
Chapter 4

Decay h0− > τµ

The goal of this chapter is to show the calculations of the possible branch-
ing ratio in the Minimal Supersymmetric Standard Model(MSSM) of the decay
h0− > τµ. We have already shown the Ansatz for the extension of the MSSM
and respectively how the MSSM extends the Standard Model. We proceed in
the first subchapter to calculate the Branching Ratio of h0− > τµ with this
extension of the MSSM. We explain a generalized procedure of calculating the
sixteen possibilities of decay with our Ansatz. In the second part of this chapter
we show the plots of our calculation, making a random variation of all the free
parameters of the branching ratio and make a comparison with the branching
obtained with CMS paper. [10]

4.1 Decay h0− > τµ in MSSM extended in FV

The quantum correction will be done by one-loop with s-leptons. In figure 4.1
a generalization of the possible decays is shown. In these diagrams the particle
that interacts with the τ , will be labeled with the momentum q1. Simultaneously
the particle that interacts with the µ particle will be labeled with the momentum
q3. The amplitudes of the different decays will have the labels j and k, where j
is asigned to the particle that interacts with the µ particle and k to the particle
that interacts with the τ particle. The labels j and k take the integers 1, 2, 3, 4
and each number is related to a particle as follows.

1 −→ µ̃1

2 −→ µ̃2

3 −→ τ̃1

4 −→ τ̃2

(4.1)

As an example, the Feynman diagram with the decay τ2 with momentum q1

and µ1 with momentum q3, the amplitude will be represented by M14.

The Branching Ratio will be given by the sum of the different contributions
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32 Decay h0− > τµ in MSSM extended in FV

of the possible Feynman diagrams, with one loop quantum correction.

BR(h0− > τµ) =
Γ(h0− > µτ)

Γtot
(4.2)

where

Γ(h0− > µτ) =
∑
j,k

{
1

8π~mh0

∫
(mτ+mµ)c2

|Mjk|2
δ(mh0c− ET

c )ρ

ET
dET

}
(4.3)

And

ρ =
c
√
m4
h0 +m4

µ +m4
τ − 2m2

h0m2
µ − 2m2

h0m2
τ − 2m2

µm
2
τ

2mh0

(4.4)

Figure 4.1: Generalized Decay of h0− > τµ, where µ1,µ2,τ1,τ2 are the s-leptons

We label as p to the momentum of the higgs boson, q1,q3 to one of the s-partilces
in the quantum correction loop and q2 is the momentum of the Bino particle.
We can express the momentums in terms of the others as follows.

p = k2 + k1 Conservation of momentum

q2 = q3 − k1

q3 = p+ q1

(4.5)

In order to have all the expressions in one momentum of the loop, we isolate
the expressions in terms of q1,k2 and k1. We know the momentums k1,k2, since
they are the momentums of the particles of the decay.
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q2 = p+ q1 − k1 We substitute q3

= k2 + k1 + q1 − k1 We substitute p

= k2 + q1

q3 = k2 + k1 + q1 We substitute p

(4.6)

We make the amplitude of probability over all the possibilities of momentum.
Therefore we make the integral of the amplitude over all the 4-dimensionalspace,
since we do not know the value of q1. The amplitudes will be calculated by an
integral over the momentums in the loop as follows.

Mjk =

∫
d4q1

(2π)4
× v̄µ × gB̃f̃jµ × PB̃(q2)× gB̃f̃kτ × uτ (k2)× Pf̃k(q1)× gh0f̃j f̃k

× Pf̃j (q3)

(4.7)

,where gB̃f̃jµ represent the interaction of the s-letpton with the particle µ and

gB̃f̃kτ the interaction of the s-lepton with the τ particle . Pf̃k(q1),PB̃(q2) and
Pf̃j (q3) are the propagators. The term gh0f̃j f̃k

represents the higgs interaction

with the s-leptons. In table 4.3 are shown the propagators that are of our in-
terest, while the interactions are taken from Table 3.2 and Table 3.3.

As it is shown in Ec. 4.7, the integral will be done in terms of one of the
internal momentums. We choose q1, however it could be realized by any of the
internal momentums(q1, q2, q3). Therefore we use the momentum equations in
4.6 and substitute in the propagators. And we have consequently an expression
as follows

Mjk =

∫
d4q1

(2π)4
× v̄µ(k1)× gB̃f̃jµ × PB̃(k2 + q1)× gB̃f̃kτ × uτ (k2)× Pf̃k(q1)× gh0f̃j f̃k

× Pf̃j (k2 + k1 + q1)

(4.8)

We will separate the integral in three expressions, in order to simplify all the
calculations. The new expressions will be Njk,Djk and αjk. The labels are
given since Njk will be a numerator, Djk a denominator and αjk couplings to

the fraction
Njk
Djk

. We start with the following product, where we substitute the

Progator of B̃ taken from table 4.3 and we generalize the possible interactions
from table 3.3.

v̄µgB̃f̃jµPB̃(k2 + q1)gB̃f̃kτuτ (k2) = v̄µ(k1)
ga1

4
tanθw(n1 + n2γ5)

i(/k2 + /q1
+mB̃)

(k2 + q1)2 −m2
B̃

ga2

4
tanθw ×

× (n3 + n4γ5)uτ (k2)

= v̄µ(k1)
ig2a1a2

16
tan2θw(n1 + n2γ5)

