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ESCUELA DE CIENCIAS

DEPARTAMENTO DE ACTUARÍA, F ÍSICA Y MATEMÁTICAS
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Abstract

In this thesis, we conduct a thorough analysis of the statistical properties associated

with the band structures of Silicon and Cerium. Our research shows that Density Func-

tional Theory (DFT) calculations can indeed exhibit quantum chaos, aligning with the

predictions of Random Matrix Theory. Furthermore, our investigation explores the influ-

ence of the Hubbard correction on the Cerium band structure, a correction essential for

precise descriptions of strongly correlated systems. We study the relationship between

the manifestation of chaotic behavior and the use of varying values for this correction.

We find that our results for Silicon closely mirror the discoveries of Mucciolo and col-

laborators. Additionally, we successfully diagnose chaotic behavior in certain Cerium

calculations.

Palabras clave: Silicon, Cerium, Random Matrix Theory, Level Spacing, Velocity.
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1 Introduction

The study of classical systems that exhibit what is known as chaotic behavior has been a

subject of extensive exploration for many years (Taylor & Taylor, 2005). It has reached

a point where different methods have been developed to obtain an acceptable description

and understanding of systems highly sensitive to changes in initial conditions and that do

not display periodic behavior. Nonetheless, with the development of quantum mechan-

ics, a question has arisen: can quantum systems also exhibit chaos, and can we explain

quantum chaotic behavior using similar tools as those commonly employed to diagnose

classical chaos? This question has been widely addressed and studied for different quan-

tum systems and remains relevant today (Luna-Acosta, Na, Reichl, & Krokhin, 1996;

M. V. Berry, 2001; Escalante & Skipetrov, 2018).

It is widely recognized that to gain a comprehensive understanding of a quantum

system, we need to know its Hamiltonian, which contains all the interactions necessary

for describing the system. Subsequently, we must solve the Schrödinger equation to

obtain the physical properties of interest. However, when it comes to the study of certain

quantum systems, numerous challenges arise when attempting to derive the Hamiltonian

and subsequently solve the Schrödinger equation (Mehta, 1967). This has prompted the

search for alternative methods to analyze the physical properties of quantum systems.

During the early 1950s, Eugene Wigner studied the statistical properties of nuclear

spectra (Wigner, 1967). From his work, Wigner discovered that the distribution of spac-

ings between energy levels in the Uranium nucleus could be accurately described by

the distribution of eigenvalues of Hermitian matrices with entries composed of random

numbers. This revelation also implied that the energy spectra exhibited what today is

known as quantum chaos, an observation made by McDonald and Kaufman from their

studies on a free particle with stadium boundaries whose classical counterpart is chaotic

(McDonald & Kaufman, 1979). Wigner’s breakthrough set the stage for the exploration

of other chaotic quantum systems, such as quantum billiards, whose energy spectrum

statistics exhibited clear connections with the predictions of Random Matrix Theory.

In 1994, Mucciolo, Capaz, Altshuler, and Joannopoulos published the paper ’Man-

ifestation of quantum chaos in electronic band structures’ (Mucciolo, Capaz, Altshuler,

& Joannopoulos, 1994). In this work, they investigated the prospect of encountering

chaos in the energy spectra of periodic structures, like crystals. Their study revealed

that chaotic behavior could be identified in specific regions of the Silicon band struc-

ture and explored the transition to chaos in the supercrystal AlxGa1−xAs alloy band

structure. Inspired by their findings, this thesis centers on the statistical analysis of the

energy spectrum of strongly correlated electronic systems; such as Cerium, with a focus
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on discovering chaotic behavior in particular segments of its band structure.

The primary objective of this work is to utilize Density Functional Theory (DFT) via

the software WIEN2K to obtain the band structures of Silicon and Cerium and compute

their level spacing distributions to explore the potential presence of chaotic behavior, as

predicted by Random Matrix Theory. This thesis places a specific focus on the study of

the level spacing distribution of Cerium when the Hubbard correction is applied. The

Hubbard correction consists of employing an empirical parameter required to accurately

describe the electronic interaction in strongly correlated systems. The goal is to investi-

gate whether the use of this correction leads to chaotic behavior in particular regions of

Cerium’s band structure.

Our approach begins with the study of the band structure of Silicon. The relevance

of doing this is to verify the possibility of finding regions in the spectrum where the

bands exhibit chaotic behavior. Additionally, we seek to confirm that quantum chaos can

be detected in structures computed using DFT methods, in comparison with the original

pseudopotential approximation employed by Mucciolo and collaborators.

Subsequently, we transition to the analysis of Cerium. It has been observed that DFT

may present deficiencies when modeling elements with partially filled d and f orbitals.

These shell electrons are localized, demanding precise descriptions of the interactions

between them. Cerium, along with metals known as lanthanides and actinides, falls into

this category, with valence electrons in the d and f shells. To accurately model these

metals, we must introduce electron correlations through a parameter or potential. A

preliminary approach to make this correction is through the LDA+U method, which in-

volves employing a parameter known as Hubbard U. The Hubbard U parameter accounts

for Coulomb and exchange interactions between orbitals. Through this approach, we aim

to analyze the changes in Cerium’s structure when different values of the U parameter

are employed and determine if the statistical analysis we will perform can help us iden-

tify the most appropriate U value for describing this metal. We want to focus primarily

on the study of the energy spectrum when the U parameter is set between 6 eV and 7

eV, the range recommended by Anisimov and other authors for Cerium (V. Anisimov &

Gunnarsson, 1991).

This approach is relevant because, although pure Cerium may not be of significant

interest today, it finds applications in various areas and possesses intriguing properties

when used as a dopant in semiconductors like ZnO (Zhang, Zhang, & Xu Wang, 2011).

It is also widely studied when combined with oxygen to form Cerium oxides (Bennett

& Jones, 2014; Schafer, Daelman, & Lopez, 2021). All these systems necessitate the

application of the Hubbard correction for precise descriptions. Therefore, it is essential

to explore new methods for determining the most accurate value of U for each system.
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This work investigates whether the diagnosis of quantum chaos could serve as a valuable

tool for determining the Hubbard U parameter.

This thesis is organized as follows. We commence in Chapter 2 with a general in-

troduction to chaotic behavior in classical and quantum systems. Within this section, we

also look into Mucciolo’s work in identifying chaotic behavior in crystalline structures,

serving as the primary reference for this thesis. Subsection 2.1 is completely dedicated

to introducing Random Matrix Theory as a valuable tool for studying chaotic behavior in

quantum systems. In this subsection, we revisit Wigner’s original work on the connection

between nuclear-level spacing distributions and Random Matrix Theory. Additionally,

we introduce the Gaussian ensembles proposed by Dyson, which will serve to diagnose

quantum chaos in this thesis. Following the introduction of RMT, in subsection 2.2 we

broadly present how the statistics of random matrices became a tool to diagnose chaos

in quantum systems.

Subsection 2.3 focuses on presenting fundamental concepts related to Density Func-

tional Theory, the method employed to derive the band structures of Silicon and Cerium.

Within this subsection, we also introduce the Hubbard correction, an important compo-

nent for accurately describing systems where electrons present strong correlations be-

tween each other, such as Cerium. The U parameter from the Hubbard correction plays

an important role in our investigation of the behavior of the Cerium structure.

In Chapter 3, we present the results obtained and their analysis. Subsections 3.1 and

3.2 provide insights into the optimized parameters and approximations used to obtain the

structures of Silicon and Cerium, both derived through the WIEN2K software for solid-

state calculations. We also offer detailed descriptions of the conventional cell, Brillouin

zone, and band structure for both Silicon and Cerium. In the case of Cerium, we also

include a comprehensive overview of the Density of States for the structure, both with

and without the Hubbard correction, as well as for various calculations with different

values of the U parameter. This exploration aims to understand how the contributions

of the d and f orbitals to the structure change when the Hubbard correction is applied,

imperative to correctly justify the statistical analysis conducted.

Subsection 3.3 is dedicated to the analysis of the level spacing distributions for Sili-

con and Cerium. In the case of Silicon, our goal is to replicate Mucciolo’s findings and

show that chaotic behavior can be found in the band structure of simple metals when

utilizing DFT to obtain them. For Cerium, we conduct an in-depth analysis of the level

spacing distribution for a select set of bands in different Ce calculations, both with and

without the Hubbard correction. This investigation is aimed at understanding the im-

pact of considering the correlation-exchange interaction between electrons in the band

structure. Subsequently, in Subsection 3.4, we shift our focus to the analysis of velocity
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distributions for the band structures of Silicon and Cerium, once more with a particular

emphasis on the examination of Cerium’s distributions when the Hubbard correction is

applied.

Finally, Chapter 4 is dedicated to the concluding remarks of the thesis. Within this

chapter, we recap the most significant findings and their possible implications. Further-

more, we delve into the questions and additional challenges that have emerged from this

work and explore potential subjects for future research.
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2 Theoretical Background

In classical mechanics, it has been observed that multiple systems described by nonlin-

ear equations exhibit chaotic behavior. Chaotic systems possess distinct characteristics,

the most prominent being their sensitivity to initial conditions and lack of periodicity.

