4

det(eIµ)δIMδ
J
Ne

α
Ke

β
LFIJαβε

KLMNd4x

= σε

∫
M4

det(eIµ)FIJKLε
IJKLd4x.

So now we can verify that FIJKLεIJKL = 0,

FIJKLε
IJKL = F0123ε

0123 + F0132ε
0132 + F0213ε

0213 + F0231ε
0231

+ F0312ε
0312 + F0321ε

0321 + F1023ε
1023 + F1032ε

1032

+ F1203ε
1203 + F1230ε

1230 + F1302ε
1302 + F1320ε

1320

+ F2013ε
2013 + F2031ε

2031 + F2103ε
2103 + F2130ε

2130

+ F2310ε
2310 + F2301ε

2301 + F3012ε
3012 + F3021ε

3021

+ F3102ε
3102 + F3120ε

3120 + F3201ε
3201 + F3210ε

3210

= 4[(F0123 + F0231 + F0312)− (F0213 + F0132 + F0321)]

= 0.
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In the last line we used the identity (1.25). We have adhered to the con-
vention that the Levi- Civita symbol is equal to ε = 1 for even permutations.

Since the Holst term provides no degrees of freedom, it is said to be a
topological term. Indeed,

S[e,A] =

∫
M4

eI ∧ eJ ∧ FIJ [A] (1.26)

has long been conjectured to be a topological theory. Recently, Liu, Mon-
tesinos, and Perez have shown that this conjecture is correct in the absence
of boundaries and they argued that the quantization of the theory might be
relevant in the study of the entropy of black holes in loop quantum gravity
[10].

A closing comment on the Holst action principle would be to point out its
importance for the non-perturvative quantization of the gravitational field,
especially from the loop quantum gravity viewpoint. As a matter of fact, it
plays a central role in said theory, being the starting point of the canonical
and path integral quantization of the gravitational field.

1.3 The Montesinos-Velázquez action principle

This section is based on [11].
The Einstein field equations including a non-zero vacuum enery term in

the form of the cosmological constant, as we have seen in Eq. (1.2), are

∗FIJKL + ∗FIKLJ + ∗FILJK = ΛεIJKL. (1.27)

As in the case in which the cosmological constant does not appear, it
is possible to build an action that will yield Eq. (1.27). In terms of the
same fields that were introduced for CMPR, along with three constants H,
l1, and l2, and the cosmological constant Λ , the following action principle
is proposed:
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S[B,A,ψ, µ] =

∫
M4

[BIJ ∧ FIJ [A]− 1

2
ψIJKLB

IJ ∧BKL − µ(a1ψIJ
IJ

+ a2ψIJKLε
IJKL −H) + l1BIJ ∧BIJ + l2BIJ ∧ ∗BIJ ].

(1.28)

The modification includes some constant H that will give rise to a new
relationship between the invariants ψIJ IJ and εIJKLψIJKL, as well as two
natural additions l1 and l2 which appear on the volume terms BIJ ∧BIJ and
BIJ ∧ ∗BIJ .

The variation with respect to the connection A and the multiplier ψIJKL
yield the old equations of motion (1.15) and (1.17), namely:

δA : DBIJ = 0, (1.29)

and

δψ : BIJ ∧BKL + 2a1µη
[I|K|ηJ ]L + 2a2µε

IJKL = 0. (1.30)

The fact that these two equations hold allows for the form of BIJ to
remain the same, in virtue of Eq. (1.30),

BIJ = α ∗ (eI ∧ eJ) + β(eI ∧ eJ), (1.31)

along with the coefficients relationship

a2

a1
=
α2 + σβ2

4αβ
; (1.32)

but also protects the connection, in virtue of Eq. (1.29), letting A remain
the spin connection.

We can convince ourselves of the claim made, that the expressions BIJ ∧
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BIJ and BIJ ∧ ∗BIJ are the volume elements of the theory by substituting
for the tetrad fields. We find:

BIJ ∧BIJ = αβεIJKLe
I ∧ eJ ∧ eK ∧ eL, and

BIJ ∧ ∗BIJ =
1

2

(
α2σ + β2

)
εIJKLe

I ∧ eJ ∧ eK ∧ eL. (1.33)

On the other hand Eqs. (1.14) and (1.18) no longer remain valid. Instead,
performing the variation with respect to the dynamical field, BIJ , yields

δB : FIJ [A]− ψIJKLBKL + 2l1BIJ + 2l2
∗BIJ = 0, (1.34)

and the variation with respect to the Lagrange multiplier, µ, results in

δµ : a1ψIJ
IJ + a2ψIJKLε

IJKL −H = 0. (1.35)

We see that Eq. (1.34) establishes a new relationship between the curva-
ture and the dynamical field, implying therefore a new relationship between
the curvature and the tetrad field. Equation (1.18), as we said before, im-
poses a new relationship between the invariants.

