Chapter 4
Decay h'— > 11

The goal of this chapter is to show the calculations of the possible branch-
ing ratio in the Minimal Supersymmetric Standard Model(MSSM) of the decay
h®— > 7u. We have already shown the Ansatz for the extension of the MSSM
and respectively how the MSSM extends the Standard Model. We proceed in
the first subchapter to calculate the Branching Ratio of h°®— > 7u with this
extension of the MSSM. We explain a generalized procedure of calculating the
sixteen possibilities of decay with our Ansatz. In the second part of this chapter
we show the plots of our calculation, making a random variation of all the free
parameters of the branching ratio and make a comparison with the branching
obtained with CMS paper. [10]

4.1 Decay h'— > 7 in MSSM extended in FV

The quantum correction will be done by one-loop with s-leptons. In figure 4.1
a generalization of the possible decays is shown. In these diagrams the particle
that interacts with the 7, will be labeled with the momentum ¢;. Simultaneously
the particle that interacts with the p particle will be labeled with the momentum
q3. The amplitudes of the different decays will have the labels j and k, where j
is asigned to the particle that interacts with the u particle and k to the particle
that interacts with the 7 particle. The labels j and k take the integers 1,2, 3,4
and each number is related to a particle as follows.

I —
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3— 7
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(4.1)

As an example, the Feynman diagram with the decay 7o with momentum ¢
and p; with momentum g3, the amplitude will be represented by M.

The Branching Ratio will be given by the sum of the different contributions
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32 Decay h°— > 7 in MSSM extended in FV

of the possible Feynman diagrams, with one loop quantum correction.

I'(R°—
BR(h'— > 7p) = L= > pr) (4.2)
Ftat
where
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And
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f= tho
(4.4)

k)
Figure 4.1: Generalized Decay of h®— > 7, where yy,p2,71,72 are the s-leptons
We label as p to the momentum of the higgs boson, ¢1,q3 to one of the s-partilces

in the quantum correction loop and ¢o is the momentum of the Bino particle.
We can express the momentums in terms of the others as follows.

p = ko + ki Conservation of momentum
@2 = @—k
G = pt+taq

(4.5)

In order to have all the expressions in one momentum of the loop, we isolate
the expressions in terms of ¢;,ke and k1. We know the momentums ki ,ks, since
they are the momentums of the particles of the decay.
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¢2 = p-+q — ki We substitute g3
= ko + k1 + g1 — ki We substitute p
= kataq

g3 = ko+ ki + g We substitute p

(4.6)

We make the amplitude of probability over all the possibilities of momentum.
Therefore we make the integral of the amplitude over all the 4-dimensionalspace,
since we do not know the value of ¢;. The amplitudes will be calculated by an
integral over the momentums in the loop as follows.

d'qp
M, = / W X Op X Gi7,, % Ps(g2) x 9B fur ¥ ur (ko) X Pfk(‘h) X Gpoj,f, X Pfj (g3)

;where gz Fu represent the interaction of the s-letpton with the particle p and
95j,- the interaction of the s-lepton with the 7 particle . Py, (q1),P5(g2) and
Pf] (g3) are the propagators. The term g, P represents the higgs interaction
with the s-leptons. In table are shown the propagators that are of our in-
terest, while the interactions are taken from Table |3.2] and Table 3.3

As it is shown in Ec. [£7] the integral will be done in terms of one of the
internal momentums. We choose ¢, however it could be realized by any of the
internal momentums(q1, ¢2,¢3). Therefore we use the momentum equations in
[4.6] and substitute in the propagators. And we have consequently an expression
as follows

d'qp
Mjk — / (27()14 X Uﬂ(kl) X ngj# X PB(k‘Q —|—ql) X géfm X UT(kQ) X Pfk(ql) X ghofjfk X Pfj(kg + k1 +Q1)

We will separate the integral in three expressions, in order to simplify all the
calculations. The new expressions will be Nji,D;r and ojr. The labels are

given since Nj; will be a numerator, D;; a denominator and «;j, couplings to
N
D
Progator of B taken from table and we generalize the possible interactions
from table 3.3

the fraction

. We start with the following product, where we substitute the

(4.7)