The sensitivity to initial conditions implies that even a slight variation in the initial state

of a system leads to entirely different trajectories (Taylor & Taylor, 2005). Since it is

practically impossible to precisely know the initial conditions of a system, our approx-

imations of this state often involve specific errors and, as a result, describing a chaotic

system becomes a challenging task. Furthermore, the non-periodic nature of chaotic sys-

tems indicates that their long-term motion is erratic and does not converge to any specific

pattern, making it difficult for us to predict their future behavior (Strogatz, 2018). In na-

ture, numerous systems demonstrate chaos, and this is precisely why the study of such

systems holds immense significance.

After reviewing chaotic behavior in classical systems, one might be tempted to search

for similar chaos in their quantum analogs. However, such efforts prove to be futile as it

has been observed that the chaotic behavior of classical processes is mitigated when ap-

proached from a quantum perspective (Gutzwiller, 2013). Nonetheless, interesting prop-

erties have been discovered in certain quantum systems as their classical counterparts

suffer a transition to chaos, especially when studying the statistical aspects of energy

spectra (Reichl, 2004). To resolve the quantum chaos contradiction, Berry (M. Berry,

1989) proposed the term ”quantum chaology” to define the study of semiclassical sys-

tems, where Planck’s constant tends to zero, and whose classical analogs exhibit chaotic

behavior.

The study of chaos in quantum systems experienced a revolutionary transformation

upon the discovery of a profound connection between random matrix theory and the

statistics of quantized chaotic systems, such as quantum billiards (Reichl, 2004). As we

shall observe in the next subsection, random matrix theory finds significant application in

explaining the statistical distribution of nuclear energy levels, which leads us to infer that

energy spectra could display chaotic behavior. Quantum chaos is now even searched for

in crystals. In his paper, Mucciolo studies the statistical properties of different crystal

band structures in an attempt to find a behavior that should be true for any crystalline

structure (Mucciolo et al., 1994).

Finally, another fundamental characteristic that needs to be taken into account when

searching for quantum chaos is the symmetry of the system. It is well known that the

energy spectrum of nuclei, atoms, and other quantum systems tends to have degeneracies

that are more likely to appear if there are symmetries. These degeneracies are also con-
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nected with the chaoticity of the classical system since it has been observed that when

there exist symmetries in systems they don’t exhibit chaotic behavior (Reichl, 2004).

In crystalline structures, symmetries can be broken by avoiding symmetry points in the

Brillouin zone while analyzing the band structure.

2.1 Random Matrix Theory

Random Matrix Theory (RMT) is a branch of mathematics that has captured the atten-

tion of various physicists due to its numerous applications, which have proven to be

useful in comprehending complex systems. One of the challenges that significantly con-

tributed to the advancement of random matrix theory in physics was the description of

the heavy U239 nucleus (Mehta, 1967). It is well known that nuclei have discrete energy

levels, similar to those where electrons can be found, which arise when the Schrödinger

equation is solved (Krane, 2019). The lowest excited states can be clearly studied using

different approximations of the potential energy of the nucleus given that it is not possi-

ble to express this quantity simply. However, difficulties emerge when we try to describe

higher excited states since the approximations to the potential become inaccurate, then,

it is convenient to use an average of the energy level properties.

The energy and the functions that describe the particles that form the nucleus can

be obtained through the solution of the Schrödinger eigenvalue problem HΨi = EiΨi.

To solve this equation, we first need to define the Hamiltonian operator H , which is

a matrix that commonly contains the kinetic and potential interactions of the particles

in the system being analyzed. Nevertheless, we previously stated that obtaining the

potential of the nucleus is a complicated task, then it is convenient to make statistical

approximations. Classically, it was thought that we could use an average ensemble of

different Hamiltonians that could describe different nuclei, and then use this ensemble to

describe any other particular nucleus. This assumption seemed convincing until it was

observed that it is not possible to correctly describe the U239 nucleus using this approach

(Mehta, 1967).

Wigner solved this problem when he proposed to treat the Hamiltonian as a symmet-

ric matrix whose elements should be random variables (Mehta, 1967). He suggested this

when he noticed certain resemblances between the statistical characteristics of energy

levels and the eigenvalues of a random matrix. According to Wigner (Wigner, 1967), the

level spacing distributions must obey the following rules:

1. When energy levels have the same spin and parity, their spacing distribution should
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be given by the function:

p(x) =
π

2
xe−

π
4
x2

x =
S

D
(1)

where S is a given distance between levels and D is the mean spacing.

2. The energy levels with different spin or parity do not correlate. Therefore it is

possible to approach this sequence by creating a random superposition of simple

sequences, which are the ones with the same spin and parity.

In Figure 1 we can observe the distribution defined by Wigner’s first rule, as well as

the plot resulting from randomly superimposing two systems of levels with equal mean

spacing. The third curve in the graph is the exponential which describes a Poisson-like

distribution, which represents the level spacing distribution one would obtain if levels

were completely random.

Figure 1: Plot of Wigner’s distributions (Rosenzweig & Porter, 1960). (a) is the distribu-
tion proposed by Wigner and presented in eq.(1), (b) represents the Poisson distribution,
and (c) is the superposition of levels that model levels with different spin and parity.

The distribution of spacing between energy levels, in particular, collected significant

interest and was extensively examined by Rosenzweig and Porter (Rosenzweig & Porter,

1960). In their research, they discovered that the likelihood of energy levels being ex-

tremely close to one another was practically zero, thereby validating Wigner’s postulate.

Subsequently, Dyson (Dyson, 1962) studied RMT through a group-theory approach and

proposed to divide random matrix ensembles, invariant under the Gaussian symmetry

group, into three different classes: Gaussian orthogonal (GOE), Gaussian unitary (GUE)
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and Gaussian symplectic (GSE). Each of these ensembles will be discussed in the fol-

lowing subsection.

Gaussian Ensembles

The way the spacing between levels is distributed can be approximated to some extent

using the distribution Wigner proposed. Nevertheless, depending on the circumstances

and characteristics of the system, we may need to use different ensembles to describe

the level spacing distribution. As we already know, the atomic nucleus and other quan-

tum systems can be described through the Hamiltonian operator, which is a Hermitian

matrix. Furthermore, its entries are supposed to be random to assure statistical inde-

pendence between variables and which symmetry conditions can vary according to the

following ensembles.

Gaussian Orthogonal Ensemble
The Gaussian Orthogonal Ensemble (GOE) is a slightly more formal variation of the

Gaussian ensemble proposed by Wigner and is used to describe even-spin systems, which

are invariant under time-reversal transformations, represented by symmetric matrices

(Mehta, 1967). In one of his papers, Dyson (Dyson, 1962) defines the GOE as follows:

Definition 2.1. The Gaussian Orthogonal Ensemble is uniquely defined as the one that

contains all symmetric unitary matrices S and fulfills the following condition:

• The matrices that compose the ensemble are invariant under the transformation

S →W TSW (2)

of the space of real symmetric matrices into itself, where W is any unitary matrix.

In other words, Dyson stated that the probability P (dS) of finding a system in this

ensemble that belongs to the volume element dS is invariant under the transformation

in eq.(2). This in turn means that the GOE is an ensemble in the space of symmetric

unitary matrices, which contains all the matrices S with equal probability of occurrence.

The probability distribution function of the Gaussian orthogonal ensemble is:

PGOE(t) =
π

2
te−

πt2

4 (3)

Gaussian Unitary Ensemble
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The Gaussian Unitary Ensemble (GUE) is the most simple ensemble of the three re-

viewed in this work. It can be applied to describe systems that are not invariant under

time-reversal transformations, which means that they can be associated with Hermitian

matrices that are not necessarily symmetric or self-adjoint. The formal definition of this

ensemble as stated by Dyson is:

Definition 2.2. The Gaussian Unitary Ensemble is uniquely defined in the space of uni-

tary matrices. The matrices S that compose the ensemble must satisfy the condition of

being invariant under the transformation

S → USW (4)

of the space of unitary matrices into itself, and where U, W are any two unitary matrices.

This ensemble could be used to study different quantum systems under external elec-

tric fields, which need to be strong enough to significantly alter the unperturbed level

structure. Therefore, we could only use this ensemble while analyzing atomic or molec-

ular systems (Dyson, 1962). The probability distribution function of the Gaussian unitary

ensemble is:

PGUE(t) =
32

π2
t2e−

4t2

π (5)

Gaussian Symplectic Ensemble
For our purposes, it is sufficient to understand the Gaussian orthogonal and the unitary

ensembles, however, we will briefly review the symplectic ensemble for completeness.