/k2 + /q1
+mB̃

(k2 + q1)2 −m2
B̃

×

× (n3 + n4γ5)uτ (k2)

= v̄µ(k1)
ig2a1a2

16
tan2θw

1

(k2 + q1)2 −m2
B̃

×Njk (4.9)
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, where n1,n2,n3,n4 can take the integers 1, 3 and

n1(j) =

{
1 if j = 2, 3

3 if j = 1, 4

n2(j) =

{
1 if j = 1, 4

3 if j = 2, 3

n3(k) =

{
1 if k = 2, 3

3 if k = 1, 4

n4(k) =

{
1 if k = 1, 4

3 if k = 2, 3

a1(j) =

{
−cϕ if j = 1, 2

sϕ if j = 3, 4

a2(k) =

{
−sϕ if k = 1, 2

−cϕ if k = 3, 4
(4.10)

Njk = v̄µ(k1)(n1 + n2γ5)(/k2 + /q1
+mB̃ × (n3 + n4γ5)uτ (k2) (4.11)

If we substitute Ec. 4.9 in Ec. 4.8, we obtain.

Mjk =
g2a1a2

16
tan2θw

∫
d4q1

(2π)4
× 1

(k2 + q1)2 −m2
B̃

×Njk × Pf̃k(q1)× gh0f̃j f̃k
× Pf̃j (k2 + k1 + q1)

We now substitute the propagators Pf̃k(q1), Pf̃j (k2+k1+q1) written generalized.

Mjk =
ig2a1a2

16
tan2θw

∫
d4q1

(2π)4
× i

(k2 + q1)2 −m2
B̃

×Njk ×

× i

q2
1 −m2

f̃k

× gh0f̃j f̃k
× i

(k2 + k1 + q1)2 −m2
f̃j

= −
igh0f̃j f̃k

g2a1a2

16
tan2θw

∫
d4q1

(2π)4
× 1

(k2 + q1)2 −m2
B̃

×Njk ×

× 1

q2
1 −m2

f̃k

× 1

(k2 + k1 + q1)2 −m2
f̃j

(4.12)

If we label the following expressions as αjk and Djk

αjk =
igh0f̃j f̃k

g2a1a2

16
tan2θw (4.13)

Djk = [(k2 + q1)2 −m2
B̃

][q2
1 −m2

f̃k
][(k2 + k1 + q1)2 −m2

f̃j
] (4.14)

We can express Mjk as

Mjk = αjk

∫
d4q1

(2π)4

Njk
Djk

(4.15)
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We expand the products in the expression of Njk

Njk = v̄µ(k1)(n1 + n2γ5)(/k2 + /q1
+mB̃)(n3 + n4γ5)uτ (k2)

= v̄µ(k1)
{
n1(/k2 + /q1

+mB̃)n3 + n1(/k2 + /q1
+mB̃)n4γ5 + n2γ5(/k2 + /q1

+mB̃)n3

+ n2γ5(/k2 + /q1
+mB̃)n4γ5

}
uτ (k2)

(4.16)

We substitute

/q1
= γµq1µ, /k2 = γµk2µ

And we use the following properties of the Dirac matrixes

γ2
5 = 1

γ5γ
µ = −γµγ5

(4.17)

Njk = v̄µ(k1)
{
n1(γµk2µ + γµq1µ +mB̃)n3 + n1(γµk2µ + γµq1µ +mB̃)n4γ5 + n2γ5(γµk2µ + γµq1µ +mB̃)n3

+ n2γ5(γµk2µ + γµq1µ +mB̃)n4γ5

}
uτ (k2)

= v̄µ(k1)
{
n1n3(γµk2µ + γµq1µ +mB̃) + n1n4γ5(−γµk2µ − γµq1µ +mB̃) + n2n3γ5(γµk2µ + γµq1µ +mB̃)

+ n2n4γ
2
5(−γµk2µ − γµq1µ +mB̃)

}
uτ (k2)

= v̄µ(k1)
{
n1n3(/k2 + /q1

+mB̃) + n1n4γ5(−/k2 − /q1
+mB̃) + n2n3γ5(/k2 + /q1

+mB̃)

+ n2n4(−/k2 − /q1
+mB̃)

}
uτ (k2)

= v̄µ(k1)

{
(n1n3 − n2n4)(/k2 + /q1

) + (n1n3 + n2n4)mB̃

+ γ5{(n1n4 + n2n3)mB̃ + (n2n3 − n1n4)(/k2 + /q1
)}
}
uτ (k2)

(4.18)

We substitute Njk in Mjk

Mjk = αjk

∫
d4q1

(2π)4
v̄µ(k1)

{
(n1n3 − n2n4)(/k2 + /q1

) + (n1n3 + n2n4)mB̃

+ γ5{(n1n4 + n2n3)mB̃ + (n2n3 − n1n4)(/k2 + /q1
)}
}
uτ (k2)× 1

Djk

(4.19)
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We take out from the integral the factors that does not depend of q1

Mjk = αjkv̄µ(k1)

{
(n1n3 − n2n4)(/k2

∫
d4q1

(2π)4Djk
+

∫
d4q1/q1

(2π)4Djk
)

