
Chapter 6

Method of Study of
Ultra-peripheral collisions
with decay of Di-Muons in
ALICE experiment

In this chapter is shown the features and theoretical aspects of the ultra-
peripheral collisions [34], [35], [36]. After it is explained the ultra-peripheral col-
lisions, we explain the methology that is used to obtain data of ultra-peripheral
collisions. Finally we include the decay of the dimuons in the methology of
study.

6.1 Ultra-peripheral Collisions

The collisions that take place in the interaction point at ALICE can be separated
in three categories. It depends on the impact parameter “b” that we can separete
these collisions. The impact parameter is the distance between the center of the
particles that will collide. It is shown in figure 6.1 the impact parameter “b”.

• Central Collisions are the particular cases when the impact parameter is
zero b = 0. This means that the collision is complete and not a fraction
of the particles. In these cases the strong interaction is the one that takes
place.

• Peripheral Collisions are the cases when a fraction of one of the particles
collide with a fraction of the other. In order that this case takes place the
collision parameter R < b < 2R.

• Ultra-peripheral Collisions are the cases of our interest. In these cases the
particles do not collide, and the interaction is completly electromagnetic.
However, the interaction is very strong between them, making the parti-
cles decay in others. The collission parameter is bigger than the sum of
the radii of the particles b > 2R

63



64CHAPTER 6. METH. OF STUDYOF UPCWITH DECAYDIMUONS IN ALICE

Figure 6.1: Ultraperipheral Collision: the interaction is completly electromag-
netic. No hadronic interaction, since the ions pass nearby each other without
traslaping. The impact parameter b is shown. It is the distance between the
center of the ions.

The ultraperipheral collisions can lead to two different possibilities. The
first one is that a photon is induced from one particle to the other via the
electromagnetic interaction or both particles emit a photon and they collide
producing a final product which we generalize calling f. The first possibility
can be modelated by the Weizäcker-Williams method. In this method, the
electric field lines are modelated as a flux of virtual photons. We give a general
overview how these interactions of the virtual photons take place. Firstly, the
cross section for photoproduction is as follows.

σX =

∫
dω
n(ω)

ω
σγX(ω) (6.1)

where σγX(ω) is the photonuclear cross section.

The equation above is for processes as the diagram in 6.21 a) i.e. a photon
is induced to other particle and it is obtained a final product “X”. The photon
flux per unit area is

N(ω, b) =
Z2αω2

π2γ2~2(βc)2

(
K2

1 (x) +
1

γ2
K2

0 (x)

)
(6.2)

where x = ωb
γ~βc , the ion charge is Z, α = 1

137 , βc is the velocity of the particle,
i.e β is a fraction of the speed of light and K0 and K1 are modified Bessel
functions. In order to obtain n(ω) in 6.1, we use

n(ω) =

∫
N(w, b)db2 (6.3)

The equation above means “the sum of the differential distribution × differential
area” give us the number of photons with certain energy. The term K2

1 (x) is the

1Extracted from [34]
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flux for longitudinally polarized photons. The transverse polarization dominates
for ultra-relativistic particles γ >> 1. In photonuclear interaction (one photon)
the usable photon flux is obtaned by integrating 6.2 over b > bmin i.e. we force
the flux to be for ultra-peripheral cases. We obtain

n(ω) =
2ξZ2α

πβ2

[
K0(ξ)K1(ξ)− ξ

2

(
K2

1 (ξ)−K2
0 (ξ)

)]
(6.4)

where ξ = ωbmin/γβ~c. We express ξ = 2ωRA/γβ~c, since bmin = 2RA, i.e.
the minimum impact parameter would be the sum of the two radii of the ions
in order to be an ultraperipheral collision.

Figure 6.2: (a) One-photon and (b) two-photon processes in heavy ion collisions. (c)
Geometrical representation of the photon fluxes at a point outside nuclei 1 and 2, in
a collision with impact parameter b. The electric field of the photons at that point
are also shown. (d) Feynman diagram for qq production through photon-gluon fusion
to leading order. (e,f) Example of higher order corrections to pair-production: (e)
Coulomb distortion, and (f) production of multiple pairs. (g) The dominant diagram
for Au+Au→ Au∗ +Au∗ + ρ0 and (h) for Au+Au→ Au∗ +Au∗ + e+e− or a meson
X. The dotted lines in panels (g) and (h) show how the mutual Coulomb nuclear
excitation factorizes from the particle production.

For the particular case where two photons are emitted and they collide producing
a new product “X’ the cross section is given by the next equation.

σX =

∫
dω1dω2

n(ω1)n(ω2)

ω1ω2
σγγX (ω1ω2) (6.5)
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where σγγX (ω1ω2) is the two photonuclear cross section. The equation above is
for the cases shown in the Feynman Diagram 6.2 b). These interactions are
principally mediated by pion exchange. The pion is a particle that can be ei-
ther π0,π+ or π−. These particles are the lightest mesons, where the mesons
are particles composed of an anti-quark and quark particle. In order to obtain
n(ω1) and n(ω2) we use equation 6.4. The cross-section obtained by this method
has an error if the particle masses increases. More detailed calculations can be
done by making integrals over b1 and b2 that could be weighted by hadronic
non-interaction probability.