In contrast with the orthogonal ensemble, the Gaussian Symplectic Ensemble (GSE)

is primarily used to describe odd-spin systems, which are invariant under time-reversal

transformations but cannot be represented through symmetric matrices. To overcome the

difficulties generated due to the non-symmetric nature of these systems, Dyson (Dyson,

1962) cleverly used the advantages of quaternion algebra1 to simplify the manipulation

of matrices. According to Dyson, the symplectic ensemble can be defined as follows:

Definition 2.3. The Gaussian Symplectic Ensemble is uniquely defined in the space of

self-dual unitary quaternion matrices. The matrices S that compose the ensemble must

1Quaternion algebra is an algebra in the field of real numbers R, of dimension 4. A general element of this
algebra has the form

∑3
i=0 aiei, where ai are real coefficients and ei are elements of the algebra (Chevalley,

1947).
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satisfy the property of being invariant under the transformation

S →WRSW (6)

where W is a unitary matrix and WR is the time reversal operation applied to W. The

matrix W is called self-dual when W =WR.

2.2 Quantum Chaos

Wigner and other authors who previously explored the statistical properties of nuclear

spectra established the relationship between random matrix theory and the statistical

distribution of nuclear energy levels. However, they did not delve into the potential

implications of chaotic behavior in quantum systems whose statistical properties are

described by RMT.

The pivotal connection between Random Matrix Theory and quantum chaos was

made by McDonald and Kaufman in 1979 when they studied quantum systems char-

acterized by Hamiltonians displaying stochastic trajectories (McDonald & Kaufman,

1979). This breakthrough evoked increased interest in exploring quantum systems by

numerous researchers. Notably, extensive work focused on investigating the statistical

properties of two-dimensional quantum billiards. Their study revealed that integrable

billiards adhere to Poisson distribution statistics. In contrast, the spectrum of noninte-

grable quantum billiards, arising from classically chaotic systems, displays a significant

reduction in level spacing values near zero and exhibits closer alignment with predictions

from RMT (Reichl, 2004).

Following this connection, it became common to use RMT as a tool to diagnose

quantum chaos in a system. The energy spectra of other systems, such as atoms and

molecules, began to be studied in the quest for stochastic behavior. Of particular in-

terest is the work of Mucciolo and collaborators, who aimed to demonstrate that quan-

tum chaotic behavior should be observable in the energy spectra of crystalline structures

when varying the block momenta k⃗ of the periodic Hamiltonian to identify spaces where

symmetries are broken.

2.3 Density Functional Theory

One of physics’s main interests is understanding matter’s properties from an atomic per-

spective. It is well known that the Schrödinger equation models the behavior of atoms

and molecules, and through it, we can obtain the energy of the system being analyzed
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(Szabo & Ostlund, 2012). The time-independent Schrödinger equation that describes a

system with N electrons of mass m is presented in eq.(7). h2
2m

N∑
i=1

∇2
i +

N∑
i=1

V (ri) +
N∑
i=1

∑
j<i

U(ri, rj)

Ψ = EΨ (7)

In this equation, the Hamiltonian operator is composed of the terms in brackets,

which are respectively the kinetic energy of each electron, the interaction between each

electron and the nucleus, and the interaction between electrons. The valuable informa-

tion in this equation comes from the eigenfunction Ψ, referred to as the wave function.

This function depends on the coordinates of each electron and encapsulates information

about the system under examination. Additionally, the eigenvalue E holds significance

as it represents the total energy of the system.

In a precise analysis, comprehending the complete behavior of our system demands

the inclusion of both the kinetic energy of the nuclei and their mutual interactions. Nev-

ertheless, in the Schrödinger equation presented, we have already adopted the Born-

Oppenheimer approximation (Szabo & Ostlund, 2012). This approximation is based on

the recognition that the movement of nuclei occurs at a considerably slower pace com-

pared to the movement of electrons. As a result, when attempting to solve exclusively

the electronic problem, we are justified in neglecting the nuclear terms.

Furthermore, when characterizing many-electron systems, it is sometimes conve-

nient to write the electronic wave function in terms of the spatial orbitals ψi(r), which

are wave functions for individual electrons (Szabo & Ostlund, 2012). To achieve this,

Slater determinants come into play. They allow us to represent the entire wave func-

tion in terms of the single electrons within the system, while simultaneously adhering to

the Schrödinger equation and the Pauli exclusion principle, which states that the wave

function of the system must be antisymmetric (Szabo & Ostlund, 2012).

The Slater determinant for an N-electron system is defined in equation (8), where

(r1, r2, ..., rN ) denote the electrons of the system, and (ψi, ψj , ..., ψk) represent the spa-

tial orbitals they can inhabit.

Ψ =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ψi(r1) ψj(r1) ... ψk(r1)
ψi(r2) ψj(r2) ... ψk(r2)

: : : :

ψi(rN ) ψj(rN ) ... ψk(rN )

∣∣∣∣∣∣∣∣∣∣
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As previously stated, the wave function contains the spatial information of every

electron. Nevertheless, it is sometimes more useful to express this information in terms

of the probability density. The probability of finding electron i at a point r in the volume

element dr is given by eq.(8).

P (r)dr = |ψi|2dr (8)

Then, we can define the probability of finding any electron in volume dr at r as

follows:

n(r)dr = 2

N/2∑
i

|ψi|2dr (9)

The term n(r) is the density of electrons at point r and the factor of 2 at the beginning

of eq.(9) accounts for the two electrons with a different spin that each spatial orbital con-

tains (Szabo & Ostlund, 2012). The integral over the whole space of the electron density

will yield the total number of electrons.

For the Hydrogen atom, obtaining the exact wave function and energy is possible because

there is no interaction between electrons, which makes the Schrödinger equation signif-

icantly simpler and lets us treat it as a simple eigenvalue problem. However, to solve

the equation for atoms with multiple electrons, it is necessary to consider the electron-

electron interaction, which makes the Schrödinger equation a complicated many-body

problem. Furthermore, we need to know the spatial orbital of each electron to construct

the wave function, as suggested by eq.(8), this increases exponentially the dimension of

the problem (Sholl & Steckel, 2022).

To solve the Schrödinger equation for problems that involve more than 3 electrons, it

is common to use approximation methods. The majority of these approximation tech-

niques are rooted in the variational method, devised to provide the best feasible solutions

guided by the variational principle. To comprehend this principle, it is pertinent to revise

the Schrödinger equation. The system’s energy can be expressed as the expectation value

of the Hamiltonian operator,

< Ψ|Ĥ|Ψ >= E < Ψ|Ψ > (10)

where the eigenfunction of the problem is represented using Dirac notation. The

variational principle states that when provided with an approximate wave function Ψ′,

the corresponding expectation value of the Hamiltonian becomes:



16

< Ψ′|Ĥ|Ψ′ >≥ E0 (11)

signifying that the employment of the approximate wave function yields an energy

value that is an upper bound for the ground state energy (Szabo & Ostlund, 2012). Con-

sequently, it can be inferred that if the precise wave function of the system were known,

the determination of the system’s ground state energy E0 would be feasible. This high-

lights that the primary objective of approximation methods is to approach the ground

state energy of the system as closely as possible.

Hohenberg-Khon Theorems

Many of the various approximation methods used today to study systems with multiple

electrons are based on the fundamental ideas of density functional theory (DFT), which

originated from the proofs of Hohenberg and Khon’s theorems (Hohenberg & Kohn,

1964). The first theorem states:

Theorem 1 (Hohenberg-Kohn 1). For a system under the influence of an external po-

tential ν(r), the potential ν(r) is a unique functional of the electron density n(r); and, in

turn, the full many-particle ground state is a unique functional of n(r).

This theorem establishes that it is possible to determine a unique external potential

ν(r) through the electron density. From this result, it follows that using the complete

Hamiltonian which contains the external potential previously obtained, we can find the

exact energy and wave function of the system (Martin, 2020). The second Hohenberg-

Khon theorem affirms:

Theorem 2 (Hohenberg-Kohn 2). It is possible to define the energy functional E[n] for

a given potential ν(r). The electron density for which E[n] assumes its minimum value

is the exact ground state electron density n0(r) that solves the Schrödinger equation.

To prove this theorem, Hohenberg and Kohn define the energy functional for a certain

potential as:

E[n] = F [n] +

∫
ν(r)n(r)dr (12)

where F [n] is the functional that contains the kinetic and interaction energies valid

for any system involving interacting electrons and therefore referred to as universal

(Hohenberg & Kohn, 1964).
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Together, the theorems indicate that electron density alone determines all the unique

properties of the system being analyzed. Furthermore, if the complete energy functional

E[n] was known, it would be sufficient to find the electron density which minimizes

the value of the functional to calculate the exact ground state energy and wave function.

Nevertheless, it is important to notice that the Hohenberg-Khon theorems provide no

insight into how we can determine the exact form of the functional (Sholl & Steckel,

2022).

Khon-Sham Equations

The Hohenberg-Khon approach to solving the many-body problem involved dealing with

a functional which must contain the interactions between multiple electrons, making it

difficult to find the exact form of this functional. In 1965, Kohn and Sham proposed

replacing the original problem with a system of non-interacting particles, that could be

represented through single electron equations (Kohn & Sham, 1965). According to Ho-

henberg and Kohn, we can take out from the functional F [n] the contribution from the

Coulomb interaction between electrons and write the ground state energy of the system

as follows:

E[n] =

∫
ν(r)n(r)dr +

e2

2

∫ ∫
n(r)n(r’)
|r − r’|

drdr’ +G[n] (13)

Khon and Sham proposed that the new functional G[n], presented in eq.(14), should

contain the kinetic energy of the non-interacting electrons and all the exchange and

correlation effects of the interacting system, which are included through the exchange-

correlation functional EXC [n].

