Contents

Acknowledgments

Abstract

1 Introduction

2 Standard Model

2.1 Interactions

- **2.1.1 Electromagnetic Interaction**
- **2.1.2 Weak Interaction**
- **2.1.3 Decay of Particles and Branching Ratio**

2.2 Spectrum of Particles

- **2.2.1 Bosons**
- **2.2.2 Fermions**
- **2.2.3 The J/Ψ Meson**

2.3 The Higgs Mechanism

3 Flavour Violation within the Minimal Supersymmetric Standard Model

3.1 The Super-Poincaré Algebra

3.2 The Wess Zumino Model

3.3 SuperFields and Supercoordinates

3.4 Soft Supersymmetry Breaking

3.5 MSSM

3.6 MSSM Extended in Flavour Ansatz

3.6.1 Modified Lagrangians

4 Decay $h^0 \rightarrow \tau \mu$

4.1 Decay $h^0 \rightarrow \tau \mu$ in MSSM extended in FV

4.1.1 Calculations and Computing the Branching Ratio

5 ALICE Experiment CERN

5.1 Large Hadron Collider

5.2 Detectors of the ALICE Experiment

5.2.1 Dimuon Spectrometer

5.2.2 V0 Detector

5.2.3 SPD

5.2.4 T0F

5.2.5 ZDC
CONTENTS

6 Method of Study of Ultra-peripheral collisions with decay of Di-Muons in ALICE experiment

6.1 Ultra-peripheral Collisions

6.2 Physical Variables of Particles to Measure
 6.2.1 Rapidity
 6.2.2 Pseudo-Rapidity
 6.2.3 Invariant Mass

7 Analysis of Ultraperipheral collisions in ALICE experiment with Dimuon Photoproduction

7.1 Selection of Events

7.2 Selection of Tracks

7.3 Analysis

8 Conclusions

8.1 BR(h^0 → τµ) in MSSM with Flavour Ansatz

8.2 Analysis of dimuon photoproduction in ultra-peripheral collisions

A Explicit Calculation of the Amplitudes of h^0 → τµ

B One-Loop Integrals using LoopTools

C Matrix representations

C.1 The Gamma Matrices

D Runs used for Analysis