+ (n1n3 + n2n4)mB̃

∫
d4q1

(2π)4Djk
+ γ5

{
(n1n4 + n2n3)mB̃

∫
d4q1

(2π)4Djk

+ (n2n3 − n1n4)(/k2

∫
d4q1

(2π)4Djk
+

∫
d4q1/q1

(2π)4Djk
)

}}
uτ (k2)

= αjkv̄µ(k1)

{
(n1n3 − n2n4)(/k2IC2 + IC1) + (n1n3 + n2n4)mB̃IC2

+ γ5

{
(n1n4 + n2n3)mB̃IC2 + (n2n3 − n1n4)(/k2IC2 + IC1)

}}
uτ (k2)

(4.20)

where IC1 and IC2 are the two integral cases. IC1 is the integral with /q1

and IC2 is the integration of 1
Djk

. We use the tool FeynCalc to calculate and

evaluate these integrals. The result of integral IC1 is in Ec. 4.25 and IC2 is in
Ec. 4.26 Now we use the Dirac Ec. which states

/k2uτ (k2) = mτuτ (k2)

v̄µ(k1)/k1 = −v̄µ(k1)mµ

(4.21)

Mjk = αjkv̄µ(k1)

{
(n1n3 − n2n4)(mτIC2 + IC1) + (n1n3 + n2n4)mB̃IC2

+ γ5

{
(n1n4 + n2n3)mB̃IC2 + (n2n3 − n1n4)(mτIC2 + IC1)

}}
uτ (k2)

(4.22)

We call as Sjk to the scalar part of Mjk and Pjk to the pseudoscalar part.

Sjk = (n1n3 − n2n4)(mτIC2 + IC1) + (n1n3 + n2n4)mB̃IC2

Pjk = γ5

{
(n1n4 + n2n3)mB̃IC2 + (n2n3 − n1n4)(mτIC2 + IC1)

}
(4.23)

And therefore

Mjk = αjkv̄µ(k1){Sjk + Pjk}uτ (k2) (4.24)

We show in table 4.1 the sixteen scalar and pseudoscalar parts of the different
Mjk. The following expressions are the two possible integrals in Mjk, where we
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used FeynCalc for these results.

IntegralCase1

IC1 =

∫
d4q1

/q1

(2π)4((q1 + k2)2 −m2
B̃

)(q2
1 −m2

f̃k
)((q1 + k2 + k1)

2 −m2
f̃j

))

=
−iπ2

[m2
h0 − (mµ +mτ )2][m2

h0 − (mµ −mτ )2]

×

{
− [/k1(m2

h0 −m2
µ +m2

τ )− /k2(m2
h0 +m2

µ −m2
τ )]B0hjk

+[/k1(m2
h0 −m2

µ −m2
τ )− 2m2

µ/k2]B0mbj + [2m2
τ /k1 + /k2(−m2

h0 +m2
µ +m2

τ )]B0tbk

−
{
/k1

[
m2
B̃

(m2
h0 −m2

µ +m2
τ ) +m2

h0(m2
τ −m2

f̃k
) +m2

µm
2
f̃k

+m2
µm

2
τ − 2m2

f̃j
m2
τ +m2

f̃k
m2
τ −m4

τ

]
−/k2

[
m2
B̃

(m2
h0 +m2

µ −m2
τ ) +m4

h0 −m2
h0(m2

µ +m2
f̃j

+ 2m2
τ ) +m2

µm
2
f̃k
− 2m2

µm
2
f̃k
−m2

µm
2
τ

+m2
f̃j
m2
τ +m4

τ

]}
Fc0

}
(4.25)

IntegralCase2

IC2 =

∫
d4q1

(2π)4((q1 + k2)2 −m2
B̃

)(q2
1 −m2

f̃k
)((q1 + k2 + k1)

2 −m2
f̃j

))
= iπ2FC0

(4.26)

where we labeled as mf̃k
to the mass of the s-particle with the momentum q1

and mf̃j
to the s-particle with momentum q3.

Furthermore

B0tbk = B0(m2
τ ,m

2
B̃
,m2

f̃k
)

B0hjk = B0(m2
h0 ,m2

f̃j
,m2

f̃k
)

B0mbj = B0(m2
µ,m

2
B̃
,m2

f̃j
)

Fc0 = C0(m2
h0 ,m2

µ,m
2
τ ,m

2
f̃k
,m2

f̃j
,m2

B̃
) (4.27)

Expression of Intregal Case 1 4.25 has dependence of /k1 and /k2. We eliminate
this dependence using the dirac equations in 4.21 with the following operations.
We start with equation 4.24

Mjk = αjkv̄µ(k1){Sjk + Pjk}uτ (k2)

= αjk{v̄µ(k1)Sjkuτ (k2) + v̄µ(k1)Pjkuτ (k2)} (4.28)

where

v̄µ(k1)Sjkuτ (k2) = v̄µ(k1)

{
(n1n3 − n2n4)(mτIC2 + IC1) + (n1n3 + n2n4)mB̃IC2

}
uτ (k2)

= (n1n3 − n2n4)(mτ v̄µ(k1)IC2uτ (k2) + v̄µ(k1)IC1uτ (k2))

+ (n1n3 + n2n4)mB̃ v̄µ(k1)IC2uτ (k2)