G[n] = Ts[n] + EXC [n] (14)

Then, it is possible to solve a set of single-electron equations and obtain the ground

state density of the whole interacting system, where the accuracy of our result will de-

pend only on which approximation to the exchange-correlation functional we choose

(Martin, 2020). In eq.(15), we present the Kohn-Sham single-electron equations.[
h2

2m
∇2 + V (r) + VH(r) + VXC(r)

]
ψi = ϵiψi (15)

In these equations, the terms inside the bracket are respectively the kinetic energy

of a single electron and all the potentials needed to describe the interactions between

an electron and the other particles of the system. The first potential V (r) represents
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the Coulomb interaction between the electron being analyzed and all the nuclei of the

system. The second potential term is known as the Hartree potential, which describes the

interaction between the i-th electron and the density n(r′) due to the remaining electrons

(Sholl & Steckel, 2022). The Hartree potential can be written as:

VH(r) = e2
∫

n(r′)
|r − r′|

dr (16)

The third and last potential is the exchange-correlation potential VXC(r), which com-

prises all the remaining interactions between particles and can be written in terms of the

energy functional EXC [n] as follows:

VXC(r) =
∂EXC

∂r
(17)

We observe that to solve the Kohn-Sham equations and obtain the electron density,

which depends on the single electron wave functions, we first need to know the Hartree

potential. However, to calculate the Hartree potential we need to know the electron den-

sity, which makes this problem a self-consistent one that can be solved through iterations.

Exchange-Correlation Functional

The main concern in DFT is finding the appropriate exchange-correlation functional

(Martin, 2020). Kohn and Sham showed that for a uniform electron gas of density n,

it is sufficient to approximate the energy functional as the exchange-correlation energy

per electron at a certain point in space r, as presented in eq.(18). In other words, we can

approximate the energy functional EXC using the local density.

EXC [n] =

∫
n(r)ϵunifXC (n(r))dr (18)

The approach developed by Kohn and Sham is known as the local density approxi-

mation (LDA), which proves highly effective in solving the Kohn-Sham equations with

acceptable accuracy. Nevertheless, it is important to acknowledge that the local density

approximation is not the sole method for estimating the exchange-correlation functional.

With the introduction of Density Functional Theory (DFT), various functional proposals

have surfaced, and among them, the widely known generalized-gradient approximations,

hold particular significance for the objectives of this study.

Generalized-Gradient Approximations
Generalized-Gradient Approximations (GGAs) have emerged as a means of enhancing

the existing LDA. They take into account not only the local density information of the
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system but also incorporate the gradient of the density. This allows for the considera-

tion of spatial information when dealing with systems lacking uniform density (Sholl &

Steckel, 2022). The energy functional using this approximation is defined as follows:

EGGA
XC [n] =

∫
n(r)ϵXC(n, |∇n|)dr (19)

where ∇n is the gradient of the density. Since GGAs were created to improve the

local density approach, it is convenient to express eq.(19) in a way that is related to the

LDA functional so that it is possible to recover the uniform electron gas approximation

at a certain limit. Therefore, we write:

EGGA
XC [n] =

∫
n(r)ϵunifX (n)FXC(n,∇n)dr (20)

In this equation, FXC represents the enhancement factor, enclosing all gradient ef-

fects, whereas ϵunifX corresponds to the exchange energy per electron for the uniform

electron gas. There are numerous ways to parameterize FXC . Among the most widely

used, and the one employed in the calculations presented here, is the parametrization

proposed by Perdew, Burke, and Ernzerhof (GGA-PBE) (Perdew, Burke, & Ernzerhof,

1996). In their work, they defined distinct exchange and correlation functionals, each

possessing a distinct enhancement factor. These factors are constructed solely using fun-

damental constants, allowing for the retrieval of the local approximation. The expression

for the exchange enhancement factor is:

FX(s) = 1 + κ− κ

1 + µs2/κ
(21)

where κ = 0.804 and µ = 0.21951. On the other hand, the gradient contribution in

the energy correlation functional is taken into account through the following ansatz:

H =
e2

a0
γϕ3ln

[
1 +

β

γ
t2
(

1 +At2

1 +At2 +A2t4

)]
(22)

where γ and β are constants, e is the electron charge, a0 the Bohr radius and A is

defined as follows:

A =
β

γ

[
exp

(
−

ϵunifC

γϕ3e2/a0

)
− 1

]−1

(23)
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Hubbard’s U Parameter

The exchange-correlation functionals presented previously have been widely used to de-

scribe many electronic systems with great accuracy. Nevertheless, in systems where

electrons have a strong interaction, like materials with partially filled d and f orbitals, the

LDA and the GGA cannot correctly describe the correlation between electrons. There

are multiple ways to face this issue and improve the exchange-correlation functional. We

are especially interested in the LDA+U approach, which uses the already-known local

density calculations with the necessary orbital interactions by adding a parameter known

as Hubbard’s parameter U, proposed by Anisimov and his collaborators (V. I. Anisimov,

Aryasetiawan, & Lichtenstein, 1997).

The LDA+U method separates the electrons that constitute the systems into two cat-

egories: the ones located on the d or f orbitals and those in the inner s and p orbitals.

The electron located in the inner orbitals can be described using only the local density or

generalized-gradient approximation. On the other hand, the outer electrons are most of

the time localized electrons, which means they lay in a specific region between atoms.

Since the LDA method treats the interaction between electrons as an average, it is nec-

essary to include a term that takes into account the Coulomb interaction between outer

electrons. Therefore, the new functional that involves the missing interaction is:

ELDA+U = ELDA[n] +
U − J

2

∑
l,j,σ

ρσljρ
σ
jl (24)

The last term is the Hubbard modification. Here, U is the Hubbard parameter, which

represents the Coulomb interaction between electrons, and J is the exchange term asso-

ciated with the orbitals of interest. The term ρσjl is the density matrix of the electrons that

occupy the outer orbitals and σ the spin index (Dudarev et al., 2000).

2.4 Determination of Electronic Structure

To solve the Kohn-Sham equations, various methods are available. We will employ

diverse approaches to determine different electronic structures depending on the system

under examination. When dealing with crystals, we first need to understand that due to

the periodic arrangement of the atoms in them, we can reduce the study of the electrons

to one unit cell, since the effect of an operator like the Hamiltonian should be invariant

under lattice translations (Martin, 2020). Then, the Schrödinger equation reduces to the

following:
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[
− h̄2

2m
(∇+ ik)2 + V (r)

]
uk(r) = Ekuk(r) (25)

where the term in brackets is the Hamiltonian operator, k is a vector in the reciprocal

space and uk is the periodic wavefunction.

Following this approach for a periodic structure, it has been observed that the most

accurate solutions for the Kohn-Sham equations are achieved through the linearized aug-

mented plane wave method (LAPW) (Blaha et al., 2001). This method aims to linearize

and thus simplify the equations derived from Slater’s augmented plane wave method

(APW).

Augmented plane waves are techniques that belong to the family of atomic sphere

methods. These methods involve the partitioning of the electronic structure of the sys-

tem into distinct regions: the vicinity surrounding the atoms and the interstitial spaces

between them. By employing distinct basis sets following the spatial area of interest, we

only need to match the functions in the boundaries to solve the problem. In the LAPW

method, if we are studying a solid, the unit cell is divided into two main regions as

presented in Fig. 2.

Figure 2: Division of the unit cell (Blaha et al., 2001).

In the spherical area surrounding the atoms (I), the potential assumes the form of the

actual atomic potential. Here, the basis set is constructed through a linear combination

of atomic-like functions. These functions consist of radial components combined with

spherical harmonics. The specific basis functions employed by the LAPW method for

the region are:

χLAPW
k+Gm

=
∑
lm

[Alm(k + Gm)ψl(r, El) +Blm(k + Gm)ψ̇l(r, El)]Ylm(r) (26)
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To linearize the traditional APW method, we need to use a linear combination be-

tween the radial solution of the Schrödinger equation ψl and its derivative ψ̇l, as pre-

sented in eq.(26). In this equation, El is the energy of the localized sphere, k is the wave

vector in the Brillouin zone and Gm are the reciprocal lattice vectors. The coefficients

Alm and Blm are functions of k + Gm. On the other hand, in the interstitial region (II)

we want to use a more general function to construct the basis set since the potential is

smooth and almost constant in this region. Therefore, the LAPW method uses plane

waves as basis functions for region II, which are presented in the following expression:

χLAPW
k+Gm

= exp(i(k + Gm) · r) (27)

Then, we can write the Kohn-Sham equations on the basis proposed and solve them

to find the desired information about the system.
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3 Results and Discussion

The band structure of Silicon and Cerium was obtained using the WIEN2K program,

which employs the linearized augmented plane wave (LAPW) method. The initial struc-

ture of Silicon was constructed with a lattice constant of a = 5.430 Å, belonging to the

227 Fd-3m space group. On the other hand, the initial structure of Cerium was con-

structed using the lattice parameters a = 3.649 Å, b = 3.649 Å, and c = 5.959 Å, as

well as the space group 194 P63/mmc. Subsequently, we carried out the optimization

of the following parameters: the exchange-correlation potential, the number of k-points,

and the RKmax parameter, which determines the basis set’s size.