Equations 6.2 and 6.4 are valid only for electric dipole excitations. For the
proton case, the proton size is included by the use of a form factor,since the
measure is not exact. Also annexing a dipole form factor we obtian

n(ω) =
α

2πz
[1 + (1− z)2]

(
lnχ− 11

6
+

3

χ
− 3

2χ2
+

1

3χ3

)
(6.6)

where χ = 1+ 0.71GeV 2

Q2
minc

2 , z = W 2

s , W the γp center of mass energy, s the squared

ion-ion center of mass energy per-nucleon and Qmin the minimum momentum
transfer in the reaction. The equation above is valid when the proton remains
intact. If the photon excitation is included the flux increases about 30%. If the
photon energy is high i.e. when z− > 1 the magnetic form factor can become
important

For the ion-ion ultraperipheral collisions the interaction time is ∆t ∼ γ~v
b . And

using Heisenberg uncertinty, in the laboratory frame the maximum photon en-
ergy is

ωmax =
γ~v
b

(6.7)

where γ is the Lorentz factor γ = (1− v2

c2 )−
1
2 . For grazling collisions, the ima-

pact parameter ”b“ is the sum of the radii of the nucleus(RA). Sustituing b, we
obtain that the maximum energy would be γ~v

2RA
. The maximum photon energy

is nearly ~
2RAAmpc

of the ion energy, where Amp is the ion mass. The measure

we have for protons radii is not precise, however it is reasonable to take as 10%
of the proton energy as ωmax

In the ultraperipheral collisions, there exists two possible categories. The first
one is called coherent interaction and the second one is called incoherent in-
teraction. The first one mentioned is the case when the proton do not break,
however by this interaction there is a new final product. The dominant coherent
interaction leading to the production of a hadronic final state is the production
of vector mesons.

Λ + Λ −→ Λ + Λ + V (6.8)

As it was mentioned, the cross section can be calculated by equation 6.1. How-
ever it is generally impossible to know wich proton acted as targt and which
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was the photon emitter. In certain conditions they will interfere quantum me-
chanically. The cross section is given by adding the amplitudes A1, A2.

~dσ
dydpT

=

∫
b>2R

|A1 ± |A2|2d2b (6.9)

The Amplitudes A1 and A2 depend on the photon flux and on the photonuclear
cross sections. Their pT dependence comes from the convolution of the photon
pT spectrum and the pT from the photon-nucleus scattering.

Since it is of our interest to obtain as the final product of the collision
dimuons µ+µ−, the cross section can be obtained similarly with the Dirac equa-
tion for the electron and its antiparticle

σ =
28

27π
σ0[L3 − 2.198L2 + 3.821L− 1.632] (6.10)

where σ0 = (Z1Z2α
2~/mec)

2, L = ln(γ1γ2), and γi is the Lorentz factor of ion i
in the laboratory system. The replacement of L→ L =ln(γ1γ2δ/micR), where
δ = 0.681... that is a number related to the Eulers constant and R is the nuclear
radius,gives the cross section of the pair µ+µ−.

The processes mentioned above were the particular case when there exists only
one reaction per collision. However, it can exist the possibility that many reac-
tions take place. Despite of the reactions might be independent, the geometry
introduces correlations between the photon energies and polarizations. In multi-
photon processes can be treated as independent if the photon emission does not
excite the emitter. The cross section would be calculated as.

σ =

∫
d2bP (b) (6.11)

where P (b) is the probability that the raction takes okace at certain impact
parameter “b”.

P (b) =

∫
dω

ω
N(ω, b)σγΛ(ω) (6.12)

Ultraperipheral collisions are of interest, since new types of physics can be
searched in these interactions. Some early calculations have focused on the
search for the Higgs. Some other examples could be the supersymmetric particle
pairs, magnetic monopoles and possible extra spatial dimensions. If supersym-
metry is correct, a big amount of new particles could be present. Photonuclear
interactions might be useful for studying supersymmetry.

6.2 Physical Variables of Particles to Measure

In Analysis of the collisions at CERN, we are intersted in some parameters or
quantities that we can recover as data. As an example, suppose we have a col-
lision, and by the detectors we are able to recover the tracks of the particles,
product of the collision. By the track, we are able to know the angle of incidence
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of the particle in a plane. By this information we are able to calculate pseudora-
pidity, which can be used to obtain the momentum, and the momentum can be
used to know the Energy. As this example, we can have some properties wich
can be of our interest. In this subsection, we are intersted to introduce some
important properties that are measured by the CERN’s detectors, and how we
use these different data to know about the information of the collisions.