(4.29)
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We obtain in the equation above 4.29 the multiplcation v̄µ(k1)IC1uτ (k2). We
use the dirac equation 4.21 and remove the momentum k1 and k2 dependence
of the Integral Case 1 4.25

v̄µ (k1)IC1uτ (k2) =
−iπ2

[m2
h0 − (mµ +mτ )2][m2

h0 − (mµ −mτ )2]

× v̄µ(k1)

{
− [/k1(m2

h0 −m2
µ +m2

τ )− /k2(m2
h0 +m2

µ −m2
τ )]B0hjk

+ [/k1(m2
h0 −m2

µ −m2
τ )− 2m2

µ/k2]B0mbj + [2m2
τ /k1 + /k2(−m2

h0 +m2
µ +m2

τ )]B0tbk

−
{
/k1

[
m2
B̃

(m2
h0 −m2

µ +m2
τ ) +m2

h0(m2
τ −m2

f̃k
) +m2

µm
2
f̃k

+m2
µm

2
τ − 2m2

f̃j
m2
τ +m2

f̃k
m2
τ −m4

τ

]
− /k2

[
m2
B̃

(m2
h0 +m2

µ −m2
τ ) +m4

h0 −m2
h0(m2

µ +m2
f̃j

+ 2m2
τ ) +m2

µm
2
f̃k
− 2m2

µm
2
f̃k
−m2

µm
2
τ

+m2
f̃j
m2
τ +m4

τ

]}
Fc0

}
uτ (k2)

=
−iπ2

[m2
h0 − (mµ +mτ )2][m2

h0 − (mµ −mτ )2]
v̄µ(k1)

{
− [−mµ(m2

h0 −m2
µ +m2

τ )

− mτ (m2
h0 +m2

µ −m2
τ )]B0hjk + [−mµ(m2

h0 −m2
µ −m2

τ )− 2m2
µmτ ]B0mbj

+ [−2m2
τmµ +mτ (−m2

h0 +m2
µ +m2

τ )]B0tbk −
{
−mµ

[
m2
B̃

(m2
h0 −m2

µ +m2
τ )

+ m2
h0(m2

τ −m2
f̃k

) +m2
µm

2
f̃k

+m2
µm

2
τ − 2m2

f̃j
m2
τ +m2

f̃k
m2
τ −m4

τ

]
−mτ

[
m2
B̃

(m2
h0 +m2

µ −m2
τ )

+ m4
h0 −m2

h0(m2
µ +m2

f̃j
+ 2m2

τ ) +m2
µm

2
f̃k
− 2m2

µm
2
f̃k
−m2

µm
2
τ +m2

f̃j
m2
τ +m4

τ

]}
Fc0

}
uτ (k2)

(4.30)

The expression above is general since we can introduce also the spinors in Pjk.
From 4.28 we have v̄µ(k1)Pjkuτ (k2) which is expressed as

v̄µ(k1)Pjkuτ (k2) = v̄µ(k1)γ5

{
(n1n4 + n2n3)mB̃IC2 + (n2n3 − n1n4)(mτIC2 + IC1)

}
uτ (k2)

= (n1n4 + n2n3)mB̃ v̄µ(k1)γ5IC2uτ (k2) + (n2n3 − n1n4)(mτ v̄µ(k1)γ5IC2uτ (k2)

+ v̄µ(k1)γ5IC1uτ (k2))

(4.31)

As it can be noticed that all terms of Integral Case 1 4.25 are multiplied by
one of the slashed momentums(/k1, /k2). Therefore all terms are multiplied by
γµ since /k1 = γµk1µ and /k2 = γµk2µ. Consequently γ5IC1 = −IC1γ5 because
from eq. 4.17 we know that γ5γ

µ = −γµγ5. We obtain

v̄µ(k1)Pjkuτ (k2) = (n1n4 + n2n3)mB̃ v̄µ(k1)γ5IC2uτ (k2) + (n2n3 − n1n4)(mτ v̄µ(k1)γ5IC2uτ (k2)

− v̄µ(k1)IC1γ5uτ (k2))

(4.32)

In the equation above we would introduce the spinor vµ(k1) in IC1 and eliminate
the dependence of /k1. Then we factorize once again the spinor vµ(k1) and
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rearrenge as we have the expression in eq. 4.32. Therefore the expression 4.30
is applied to the IC1 in Sjk and Pjk. Therefore th expression for IC1 is given
by.

IC1 =
−iπ2

[m2
h0 − (mµ +mτ )2][m2

h0 − (mµ −mτ )2]

{
− [−mµ(m2

h0 −m2
µ +m2

τ )

− mτ (m2
h0 +m2

µ −m2
τ )]B0hjk + [−mµ(m2

h0 −m2
µ −m2

τ )− 2m2
µmτ ]B0mbj

+ [−2m2
τmµ +mτ (−m2

h0 +m2
µ +m2

τ )]B0tbk −
{
−mµ

[
m2
B̃

(m2
h0 −m2

µ +m2
τ )

+ m2
h0(m2

τ −m2
f̃k

) +m2
µm

2
f̃k

+m2
µm

2
τ − 2m2

f̃j
m2
τ +m2

f̃k
m2
τ −m4

τ

]
−mτ

[
m2
B̃

(m2
h0 +m2

µ −m2
τ )

+ m4
h0 −m2

h0(m2
µ +m2

f̃j
+ 2m2

τ ) +m2
µm

2
f̃k
− 2m2

µm
2
f̃k
−m2

µm
2
τ +m2

f̃j
m2
τ +m4

τ

]}
Fc0

}
(4.33)