3.1 Silicon

For Silicon, we employed the generalized gradient approximation (GGA) for the poten-

tial, along with the parametrization proposed by Perdew, Burke, and Ernzerhof (PBE).

Our calculations included 2000 k-points and the RKmax parameter set to 9.0. With these

previously optimized parameters, we conducted a volume optimization procedure, result-

ing in a revised lattice constant of a = 5.4730 Å as determined by the Birch-Murnaghan

equation of state. Figure 4 illustrates Silicon’s conventional cell, which is the elemental

unit of the crystalline structure, while the graph in Figure 4 shows the volume of the

structure at which the energy of the system reaches its minimum value.

Figure 3: Conventional cell
of Silicon

Figure 4: Volume optimiza-
tion result.

Once the correct structure of the material of interest has been obtained, a wide range

of properties can be studied. Our focus is on the level spacing distribution of the crys-

tal’s energy spectra. To calculate this distribution, we first require the material’s band
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Figure 5: Primitive Brillouin zone of Si. The green line specifies the selected k-path
from Γ to K.

structure. The initial step in computing the band structure is to determine the k-points in

the Brillouin zone we want to analyze (Figure 5).

As previously stated, to find chaotic behavior in the energy level distribution, it is

necessary to stay away from the symmetry points of the system. In a crystalline struc-

ture, this means staying away from the symmetry points of the Brillouin zone. For our

purposes, we decided to restrict the analysis of the band structure between the Γ point at

the center of the zone, and the point K at the boundary. Figure 6 shows Silicon’s band

structure, which was computed using 1000 k-points in the selected path. Upon a rapid

examination of the band structure, it becomes evident that at the Γ point, the bands are

closely packed. This outcome aligns with the expectations, considering our proximity

to a symmetry point. As we proceed away from the Γ point, the separation between

bands becomes noticeable. However, when the bands reach the K boundary, some of

them converge again, while others remain separated. Therefore, when aiming to observe

chaotic behavior in crystalline structures like Si, it is advisable to avoid the vicinity of

symmetry points within the Brillouin zone.

Another important observation regarding the computed band structure is the presence

of a limited number of widely spaced bands situated below the Fermi level, which defines

the highest energy an electron can have when the system is at absolute zero temperature

(Kittel & McEuen, 2018). In contrast, the bands maintain progressively closer proximity

as we ascend above the Fermi level to higher energies. It is equally crucial to note

the existence of gaps between certain bands where we would anticipate encountering

more extensive distances between them. These variations in bandwidth could potentially

impact the distribution of level spacing and should be considered when pursuing the

identification of chaos.
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Figure 6: Si band structure in energies between -10.0 eV to 100.0 eV. The x-axis repre-
sents the k-points in the selected Brillouin zone path from Γ to boundary K.

In order to validate the accuracy of our calculations, we conducted an analysis of the

band gap within the band structure. The band gap is defined as the separation between

the minimum energy point of the first band above the Fermi level, referred to as the

conduction band, and the maximum energy point of the valence band, which is the final

band before EF (Kittel & McEuen, 2018). For the computation of the band gap, we

employed the modified Becke-Johnson potential, a computational resource available in

the WIEN2K software package. Utilizing this approach, we obtained a band gap value of

1.19 eV. The discrepancy between this calculated value and the experimentally measured

band gap (Camargo-Martı́nez & Baquero, 2013), which stands at 1.17 eV, is minimal,

with a relative error of 1.7%.

3.2 Cerium

Similar to the approach used for Silicon, the band structure of Cerium was obtained

through the application of the Generalized Gradient Approximation to derive the poten-

tial, using the PBE parametrization. These calculations were conducted employing 1000

k-points and setting the RKmax parameter to 9.0.

With the specified parameters in place, we proceeded with the optimization of lat-

tice parameters. In the case of Cerium, we chose to focus on optimizing the c/a ratio
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instead of the volume due to the chosen space group. This optimization process yielded

the c/a ratio, represented in terms of one optimized lattice parameter c and one of the

original lattice parameters aexp. Specifically for Cerium, we identified the optimized

lattice parameters as a = 3.80342 Å and c = 5.95844 Å. Figure 7 illustrates Cerium’s

conventional cell. As can be observed, Ce possesses a hexagonal structure, which is why

a volume optimization equivalent to the one performed on Silicon cannot be employed

here. Figure 8 illustrates the variation in the c/a ratio, showcasing the point at which

energy attains its minimal value while preserving a constant volume.

Figure 7: Conventional cell
of Cerium.

Figure 8: Volume optimiza-
tion result. Selected k-path in
the primitive Brillouin zone.

Subsequently, in Figure 9, we present the primitive Brillouin zone of Cerium (Ce).

Our chosen k-path once again extends from the center point of the Brillouin zone, de-

noted as Γ, to the boundary point K.

Figure 9: Primitive Brillouin zone of Ce. The green line specifies the selected k-path
from Γ to K.

Utilizing 1000 k-points along this selected path, we obtained the band structure for

Cerium. Figure 10 shows the band structure of Ce without Hubbard’s correction and

with a trial U= 6 eV respectively. Upon initial examination, the band distribution ob-

tained through the calculation without the U parameter seems to have fewer bands than
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the band structure where the parameter was implemented. In both cases, the bands ex-

hibit a dense arrangement across the spectrum. However, significant distinctions become

apparent when analyzing the bands around the Fermi level. This specific region is where

the influence of the U parameter is expected to become evident due to the presence of

electrons in the d and f orbitals.

(a) (b)

Figure 10: Cerium band structure from Γ to K. (a) No Hubbard correction. (b) Hubbard
correction parameter set to U= 6 eV.

As illustrated in Figure 10b, where Hubbard’s parameter was implemented, there is

a notable shift in the region where bands are clustered together. In this figure, clustered

bands go from above the Fermi level to approximately 5.0 eV. Conversely, in Figure 10a,

this region seems to manifest at lower energies, extending from below EF to roughly

3.0 eV. Furthermore, in the calculation where the Hubbard parameter was omitted, we

clearly observe that the densely packed bands begin to separate around the K point.

These notorious disparities between band structures can lead to significant variations in

level spacing distributions. Such variations may facilitate the detection of quantum chaos

induced by minor perturbations in the system.

Finally, it is also worth conducting an analysis of the Density of States (DOS) for the

various Cerium calculations. The Density of States provides valuable information about

the distribution of electrons within the crystal. It also allows us to discern how individual

atomic orbitals contribute to the band structure and the influence of the Hubbard correc-

tion on it (Himmetoglu, Floris, De Gironcoli, & Cococcioni, 2014). Given our specific
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research objective of investigating the impact of the Hubbard correction on the Cerium

band structure, it is particularly important to examine both the total density of states for

Ce and the contributions of the 4f and 5d electrons, since these orbitals are the ones the

U parameter’s primary affects.

(a)

(b) (c)

Figure 11: Density of States for Cerium with different values of U parameter. (a) No
Hubbard correction. (b) U= 6 eV. (c) U= 7 eV.

Figure 11a presents the Density of States for the Cerium calculation in which the

Hubbard correction was not applied. Notably, there is no band gap in Cerium, confirming

its metallic nature in comparison with Silicon, which is categorized as a semiconductor

with a well-established band gap. Furthermore, around 0.0 eV, the majority of the density

contribution comes from the f orbital, while the contribution from the d orbital is mini-

mal in this energy range. In terms of the band structure, this energy range corresponds to

the location of the first energy bands immediately above the Fermi Level. Consequently,

we deduce that a valuable approach to understanding the effect of the Hubbard correc-

tion on the 4f electrons is to study the first bands above 0.0 eV, as we anticipate that



29

these bands will undergo changes when electron correlation effects are considered. This

approach is further supported by Figures 11b and 11c, which illustrate the Density of

States of Ce when the Hubbard parameter was set to 6 eV and 7 eV, respectively. From

these Figures, it is clear that the Hubbard correction modifies the energy regions where

we will encounter influences from the f electrons. As a result, this behavior is likely

to alter the band structure in the region above the Fermi level, making it a worthwhile

subject for analysis.