6.2.1 Rapidity

Rapidity is a useful parameter to measure since it is additive under a longitudinal
boost. We define rapidity as :

y =
1

2
ln
E + pz
E − pz

⇐⇒ y =
1

2
ln
c+ vx
c− vx

(6.13)

Using the identity lnx = tan−1(x
2−1
x2+1 ) , we have:

y = tanh−1
(
√

E+pz
E−pz )

2

− 1

(
√

E+pz
E−pz )

2

+ 1

= tanh−1

E+pz−(E−pz)
E−pz

E+pz+E−pz
E−pz

= tan−1(
pz
E

) (6.14)

At the same time we have:

y = tanh−1
(
√

c+vz
c−vz )

2

− 1

(
√

c+vz
c−vz )

2

+ 1

= tanh−1

c+vz−(c−vz)
c−vz

c+vz+c−vz
c−vz

= tan−1(
vz
c

) (6.15)

As we have shown β = v
c (the constant that we use in Lorentz Transforma-

tions). So we can make β = tanh(y). And making cosh(y) = γ, we obtain
that sinh(y) = vz√

c2+v2
Obtaining and recovering the boost transformations in

direction z by the next linear transformation.(
t′

z′

)
= Λ

(
t
z

)
=

(
cosh(y) −sinh(y)
−sinh(y) cosh(y)

)(
t
z

)
(6.16)

Where the determinant of the matrix Λ is 1 and an hyperbolic rotation.

As well, if we notice from the identity tanh(x + y) = tanh(x)+tanh(y)
1+tanh(y) tanh(x) . We

have that we can sum two pseudorapidities and it will behave similarly to the
summation of the relativistic velocities,since V = V1+V2

1+
V1V2
c2

At the same time, rapidity is the analog of velocity in the non-relativistic
limit (p << m),since:

y = 1
2 ln

√
p2+m2+mvz√
p2+m2−mvz

= 1
2 ln m+mvz

m−mvz = 1
2 ln(1 + vz)− ln(1− vz) ≈ vz

Where we used normalized speed of light as 1. Therefore, we found a quan-
tity wich we call as rapidity wich can be used for boost rotations in a certain
direction, wich follows the properties of the sum of relativistic velocities and a
quantity wich is an analog of velocity in the non-relativistic limit.
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6.2.2 Pseudo-Rapidity

If a particle path has a certain angle respect to a beam axis, which we stablish
as our reference, we will have that moment pz = pcosθ if we assume that the
particle moves with a prefrential direction z. Therefore rapidity for a particle
with a certain angle θ is:

y =
1

2
ln
E + pz

E − pz
=

1

2
ln

√
p2 +m2 + pcosθ√
p2 +m2 − pcosθ

(6.17)

Where we used the normalized speed of light as 1. If we consider that the
particle is moving with a velocity close to speed of light,i.e relativistic effect
must be taken in account. The momentum p will be much greater than m.
Therefore equation 6.17 becomes :

y = 1
2 ln p+p cos θ

p−p cos θ = 1
2 ln 1+cos θ

1−cos θ = 1
2 ln( 1−cos θ

1+cos θ )−1 = − ln( 1−cos θ
1+cos θ )

1
2

And using the identity 1−cos θ
1+cos θ = tan2( θ2 ), we obtain :

η = − ln(tan(
θ

2
)) (6.18)

which we call as pseudo-rapidity.

Pseudorapidity is a powerful tool, since we can recover information about
the kinematics of the particle with only the angle of it, and at the same time it
is taking into account the relativistic effects, since we considered momentum p
much bigger than the mass m. Pseudo-rapidity is the rapidity considering the
case where the velocity is close to or considerebly close to speed of light.

6.2.3 Invariant Mass

From Special Relativity we know that the vectors are defined as cuadrivectors,
where the first dimension is the time-dependent dimension and the other three
are the spatial dimensions:

Uµ = (ut, ux, uy, uz) = (u0, u1, u2, u3)

Therefore velocity vector must be as :

V = (v0, v1, v2, v3) = (c, vx, vy, vz)

At the same time the mass in Special Relativity is not just a scalar. It is affected,
as space and time, by a factor γ(v).

m = γ(v)m0 = m0

(1−(v/c)2)
1
2

Therefore momentum is :

P = mv = γ(v)m0v = γ(v)m0


c
vx
vy
vz

 =


mc
mvx
mvy
mvz
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And making p = (mvx,mvy,mvz), we have that Pµ = (mc,p) If we take the
product of P with itself, we obtain:

P 2 = Pµ · Pµ, where Pµ = (mc,−p)
= m2c2 − p2

= m0
2γ(v)

2
c2 − (m0γ(v)v)2

= m0
2γ(v)2(c2 − v2)

= m0
2 c2

c2−v2 (c2 − v2)

= m0
2c2

Using that :

γ(v)
2

= 1

1− v2
c2

= 1
c2−v2
c2

= c2

c2−v2

As well we have :

m2c2 − p2 = m2
0c

2

E2 − p2c2 = m0
2c4

m0 =
√

E2

c4 −
p2

c2

where we have used Einstein Equation that E = mc2
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