We continue simplifying the expresion of the Integral Case 1 in order to make
more clear the calculations. We will make three new expressions labeled as Bjk
(expression with all the B0 functions),Cjk and Ch0µτ . Firstly

Bjk = −[−mµ(m2
h0 −m2

µ +m2
τ )

− mτ (m2
h0 +m2

µ −m2
τ )]B0hjk + [−mµ(m2

h0 −m2
µ −m2

τ )− 2m2
µmτ ]B0mbj

+ [−2m2
τmµ +mτ (−m2

h0 +m2
µ +m2

τ )]B0tbk (4.34)

If we factorize the common products of the masses, we obtain

Bjk = m2
h0mµ[B0hjk −B0mbj ] +m2

h0mτ [B0hjk −B0tbk]

− m3
µ[B0hjk −B0mbj ]−m3

τ [B0hjk −B0tbk] +mµm
2
τ [B0hjk +B0mbj − 2B0tbk]

+ mτm
2
µ[B0hjk − 2B0mbj +B0tbk]

(4.35)

The result of the expression above is extremely important. The B0 function
has a divergent term ∆UV which needs to be eliminated in order to obtain a
finite result. It is important to have the same number of B0 functions in the
calculation expression with postive sign and negative sign in order to eliminate
all the divergences.1 In equation 4.35 it is possible to verify that all divergences
will be eliminated. It is an important and remarkable result since it means
that our loop correction does not need more contributions in order to be finite.
Similarly we label

Ch0µτ = [m2
h0 − (mµ +mτ )2][m2

h0 − (mµ −mτ )2] (4.36)

And

Cjk = −mµ

[
m2
B̃

(m2
h0 −m2

µ +m2
τ ) +m2

h0(m2
τ −m2

f̃k
) +m2

µm
2
f̃k

+ m2
µm

2
τ − 2m2

f̃j
m2
τ +m2

f̃k
m2
τ −m4

τ

]
− mτ

[
m2
B̃

(m2
h0 +m2

µ −m2
τ ) +m4

h0 −m2
h0(m2

µ +m2
f̃j

+ 2m2
τ ) +m2

µm
2
f̃j
− 2m2

µm
2
f̃k
−m2

µm
2
τ

+ m2
f̃j
m2
τ +m4

τ

]
(4.37)

1 The finite expression from any substraction pair of B0 functions is given in Appendix. B
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Using Ec.4.35, 4.36 and 4.37 we can express the generalized and final result for
4.33 as

IC1 = − iπ2

Ch0µτ

{
Bjk − Fc0Cjk

}
(4.38)

Now that we have the general expression for Mjk and its respective terms
we proceed to calculate |Mjk|2 that is given by

|Mjk|2 = MjkM
†
jk (4.39)

|Mjk|2 = MjkM
T
jk

= {v̄µ(k1)αjk
(
Sjk + Pjk

)
uτ (k2)}{v̄µ(k1)αjk

(
Sjk + Pjk

)
uτ (k2)}†

= |αjk|2{v̄µ(k1)
(
Sjk + Pjk

)
uτ (k2)u†τ (k2)

(
S†jk + P †jk

)
v̄†µ(k1)}

= |αjk|2{v̄µ(k1)
(
Sjk + Pjk

)
uτ (k2)}u†τ (k2)

(
S†jk + P †jk

)
γ0vµ(k1)}

(4.40)

Sjk is composed of complex numbers multiplied by the unit matrix. Therefore
we can conmute γ0. Furthermore, Pjk has complex numbers and multiplied by
the γ5 matrix. The complex numbers are not affected by the conmutation of
γ0, however γ5γ

0 = −γ0γ5. Consequently we obtain

|Mjk|2 = |αjk|2{v̄µ(k1)
(
Sjk + Pjk

)
uτ (k2)ūτ (k2)

(
S†jk − P

†
jk

)
vµ(k1)}

(4.41)

Since it is not known the final states of the spins of the particles µ and τ , we
make an average of the posible states. Proceeding firstly with the average of
the final state of ūτ (k2) and uτ (k2)

|Mjk|2 = |αjk|2{v̄µ(k1)
(
Sjk + Pjk

)1

2

∑
spin=1,2

{
uτ (k2) ∗ ūτ (k2)

}(
S†jk − P

†
jk

)
vµ(k1)}

=
1

2
|αjk|2{v̄µ(k1)

(
Sjk + Pjk

)[
/k2 +mτ

](
S†jk − P

†
jk

)
vµ(k1)}

(4.42)

We label as Q =
(
Sjk + Pjk

)[
/k2 + mτ

](
S†jk − P

†
jk

)
, to simplify and clarify the

calculations.
We proceed to sum over the spins of v̄µ(k1) and vµ(k1). Also, the multiplication
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of matrixes will be expressed as the sumation notation.

|Mjk|2 =
1

2
|αjk|2{v̄µ(k1)Qjkvµ(k1)}

=
1

4
|αjk|2

∑
spin=1,2

4∑
i,j=1

v̄µ(k1)iQi,jvµ(k1)j

=
1

4
|αjk|2

4∑
i,j=1

Qij
∑

spin=1,2

{vµ(k1)v̄µ(k1)}ji

=
1

4
|αjk|2

4∑
i,j=1

Qij [/k1 −mµ]ji

=
1

4
|αjk|2

4∑
i=1

[Q(/k1 −mµ)]ii

=
1

4
|αjk|2Tr[Q(/k1 −mµ)]