3.3 Level Spacing distributions

The distribution derived from the spacing between neighboring eigenvalues represents

one of the most frequently employed methodologies for describing the statistical prop-

erties of energy spectra (Reichl, 2004). In the context of crystalline materials, the level

spacing is defined as the energy separation between two consecutive bands for a specific

k-point. In order to obtain the complete level spacing distribution, it is necessary to tra-

verse all the k-points along a specified path within the Brillouin zone and determine the

energy differences between neighboring bands at each of these k-points. For numerical

calculations of the distance between identical k-points in the i-th band and its neighbor,

we utilize the following expression:

si =
|ϵi(k)− ϵi+1(k)|

∆
(28)

Where ∆ is the average over all the level spacing values in the region of the spectrum

being analyzed (Mucciolo et al., 1994).

Silicon

We initiate our exploration of quantum chaos by examining the level spacing distribution

of Silicon (Si), intending to replicate the findings of Mucciolo (Mucciolo et al., 1994)

as reported in his paper. Mucciolo proposes that the manifestation of quantum chaotic

behavior is feasible even in crystals with simple structures, such as Silicon. Figure 12

illustrates the level spacing distribution derived from the band structure of Silicon. The

data set utilized for constructing this distribution was sourced from 85 bands situated

above the Fermi level, each consisting of 1000 k-points. It is essential to note that our

analysis primarily focuses on high-energy bands, as Mucciolo suggests that these bands

are more likely to exhibit chaotic behavior.

From the initial level spacing distribution, one can see that a substantial number

of values are situated near zero. This indicates that the selected bands are close to each
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Figure 12: Si level spacing distribution from bands 5 to 90 and from k-point 1 to 1001.

other at multiple points, resulting in a distribution reminiscent of the Poisson distribution.

This outcome aligns with expectations, as it was observed that near the Γ point, the bands

exhibited significant degeneracy. To detect chaotic behavior, Mucciolo suggests avoiding

the symmetry points within the Brillouin zone to prevent multiple values from clustering

near zero.

Hence, we opted to restrict our analysis to the k-points located in the middle of the

path under investigation. By meticulously examining the band structure, we identified

the section presented in Figure 13a, comprising 85 k-points across 24 bands spanning

between energies of 5.0 eV to almost 45.0 eV. Figure 13b illustrates the distribution

derived from the selected bands. It is apparent that the level spacing distribution is

in better agreement with the Gaussian Orthogonal Ensemble (GOE) prediction. This

behavior is anticipated due to the reduction in level spacing values near zero achieved by

utilizing k-points positioned away from symmetry points as Mucciolo recommends.

Furthermore, a pair of widely separated bands can be spotted in Figure 13a. These

bands start close together at the Γ point with an energy of around 8.0 eV, then abruptly

diverge to create a considerable gap at the middle of the selected k-path. The influence

of gaps like the one mentioned is manifested in the level spacing distribution. Notably,

around energy separations of 3.5 eV, the obtained distribution distinctly deviates from the

GOE curve. Consequently, it is imperative to exercise caution around regions where the

distance between bands appears significantly wider, as these structural gaps undeniably

affect the distribution.
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Figure 13: (a) Si band structure in the energy range from 5.0 eV to 45.0 eV, between the
Γ and K point of the Brillouin zone. (b) Si level spacing distribution from bands 9 to 33
and from k-point 510 to 595.

Another collection of bands where chaotic behavior is apparent is provided in Figure

14. This set consists of 11 bands distributed in energies ranging from 25.0 eV to almost

40.0 eV. Figure 14a shows a close examination of the bands selected. It is clear that

the selected bands are in close proximity to one another near the Γ point, aligning with

expectations. As we traverse the k-point space, the bands progressively diverge, with

many of them actively repelling each other as we approach the boundary at K within the

Brillouin zone. This behavior is precisely what we seek, as it is within such regions that

we can observe quantum chaos, as previously demonstrated.

The resultant distribution derived from the chosen bands is shown in Figure 14b. The

examination of this specific band set is carried out employing 200 k-points positioned

between the Γ point and the midsection of the k-space. This choice is made to evade the

wide gap between the bands situated near the K points in the energy range from 30.0

eV to 35.0 eV. It is notable that, once again, the distribution closely aligns with the GOE

prediction across the majority of its range.

The distributions acquired through the analysis of Si band structure show the feasi-

bility of identifying chaotic behavior within simple crystalline structures, as Mucciolo

proposed. A careful examination of the band structure enabled the identification of band

sets whose distributions follow the predictions of random matrix theory. In both of the

band collections examined minor deviations between the obtained distributions and the

GOE curve were anticipated, as it is not possible to entirely eliminate the symmetries

inherent to the system. It is finally important to remark that, even though the regions

of the band structure where chaos is found are short in range, this is not something we

should be concerned about since, according to Mucciolo, finding chaos in short ranges of
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(a) (b)

Figure 14: (a) Si band structure in the energy range from 20.0 eV to 45.0 eV, between
the Γ and K point of the Brillouin zone. (b) Si level spacing distribution from bands 22
to 33 and from k-point 155 to 350.

the spectrum is expected due to the prevalence of symmetric features along the k-point

space.

Cerium

Having demonstrated that specific segments of Silicon’s band spectrum exhibit chaotic

behavior in line with the expectations of random matrix theory, we are now keen to

investigate other materials where evidence of quantum chaos might offer insights into

their structure and properties. Among these materials, the study of the structure and

band distribution of Cerium is particularly intriguing.

Cerium is classified as a rare-earth metal, possessing one electron in the 4f orbital

and another in the 5d orbital. The positioning of valence electrons in rare-earth elements

contributes to the stability of their optical transitions in the presence of electric fields,

high temperatures, and other perturbations. This stability arises from the electrons in the

fully occupied 5s and 5d orbitals, which create a shielding effect, protecting the valence

electrons (Pomrenke, Klein, & Langer, 1993). Consequently, it is a logical choice to

incorporate rare-earth metals like Cerium into semiconductors, as their valence electrons

are less susceptible to the influences of the host material when doped. Furthermore, the

potential applications of rare-earth-doped semiconductors enhance the significance and

attractiveness of studying these systems.

Nevertheless, the presence of these outer electrons makes Cerium a complex sys-

tem to describe using DFT due to the strong interactions between them. As mentioned

earlier, when studying such systems, it is advantageous to employ Hubbard’s U param-
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eter, which takes into account the Coulomb and exchange interactions among the outer

electrons. However, there is no universally accepted method for determining the precise

value of the U parameter. Its optimal value appears to vary depending on the system

under analysis and the specific property being investigated (Loschen, Carrasco, Ney-

man, & Illas, 2007). Thus, the Hubbard U parameter is often treated as an empirical or

semi-empirical parameter, adjusted to align with the objectives of each study.

To gain insight into determining the most appropriate value for Hubbard’s U pa-

rameter in describing Cerium, we compare level spacing distributions for six different

calculations of the band structure. In one calculation, the Hubbard correction is omitted,

while in the remaining five calculations, we vary the value of the Coulomb interaction

term U in eq.(24) while keeping the exchange term J=0 constant.

Figure 15: Ce level spacing distribution, calculated without U correction, from bands 15
to 100 and from k-point 1 to 1001.

Firstly, Figure 15 illustrates the level spacing distribution obtained from the Cerium

calculation in which the U parameter was not included. The dataset used to construct

this distribution comprises 85 bands above the Fermi level, each computed with 1000

k-points. We observe a good agreement with the Poisson curve, which is an expected

behavior due to the degeneracy of bands near symmetry points.

The level spacing distributions for Cerium calculations where the Hubbard correction

is employed, consisting of 165 bands and 1000 k-points, can be located in the Appendix.

These distributions exhibit slight deviations from the Poisson curve but do not closely

align with any Gaussian distribution. Furthermore, note that as the Hubbard correction

parameter increases, the number of level spacing values near zero gradually decreases.

However, to investigate the influence of the Hubbard parameter on Cerium’s band
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structure, it is more suitable to narrow our analysis to the bands situated around the

Fermi level. As we have already observed from the Density of States in Figure 11a, these

bands are particularly influenced by the valence electrons and the strong correlations

among them when the Hubbard correction is not considered, making them an interesting

region to investigate differences in band structure calculations. Furthermore, it remains

crucial to avoid the Γ point and the Brillouin zone boundary to minimize the number of

level spacing values close to zero. As demonstrated in the previous analysis of Silicon,

avoiding symmetry points enhances the probability of encountering chaotic behavior.

Figure 16: Ce level spacing distribution, calculated without U parameter, from bands 15
to 26 and from k-point 350 to 650.

Figure 16 displays once more the level spacing distribution obtained from the band

structure computed without the U parameter. However, in this case, we considered only

11 bands starting from the conduction band and beyond. Additionally, the band spacing

distribution was constructed using just 300 k-points situated in the middle of the selected

path, far away from the symmetry points.

The most notable characteristic of this distribution is the sharp decline in level spac-

ing values near zero, which is likely a consequence of avoiding the Γ and K points in

the analysis. Nonetheless, it is still possible to observe some agreement with the Poisson

curve rather than with the other distributions, indicating that chaotic behavior cannot be

clearly identified in this level spacing distribution.