As in the previous case, we rewrite the action (1.28) in terms of the tetrad
field by substituting for the 2-forms in Eq. (1.31):

S[e,A] =

∫
M4

[[α∗(eI ∧ eJ) + βeI ∧ eJ ] ∧ FIJ [A] + µH

+ [l1αβ +
l2
2

(α2σ + β2)]εIJKLe
I ∧ eJ ∧ eK ∧ eL]. (1.36)

We are left to verify that the BF theory leads to natural constraints for
the curvature that will guarantee that the Bianchi identities (1.25) hold,
as the spin connection obliges that they be satisfied. These in turn will
establish the relationship between the new constants, H, l1, and l2, and
the cosmological constant, Λ, that will allow for Eq. (1.36) to be exacly
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equivalent to the Holst action with non-zero vacuum energy.
Writing equation (1.34) in terms of the tetrad field, and the expanded

form of the curvature FIJ = 1
2FIJKLe

K ∧ eL has the following structure

FIJKLe
K ∧ eL = 2[αψ∗IJKL + βψIJKL − (l1α+ l2β)εIJKL

− (l1β + l2ασ)(ηIKηJL − ηJKηIL)]eK ∧ eL. (1.37)

Where we have made use of the definition of the right dual ψ∗IJKL =
1
2εKL

MNψIJMN in the previous expression. The Bianchi identities impose
the following restrictions on ψIJKL:,

2α(ψ∗IJKL + ψ∗IKLJ + ψ∗ILJK) + 2β(ψIJKL + ψIKLJ + ψILJK)

−6(l1α+ l2β)εIJKL = 0. (1.38)

This restriction allows us to remove to rewrite the curvature in such a
way that it naturally satisfies the Bianchi identities, once the relationship
between the constants has been determined, by directly substituting for the
term −2(l1α+ l2β)εIJKL in Eq. (1.38) into Eq. (1.37):

FIJKL = 2αψ∗IJKL + 2βψIJKL −
2

3
α(ψ∗IJKL + ψ∗IKLJ + ψ∗ILJK)

− 2

3
β(ψIJKL + ψIKLJ + ψILJK)− 2(l1β + l2ασ)(ηIKηJL − ηJKηIL).

(1.39)

As we said, the Bianchi identities are the key to relating the invariants.
The contraction of Eq. (1.38) with the Levi-Civita tensor density εIJKL

gives rise to a relationship between the invariants ψIJ IJ and εIJKLψIJKL,

ασψIJ
IJ + β∗ψIJ

IJ − 12σ(l1α+ l2β) = 0, (1.40)
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while the variation with respect to µ in equation (1.35) also relates them.
Combining these two equations, together with (1.32) one obtains

βψIJ
IJ + αψ∗IJ

IJ + 12βl1 + 12
β2

α
2 −

2β

a1
H = 0. (1.41)

Contracting FIJKL → F IJ IJ as it is expressed in Eq. (1.37) and com-
bining it with the contraction of the Einstein field equations (1.27) with the
Levi-Civita symbol, 4Λ = F IJ IJ , one obtains

αψ∗IJ
IJ + βψIJ

IJ = 12(l1β + l2ασ) + 2Λ. (1.42)

The last equation is the only exception for the Bianchi identities to be
satisfied. This can be fixed by determining the correct relation between the
consants H, l1, l2, and Λ together with a1 and a2. One can obtain such
relationship by combining (1.41) and (1.42) into

H = a1

[
12l1 + 4!σ

a2

a1
l2 +

Λ

β

]
. (1.43)

This choice of H guarantees that all of the Bianchi identities will be
satisfied. Additionally, by plugging this result into (1.36) one can readily
recover

S[e,A] = α

∫
M4

[
[∗(eI ∧ eJ) +

β

α
eI ∧ eJ ] ∧ FIJ [A]− Λ

12
εIJKLe

I ∧ eJ ∧ eK ∧ eL
]
,

(1.44)

which is the Holst action principle with cosmological constant, as expected.
A closing comment on this chapter would be to summarize the impor-

tance of BF theories. First of all, we have seen that the study of said theories
gives rise to a rich approach to the study of gravity since, by handling the
restrictions that one imposes on the dynamical field, one can obtain gravita-
tional theories that fulfill different purposes. Additionally, we have explored
in detail two of such BF theories that correctly describe gravity with Immirzi
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parameter with and without cosmological constant, by correctly handling the
equations of motion. This is a display of the power of the BF formulation of
gravity. Finally and most importantly, we argued that a major motivation
for the study of BF gravity is that it allows for the projects of quantization of
the gravitational field to continue from its canonical quantization and path
integral viewpoints.
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