=
1

4
|αjk|2Tr[

(
Sjk + Pjk

)(
/k2 +mτ

)(
S†jk − P

†
jk

)
(/k1 −mµ)]

(4.43)

Expanding the products

|Mjk|2 =
1

4
|αjk|2Tr

[
{(Sjk + Pjk)/k2S

†
jk − (Sjk + Pjk)/k2P

†
jk

+ (Sjk + Pjk)mτS
†
jk − (Sjk + Pjk)mτP

†
jk}(/k1 −mµ)]

=
1

4
|αjk|2Tr

[
(Sjk + Pjk)/k2S

†
jk/k1 − (Sjk + Pjk)/k2P

†
jk/k1

+ (Sjk + Pjk)mτS
†
jk/k1 − (Sjk + Pjk)mτP

†
jk/k1

− (Sjk + Pjk)/k2S
†
jkmµ + (Sjk + Pjk)/k2P

†
jkmµ

− (Sjk + Pjk)mτS
†
jkmµ + (Sjk + Pjk)mτP

†
jkmµ

]
(4.44)

If we consider the following properties of the dirac matrices, we can considerly
simplify the |M |2 expression, since /k1 = γµk1µ, /k2 = γνk2ν and Pjk = factors∗
γ5

1)Tr[γµ] = 0

2)Tr[γµγ5] = 0

3)Tr[γ5γ
µγν ] = 0

4)γ2
5 = I4x4

5)γ5γ
µ = −γµγ56)Tr[I4x4] = 4 (4.45)

Consequently we obtain

|Mjk|2 =
1

4
|αjk|2

{
[|Sjk|2 + |P

′

jk|2]Tr[/k2/k1] + 4[|P
′

jk|2 − |Sjk|2]mτmµ

}
(4.46)
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where P
′

jk is the scalar part of Pjk.
In order to find the traces in the above expression, we use

Tr[/k2/k1] = gµνk2µk1ν

= 4k2 · k1

= 4kµ2 k1µ

= 4(
E2

c
,~k2) · (E1

c
,−~k1)

(4.47)

If we take as our reference the partilce h0, the momentum conservation leads us
to

~ph0 = ~k1 + ~k2 = 0
~k1 = −~k2 (4.48)

Then

Tr[/k2/k1] = 4{E2E1

c2
+ |~k2|2}

(4.49)

where we labed ET as the total energy, and used the conservation of Energy.
We re-express |k2|

|k2|2 = |k3|2

=⇒
E2

2

c2
−m2

2c
2 =

E2
3

c2
−m2

3c
2

=⇒
E2

2 − E2
3 = m2

2c
4 −m2

3c
4

(E2 + E3)(E2 − E3) = m2
2c

4 −m2
3c

4 (4.50)

If we use

ET = mhoc
2 = E2 + E3

=⇒
mh0c2 − 2E3 = E2 − E3 (4.51)

We obtain

mh0c2(mh0c2 − 2E3) = m2
2c

4 −m2
3c

4 (4.52)

Substituing E3 and isolating |k2| we have

ρ =

√
Ch0µτ

2mh0

(4.53)

where we just renamed |k2| as ρ. For our special case, all the labed momentums,
masses and Energies with the number 2 will be referenced to the τ and with the
number 1 to the µ
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Taking c = 1,h̄ = 1, the expression |M |2 is given by

|Mjk|2 = |αjk|2
{(
|Sjk|2 + |P

′

jk|2
)(
EτEµ + ρ2

)
+
(
|P
′

jk|2 − |Sjk|2
)
mτmµ

}
(4.54)

We have that

Γ(h0− > µτ) =
∑
jk

1

8π~mh0

∫
(mτ+mµ)c2

|Mjk|2
δ(mh0c− ET

c )ρ

ET
dET (4.55)

Substituing |M |2 , we obtain.

Γ(h0− > µτ) =
∑
jk

c

8π2~mh0

|αjk|2
{(
|Sjk|2 + |P

′

jk|2
)(
EτEµ + ρ2

)
+
(
|P
′

jk|2 − |Sjk|2
)
mτmµ

}∫
(mτ+mµ)c2

δ(ET −mh0c2)ρ

ET
dET

(4.56)

Using the function delta property∫
f(x)δ(x− x

′
)dx = f(x

′
) (4.57)

Γ(h0− > µτ) =
∑
jk

|αjk|2ρ
8π2~m2

h0c

{(
|Sjk|2 + |P

′

jk|2
)(
EτEµ + ρ2

)
+ [|P

′

jk|2 − |Sjk|2]mτmµ

}
(4.58)

Once again taking c = 1,h̄ = 1.