We will now examine the level spacing distributions derived from calculations em-

ploying Hubbard’s correction. For each calculation, we implement a different value of

the U parameter. Figures 17a to 17e illustrate the band spacing distributions in which the

Coulomb interaction parameter was modified, varying from 4 eV to 8 eV, respectively,
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meanwhile the J term, responsible for the exchange interaction, remains consistently at

zero. These five distributions were constructed using the first 11 bands above the Fermi

level and 300 k-points situated at the midpoint of the selected path in the Brillouin zone.

(a) (b)

(c) (d)

(e)

Figure 17: Level spacing distribution involving 11 bands and 300 k-points in Cerium for
Hubbard corrections: (a) U=4 eV, (b) U=5 eV, (c) U=6 eV, (d) U=7 eV and (e) U=8 eV.

From the presented set of graphs, the most notable feature is that as the selected value

for the Hubbard parameter increases, the distribution aligns better with the GUE curve.

Figure 17a displays the level spacing histogram derived from the band structure where U

was set to 4 eV. This distribution resembles the histogram obtained from the calculation
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where the U approximation was omitted, with the exception that the discrepancies with

the Poisson approximation are more pronounced. On the other hand, Figures 17b and

17c closely adhere to the Poisson curve, indicating the presence of multiple symmetric

features in the Cerium band structure when these values for Hubbard’s correction are

applied. Thus, for the first three selected values of the U parameter, a precise diagnosis

of quantum chaos is not achievable in the selected set of bands.

Figure 17d displays the level spacing distribution generated from the calculation

where the Coulomb interaction parameter was set to 7 eV. Notice the sharp decrease

in level spacing values near zero and the improved agreement with the GUE prediction.

Finally, Figure 17e shows the distribution derived from the calculation that employed

U=8 eV. We once again notice certain agreement with the GUE curve and the most no-

table deviation from the RMT predictions in this distribution is the slight increase in

level spacing values close to zero.

As previously mentioned, obtaining the correct Hubbard parameter for each sys-

tem through precise calculations is highly desirable. In 1991, Anisimov and Gunnarson

(V. Anisimov & Gunnarsson, 1991) compared various results from different studies that

aimed to calculate the precise value of U for Cerium using DFT. They concluded that

values in the range of 6-7 eV were in excellent agreement with experimental data, and

subsequently, other researchers (Harmon, Antropov, Liechtenstein, Solovyev, & Anisi-

mov, 1995; Zhang et al., 2011) have tended to adopt Hubbard’s parameter within this

range when studying Cerium. From the level spacing distributions obtained, it is impor-

tant to discuss the fact that, as we transition between the U values proposed by Anisimov

and Gunnarson to correctly describe Cerium, the distribution shifts from a Poisson to a

GUE curve. Furthermore, this good agreement with the GUE prediction continues for

larger values than the ones recommended in Anisimov and Gunnarson’s work.

This behavior has prompted us to question whether there exists a relationship be-

tween correctly choosing the Hubbard parameter for a certain system and the transition

to chaos of the level spacing distribution when the correct parameter is employed. Fur-

thermore, we wonder if this relationship holds for other rare-earth metals and strongly

correlated systems.

3.4 Velocity distributions

Another relevant quantity we encounter when analyzing the band structure of crystals is

the velocity of the electrons in each energy band. For a given band, the velocity is related

to the change in energy that an electron experiences as it moves across the k-space. When

considering a wave packet composed of multiple electron wavefunctions, the velocity of
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the wave packet is referred to as the group velocity, defined as vg = h̄−1dϵ/dk (Kittel

& McEuen, 2018). Numerically, to calculate the velocity of an electron moving within

a specific band, the finite difference method is employed. Specifically, the central finite

differences approximation is used, and it is given by:

dϵ(k)

dk
=
ϵ(k +∆k)− ϵ(k −∆k)

2∆k
(29)

Further information can be deduced from the group velocity. For instance, if we

differentiate the group velocity with respect to time, we obtain:

dvg
dt

=
1

h̄

d2ϵ

dk2
dk

dt
(30)

and knowing that we can represent an external force acting on an electron as F =

h̄dk
dt , we can write:

F =

(
h̄2

1

d2ϵ/dk2

)
dvg
dt

(31)

Finally, from Newton’s second law, we identify the group velocity derivative as the

acceleration and therefore the term in brackets as a mass term. We define the effective

mass m as:

1

m
=

1

h̄2
d2ϵ

dk2
(32)

Where the second derivative of energy with respect to k represents the curvature of

the energy band. The curvature is an additional property of the band structure that can

provide valuable insights into the material under investigation. Further exploration of

this property remains a subject for future research.

Silicon

We begin analyzing the velocity distribution of Silicon. Figure 18 presents the velocity

distribution of the Silicon band structure. This distribution was constructed using 85

bands above the Fermi level, each containing 1000 k-points. It is important to note that

the bands selected are the exact same bands used to construct the level spacing distri-

bution in Figure 12. This choice was made to maintain continuity within the analysis.

Upon examining the graph, we initially observe that the distribution reaches a maximum

near v/∆ = 0. Subsequently, we detect that the occurrence of specific velocity values

progressively decreases as we move to higher velocities. This behavior suggests that

Silicon velocities present a Gaussian-type distribution, indicating that the majority of the
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selected bands do not demonstrate abrupt changes in their energy, which would lead to

high velocities. Instead, their energy changes gradually as they traverse the k-space.

Figure 18: Silicon velocity distribution constructed using 85 bands, each with 1000 k-
points. The constant ∆ is the average over all the velocity values.

Cerium

The velocity distributions for different calculations of the Cerium band structure are

now presented. Figure 39 displays the velocity distribution of 65 high-energy bands,

each containing 1000 k-points. These bands correspond to the Ce calculation where

Hubbard’s correction was not included. When comparing this distribution to the one

for Silicon in Figure 18, certain similarities come to light. Notably, both distributions

prominently exhibit a prominent peak for velocity values close to zero. However, this

time, we observe a sharper decrease in the number of velocity values as we move away

from zero, in comparison with the gradual decrease observed in the case of Silicon.

This behavior indicates that there are minimal abrupt changes in the energy of the bands

throughout the k-space.

Moreover, it is worth highlighting that the peak in the velocity distribution of Cerium

reaches substantially higher values on the y-axis when compared to the peak in the Sil-

icon distribution. However, as we move away from v/∆ = 0, the Cerium distribution

begins to closely resemble the behavior observed in the Silicon distribution. This in-

triguing observation suggests that the key distinction between the velocity distributions

of Silicon and Cerium lies in the higher number of bands in Cerium with slopes close to

zero.
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Figure 19: Cerium velocity distribution constructed using 65 bands, each with 1000 k-
points.

Further information can be deduced by comparing the previous distribution with the

velocity distributions obtained from calculations in which the Hubbard correction was

applied. These distributions are available in the Appendix. However, we will concentrate

our analysis of the Ce structure on a reduced set of bands near the Fermi level since it

has been discussed that this is one of the regions where the correction effect of the U

parameter can be better observed. Figure 20a presents the energy range where the first

11 bands above EF are located. Notice that most of the bands selected between 0.0 eV

and 1.0 eV do not show significant changes in their energy as they extend through the

k-space. Only the last band abruptly decreases its energy as it moves away from the Γ

point.

Following the band structure, Figure 20b presents the velocity distribution constructed

using the aforementioned 11 bands. This analysis focuses exclusively on 300 k-points lo-

cated between the Γ point and the Brillouin zone boundary at K. This particular k-point

selection is made to exclude regions where bands exhibit degeneracy, as these regions

can significantly influence the distribution as has been already discussed. We observe

in this graph a significant increase in the concentration of velocity values around zero

compared with the previous distributions, an expected behavior since most of the bands

being analyzed are almost in a completely horizontal position, but there is also an evi-

dent decline in values at higher velocities. An essential characteristic of this graph, aside

from the prominent peak around zero, is that the majority of non-zero values are posi-

tive. This implies that, within the selected region, most changes in bands lead to higher

energy levels.



40

(a) (b)

Figure 20: Cerium band structure and velocity distribution without Hubbrad’s correction
(a) Ce band structure between 0.0 eV and 3.0 eV (b) Ce level spacing distribution from
bands 15 to 26 and from k-point 350 to 650

The subsequent figures illustrate the band structures and velocity distributions for

calculations incorporating the Hubbard correction. Once again, our analysis is focused

on the initial 11 bands situated above the Fermi level, utilizing a set of 300 k-points

positioned at the center of the k-space. Figures 21a, 22a, and 23a show Cerium band

structure, where Hubbard’s correction was applied through the parameter values U= 4

eV, U= 6 eV, and U= 8 eV, respectively. It is apparent that as the value of the parameter

U increases, the bands immediately above the Fermi level gradually move farther apart.

Additionally, the separation between bands is accompanied by a noticeable increase in

the steepness of their slopes, a behavior that is likely to impact the velocity distribution.