Γ(h0− > µτ) =
∑
jk

|αjk|2ρ
8π2m2

h0

{
|Sjk|2(EτEµ + ρ2 −mτmµ) + |P

′

jk|2(EτEµ + ρ2 +mτmµ)

}
(4.59)

where

Eµ =
√
m2
µ + ρ2 (4.60)

Eτ =
√
m2
τ + ρ2

(4.61)

We divide the expression 4.59 by the total width. We used the value of 4 [MeV],
which is between the range 6.1+7.7

−2.9[MeV] [26] and in good accuracy with different
papers where the total width is given [27], [28], [29], [30].
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f̃ f̃ Sjk [1/GeV] Pjk [1/GeV]

µ̃1µ̃1 −8 iπ2

Ch0µτ
{Bjk − Fc0[Cjk + Ch0µτ ( 10

8 mB̃ +mτ )]} 6iπ2mB̃Fc0γ5

µ̃1µ̃2 6iπ2mB̃FC0 8 iπ2

Ch0µτ
{Bjk − Fc0[Cjk + Ch0µτ (mτ − 10

8 mB̃ ]}γ5

µ̃1τ̃1 0 0

µ̃1τ̃2 −8 iπ2

Ch0µτ
{Bjk − Fc0[Cjk + Ch0µτ (mτ + 10

8 mB̃)]} 6iπ2Fc0mB̃γ5

µ̃2µ̃1 6iπ2mB̃Fc0 −8 iπ2

Ch0µτ
{Bjk − Fc0[Cjk + Ch0µτ ( 10

8 mB̃ +mτ )]}

µ̃2µ̃2 8 iπ2

Ch0µτ
{Bjk − Fc0[Cjk + Ch0µτ (mτ − 10

8 mB̃)]} 6iπ2Fc0mB̃γ5

µ̃2τ̃1 8 iπ2

Ch0µτ
{Bjk − Fc0[Cjk + Ch0µτ (mτ − 10

8 mB̃)]} 6iπ2Fc0mB̃γ5

µ̃2τ̃2 0 0
τ̃1µ̃1 0 0

τ̃1µ̃2 8 iπ2

Ch0µτ
{Bjk − Fc0[Cjk + Ch0µτ (mτ − 10

8 mB̃)]} 6iπ2Fc0mB̃γ5

τ̃1τ̃1 8 iπ2

Ch0µτ
{Bjk − Fc0[Cjk + Ch0µτ (mτ − 10

8 mB̃)]} 6iπ2Fc0mB̃γ5

τ̃1τ̃2 6iπ2mB̃Fc0 −8 iπ2

Ch0µτ
{Bjk − Fc0[Cjk + Ch0µτ ( 10

8 mB̃ +mτ )]}

τ̃2µ̃1 −8 iπ2

Ch0µτ
{Bjk − Fc0[Cjk + Ch0µτ (mτ + 10

8 mB̃)]} 6iπ2Fc0mB̃γ5

τ̃2µ̃2 0 0

τ̃2τ̃1 6iπ2mB̃FC0 8 iπ2

Ch0µτ
{Bjk − Fc0[Cjk + Ch0µτ (mτ − 10

8 mB̃ ]}γ5

τ̃2τ̃2 −8 iπ2

Ch0µτ
{Bjk − Fc0[Cjk + Ch0µτ ( 10

8 mB̃ +mτ )]} 6iπ2mB̃Fc0γ5

Table 4.1: It is shown the Scalar and Pseudoscalar parts of Mjk. Units in 1
GeV
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f̃ f̃ αjk [GeV]

µ̃1µ̃1 −gh0µ̃1µ̃1

ig2sϕcϕ
16 tan2θw

µ̃1µ̃2 −gh0µ̃1µ̃2

ig2cϕsϕ
16 tan2θw

µ̃1τ̃1 0

µ̃1τ̃2 −gh0µ̃1τ2

ig2c2ϕ
16 tan2θw

µ̃2µ̃1 −gh0µ2µ1

ig2cϕsϕ
16 tan2θw

µ̃2µ̃2 −gh0µ2µ2

ig2cϕsϕ
16 tan2θw

µ̃2τ̃1 −gh0µ̃2τ̃1

ig2c2ϕ
16 tan2θw

µ̃2τ̃2 0
τ̃1µ̃1 0

τ̃1µ̃2 gh0τ1µ2

ig2s2ϕ
16 tan2θw

τ̃1τ̃1 −gh0τ̃1τ̃1
ig2cϕsϕ

16 tan2θw

τ̃1τ̃2 gh0τ̃1τ̃2
ig2cϕsϕ

16 tan2θw

τ̃2µ̃1 −gh0τ̃2µ̃1

ig2s2ϕ
16 tan2θw

τ̃2µ̃2 0

τ̃2τ̃1 −gh0τ̃2τ̃1
ig2sϕcϕ

16 tan2θw

τ̃2τ̃2 −gh0τ̃2τ̃2
ig2cϕsϕ

16 tan2θw

Table 4.2: The respective coupling αjk for each of the possible loop corrections.
Units in GeV

Particle Propagator

B̃
i(/q2+mB̃)

q22−m2
B̃

µ̃s
i

q21,3−m2
µ̃s

τ̃s
i

q21,3−m2
τ̃s

Table 4.3: Expressions for the respective Propagators of the different parti-
cles,where n is the label of the momentum and it depends on how the diagram
is constructed. j can be either 1 or 2 and are the different possible s-muons and
s-taus
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4.1.1 Calculations and Computing the Branching Ratio

We used FORTRAN to calculate the branching ratio. Since we have five free
parameters in our Branching Ratio expression, we made the analysis taking into
account randomly all the possible values that could take the parameters in cer-
tain regions. These regions are constrains of the experiments or there would be
no theoretical reason to extend the variables to bigger or lower regions. The
regions are given by

• µsusy is a parameter that experimentally must be bigger than |500| GeV.
Therefore we make plots variating this parameter randomly with posi-
tive values µsusy > 500 and negative values µsusy < −500. In figure
4.2(µsusy < 0) and in figure 4.7(µsusy > 0) are shown the randomly plot-
ing of the Branching Ratio vs the free parameter µsusy.

• m0 is the a paramter that comes from the trilinear term in our Ansatz for
Flavour Violation. It is the parameter for all the masses and it must be
m0 & 500GeV . If the value of m0 is lower than 500 GeV, the masses tend
to be lower than 300 GeV, and if that were the case, the s-particle would
have been already discovered. We take as a maximal value 5000GeV for
the same reason as the parameter A0. In figure 4.3(µsusy > 0) and in
figure 4.8(µsusy < 0)are shown the randomly ploting of the Branching
Ratio vs the free parameter m0.

• In figure 4.4(µsusy < 0) and in figure 4.9(µsusy > 0) are shown the
randomly ploting of the Branching Ratio vs the free parameter tan(β).
1 . tan(β) . 60 since values lower to 1 tend to diverge to infinity. [11]
Values of tan(β) can not be bigger than 60, since it is the ratio of the
vacuum spectation values of the Higgs Boson.

• A0 is measured in GeV and the value of the A0 ≈ 1000. Therefore we
took randomly possible values in the range 800 < A0 < 1200GeV. The
value could be bigger. There is no experimental constraint. However, the
value of the s-masses depend of A0 and values can make the s-particle
masses tend to infinity which would have no physical meaning. In figure
4.5(µsusy < 0) and in figure 4.10(µsusy > 0) are shown the randomly
ploting of the Branching Ratio vs the free parameter A0.

• mB̃ can take any value greater than 500 GeV. It can not be lower since it
would have been already discovered at experiments. We make the range
of the bino mass from 500 to 5000 GeV. In figure 4.6(µsusy < 0) and in
figure 4.11(µsusy > 0) are shown the randomly ploting of the Branching
Ratio vs the free parameter mB̃ .
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Figure 4.2: Plot of Branching Ratio and µsusy, for µsusy < 0. All the values
of A0,m0,tan(β), mb are variated. The three lines represent the value of the
best fit of the Branching Ratio found by CMS and the lower and upper limits of
error to the measure. The green region represents the solutions of our Ansatz
to the region given by CMS.

Figure 4.3: Plot of Branching Ratio and m0 with µsusy < 0. All the values
of A0,µsusy,tan(β), mb are variated. The three lines represent the value of the
best fit of the Branching Ratio found by CMS and the lower and upper limits of
error to the measure. The green region represents the solutions of our Ansatz
to the region given by CMS.
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Figure 4.4: Plot of Branching Ratio and tan(β) with µsusy < 0. All the values
of A0,m0,µsusy, mb are variated. The three lines represent the value of the best
fit of the Branching Ratio found by CMS and the lower and upper limits of error
to the measure. The green region represents the solutions of our Ansatz to the
region given by CMS.

Figure 4.5: Plot of Branching Ratio and A0 with µsusy < 0. All the values of
µsusy,m0,tan(β), mb are variated. The three lines represent the value of the
best fit of the Branching Ratio found by CMS and the lower and upper limits of
error to the measure. The green region represents the solutions of our Ansatz
to the region given by CMS.
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Figure 4.6: Plot of Branching Ratio and mb with µsusy < 0. All the values of
µsusy,m0,tan(β), A0 are variated. The three lines represent the value of the
best fit of the Branching Ratio found by CMS and the lower and upper limits of
error to the measure. The green region represents the solutions of our Ansatz
to the region given by CMS.

Figure 4.7: Plot of Branching Ratio and µsusy, for µsusy > 0. All the values
of A0,m0,tan(β), mb are variated. The three lines represent the value of the
best fit of the Branching Ratio found by CMS and the lower and upper limits of
error to the measure. The green region represents the solutions of our Ansatz
to the region given by CMS.
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Figure 4.8: Plot of Branching Ratio and µ0 with µsusy > 0. All the values of
A0,µsusy,tan(β), mb are variated. The three lines represent the value of the
best fit of the Branching Ratio found by CMS and the lower and upper limits of
error to the measure. The green region represents the solutions of our Ansatz
to the region given by CMS.

Figure 4.9: Plot of Branching Ratio and tan(β) with µsusy > 0. All the values
of A0,m0,µsusy, mb are variated. The three lines represent the value of the best
fit of the Branching Ratio found by CMS and the lower and upper limits of error
to the measure. The green region represents the solutions of our Ansatz to the
region given by CMS.
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Figure 4.10: Plot of Branching Ratio and A0 with µsusy > 0. All the values
of µsusy,m0,tan(β), mb are variated. The three lines represent the value of the
best fit of the Branching Ratio found by CMS and the lower and upper limits of
error to the measure. The green region represents the solutions of our Ansatz
to the region given by CMS.

Figure 4.11: Plot of Branching Ratio and mb with µsusy > 0. All the values
of µsusy,m0,tan(β), A0 are variated. The three lines represent the value of the
best fit of the Branching Ratio found by CMS and the lower and upper limits of
error to the measure. The green region represents the solutions of our Ansatz
to the region given by CMS.
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