(a) (b)

Figure 21: Cerium band structure and velocity distribution with U= 4 eV. (a) Ce band
structure between 0.0 eV and 3.0 eV. (b) Ce level spacing distribution from bands 27 to
38 and from k-point 350 to 650.
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(a) (b)

Figure 22: Cerium band structure and velocity distribution with U= 6 eV. (a) Ce band
structure between 0.0 eV and 3.0 eV. (b) Ce level spacing distribution from bands 27 to
38 and from k-point 350 to 650.

(a) (b)

Figure 23: Cerium band structure and velocity distribution with U= 8 eV. (a) Ce band
structure between 0.0 eV and 3.0 eV. (b) Ce level spacing distribution from bands 27 to
38 and from k-point 350 to 650.

In the figures adjacent to the band structures, we present the velocity distributions

obtained using the various U values employed. Overall, the distributions reach almost the

same maximum value in the y-axis except for Figure 23b, where the maximum reached

value is way above the other distributions. Figure 21b was derived from the calculation

with U set to 4 eV. Notice the reduction in the number of velocities near zero and the

shift of the distribution peak towards negative values. This pattern indicates that most of

the changes in the bands result in lower velocities.
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Similarly, the distribution in Figure 22b, obtained using the U= 6 eV calculation,

displays a more pronounced decline in the number of velocity values around zero. How-

ever, this distribution exhibits a more symmetrical appearance, with a distinct peak at

positive velocity values. This distribution suggests that most of the bands experienced

fluctuations in their energy as they traversed the k-space and that there were almost no

regions where bands maintained constant energy.

Finally, the distribution obtained from the U= 8 eV band structure, as presented in

Figure 23b, once again demonstrates a significant decrease in velocity values around

zero. However, it is worth noting that this distribution displays two peaks, one for neg-

ative velocities and the other for positive velocities. The distribution maximums reach

much higher values on the y-axis compared to the two previous distributions. This phe-

nomenon can be attributed to the repulsive interactions between bands, which result in

the elevation of certain bands to higher energy levels while simultaneously lowering the

energy of the bottom bands. This leads to steeper slopes and, consequently, explains the

substantial increase in velocity values.
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4 Conclusions

In this study, we examine the statistical properties of two different crystalline structures.

Specifically, we focused on the analysis of the level spacing and velocity distributions

within the band structures of Silicon and Cerium, with the aim of identifying chaotic

behavior in line with the predictions of Random Matrix Theory.

In the case of Silicon, we successfully identified regions within its band structure

where the level spacing distribution closely adheres to the Gaussian Orthogonal Ensem-

ble (GOE) curve. This discovery allowed us to identify chaotic behavior within the Sili-

con structure, thereby replicating Mucciolo’s findings and supporting his hypothesis that

quantum chaos can manifest when we focus on regions in the Brillouin zone far away

from the symmetry boundaries, even in apparently simple crystalline systems. It’s impor-

tant to note that the chaotic behavior we encountered was observed in different energy

ranges compared to those in which Mucciolo initially identified quantum chaos. This

disparity was expected due to the methodology employed in this thesis, which involved

Density Functional Theory (DFT) with the generalized-gradient approximation (GGA)

for the exchange-correlation functional. In contrast, Mucciolo utilized a total-energy

pseudopotential approximation to model the electronic structure of Silicon. However,

our findings show that even when distinct methods are employed, chaotic behavior is

likely to manifest in specific regions of the Silicon band structure.

Shifting our focus to Cerium, we conducted an in-depth analysis of its band structure,

concentrating on the first 11 bands situated above the Fermi Level. This specific region

was selected after a meticulous examination of the Density of States, driven by the aim

of studying the alterations in the band structure due to the contributions of the d and f

orbitals when applying the Hubbard correction needed to correctly describe a strongly

correlated system.

From this analysis, we arrived at interesting observations. First, we observed that

without the Hubbard correction, the level spacing distribution from the bands around

the Fermi level does not exhibit quantum chaos. Nevertheless, for U= 7 eV and U=

8 eV, the level spacing distribution of Cerium exhibited a closer agreement with the

Gaussian Unitary Ensemble (GUE) curve, allowing us to identify chaotic behavior in

this system. Additionally, we noted a transition from a Poisson distribution to a chaotic

one between U= 6 eV and U= 7 eV, a commonly used range of values for describing

Cerium accurately. Such a connection could imply that Random Matrix Theory can be a

valuable tool when attempting to determine the precise value of the Hubbard parameter

needed to accurately describe a strongly correlated system. Another question that arises

is related to the accuracy of the Cerium structure obtained and whether it is worthwhile
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to employ other methods apart from Density Functional Theory (DFT) to validate our

findings. It is anticipated that alternative methods could yield similar results to those

presented in this thesis but in different energy ranges, similar to our observations with

Silicon. The exploration of these possibilities remains a subject for future research.

Furthermore, the wide variation in distributions observed for a specific system when

altering a single parameter emphasizes the substantial impact of the Hubbard correc-

tion. Consequently, it is imperative to seek improved methods for determining the best

approximation to the correct value of the U parameter needed to describe certain struc-

tures, depending on the method or approximation being used. We leave this subject for

future investigation.

The analysis of velocity distributions for both Silicon and Cerium revealed interest-

ing patterns. In the case of Silicon, which involved 85 bands, each with 1000 k-points,

the velocity distribution closely aligned with a Gaussian curve. Likewise, the velocity

distribution for Cerium without the Hubbard correction, within a similar energy range,

exhibited Gaussian-like behavior for most velocity values, except in the vicinity of zero,

where there was a significant increase in values. This behavior was also found in the

velocity distributions of Cerium calculation where the Hubbard parameter was imple-

mented. These distributions revealed that, in the majority of the Cerium spectrum, for

both calculations with and without the Hubbard correction, most bands maintained rel-

atively horizontal orientations or flat behavior, with minimal variations in their slopes.

Nevertheless, for 11 bands around the Fermi Level and for different Hubbard correction

parameter values, we observed a sharp decline in velocity values near zero. This de-

cline can be attributed to the increasing repulsion between bands observed in the band

structure around the Fermi Level as the U parameter rises.

These observations emphasize the sensitivity of the velocity distribution to subtle

changes in the band structure and raise intriguing questions about the connection be-

tween velocity values and chaotic behavior. It prompts us to explore whether this statis-

tical property can serve as a diagnostic tool for quantum chaos.

Lastly, we introduced the concept of curvature, a property closely linked to velocity,

which shows potential for further examination. The exploration of this property, as well

as the study of other statistical tools commonly employed in Random Matrix Theory to

diagnose quantum chaos, such as the ∆3 statistics, along with the investigation of the

band structure in other regions of the Brillouin zone, remains open for future research.
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5 Appendix

In this appendix, we provide supplementary figures designed to complement our primary

research and findings. These additional figures serve as a tool to conduct a more in-

depth analysis of the band structures of Silicon and Cerium. Specifically, the appendix

includes supplementary information about level spacing and velocity distributions for

various Cerium calculations.

5.1 Band structure

Figure 24: Band structure of Cerium without Hubbard’s correction, between 0.0 eV and
4.0 eV. The energy range selected contains the first 11 bands above the Fermi Level.
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Figure 25: Band structure of Cerium with U= 4 eV, between 0.0 eV and 4.0 eV. The
energy range selected contains the first 11 bands above the Fermi Level.

Figure 26: Band structure of Cerium with U= 5 eV, between 0.0 eV and 4.0 eV. The
energy range selected contains the first 11 bands above the Fermi Level.
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Figure 27: Band structure of Cerium with U= 6 eV, between 0.0 eV and 4.0 eV. The
energy range selected contains the first 11 bands above the Fermi Level.

Figure 28: Band structure of Cerium with U= 7 eV, between 0.0 eV and 4.0 eV. The
energy range selected contains the first 11 bands above the Fermi Level.
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Figure 29: Band structure of Cerium with U= 8 eV, between 0.0 eV and 4.0 eV. The
energy range selected contains the first 11 bands above the Fermi Level.

5.2 Level Spacing distributions

Figure 30: Cerium level spacing distribution constructed using 165 bands, each with
1000 k-points and U set to 4 eV.
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Figure 31: Cerium level spacing distribution constructed using 165 bands, each with
1000 k-points and U set to 5 eV.

Figure 32: Cerium level spacing distribution constructed using 165 bands, each with
1000 k-points and U set to 6 eV.
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Figure 33: Cerium level spacing distribution constructed using 165 bands, each with
1000 k-points and U set to 7 eV.

Figure 34: Cerium level spacing distribution constructed using 165 bands, each with
1000 k-points and U set to 8 eV.
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5.3 Velocity distributions

Figure 35: Cerium velocity distribution constructed using 113 bands, each with 1000
k-points and U set to 4 eV.

Figure 36: Cerium velocity distribution constructed using 113 bands, each with 1000
k-points and U set to 5 eV.
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Figure 37: Cerium velocity distribution constructed using 113 bands, each with 1000
k-points and U set to 6 eV.

Figure 38: Cerium velocity distribution constructed using 113 bands, each with 1000
k-points and U set to 7 eV.
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Figure 39: Cerium velocity distribution constructed using 113 bands, each with 1000
k-points and U set to 8 eV.
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