- - ga1 i(fy + ¢, +m3) gay
Uu9g7,, (ke + a1)9p5,,ur(k2) = v#(lﬁ)T1 tanb,(n1 + n2’75)—(k2 n q1;2 - e tanfy,, x
X (ng 4+ navs)ur (ke)
. 2 ~
_ iga1as Fa+d, +mg
= k tan6,, —_—
U“’( 1) 16 an (’n‘1 + 77,2’}/5) (kQ + q1)2 _ m2~ X

X (n3 + nays)ur(ke)
igzalag

B

1
= (k) T a0y < N

(k2 +q1)? —mF

(4.9)

(4.8)
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, where nq,n9,n3,n4 can take the integers 1,3 and

0 1 ifj=23
n =
v 3 ifj—1,4
0 1 ifj=1,4
n =
2V 3 ifj=2,3
1 ifk=2,3
k) = ’
na(k) {3 ifh=1,4
1 ifk=1,4
k) = ’
na(k) {3 ifh=23
al(j) = o ?fj.:LQ
S0 if j =3,4
a(k) = { Pt Hh=12 (4.10)
—c, k=34
Njw = Ou(k1)(ny +nays)(ky +d, +mp x (n3 + navs)ur(k2) (4.11)

If we substitute Ec. in Ec. we obtain.

My = L0020 [ Al L N, X P; o X P; (ko +k
6 ) et e r ) omg T 7 (01) X Gnog, g, X P, (k2 + 1+ a1)

We now substitute the propagators Py, (¢1), Py (ko+k1+q1) written generalized.

. 2 4 .
tg-aiag 2 d*q ?
M = tan“0,, X X N X
jk 16 an 0y / (27'(')4 <k2 +q1)2 _mQB ik
X ot X X ‘
Gpo 7, 7
i —m7% P (kg + k4 q1)? — m?—j
; 2
WGpof, 79 002 / d*q 1
= - o X X N X
16 (271')4 (kz + q1)2 — m% gk
X 1 X 1
@ — mfgk (k2 +k1+q1)? — mfgj
(4.12)
If we label the following expressions as o, and Dy,
: 2
19 g graiag
16
Djr = (k2 +a@)” —millgi —m7 (k2 + k1 +q1)* =m7 ] (4.14)
We can express Mj, as
d*q1 Nji
M, = o = 4.15
ik O‘Jk/ (2m)% D ( )
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We expand the products in the expression of N;;

Nji = tu(k1)(n1 +n2vs) (ks + ¢, +mp)(ns + navys)ur (ke)
= u(k1){ni (ks + g, +mg)ns + n1 (kg + ¢, +mp)nays +navs (ke + ¢, +mp)ns
+ nays(ky + o, + mp)nays fur(kz)
(4.16)
We substitute

4, =" Qi Ky = 1"k

And we use the following properties of the Dirac matrixes

(4.17)

Nj, = %(h){m(’y”bu + " qu + mp)ns +n1 (Y ko + qu + mp)nays +n2ys (Y ke + Y qu +mpging
+ novs(Y ko + 7 qu + mg)nays bur (ko)
= Ou(k){mins (Y hap + v quu + mp) +minays (= ko — v qu + mp) +nangys(Vkou + v qu +mp)
+ nonaE (= kap — Y quu + mp) bur (ko)

(k) {mna(ky + ¢, + mp) + ninays(—ka — ¢, +mp) + nanzys(ky + ¢, +mp)
+ nona(—Ky —d, +mp) fur(k2)

_ wn{(nmg ~ nana) (g + g,) + (s + nanaymy

+  s{(ning 4+ nang)mpg + (n2nz — ning) (ko + 511)}}Ur(k2)
(4.18)

We substitute Ny in My,
d4Q1 _
Mjk = Qji Wvu(k‘l) (’I’Llng — n2n4)(,}62 + g1> + (n1n3 + n2n4)m§
+  s{(ning + nanz)mg + (nang — ning) (s + gl)}}ur(/@) X Do
J
(4.19)
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We take out from the integral the factors that does not depend of ¢;

d*qy diqid
My, = o - )
o a]kvu(kl){(’nlng mm)(%z/ (27)'Dy +/ (27r)4Djk)
d4q1 d4(11
o oo [ g enms [

4a, d*qq )
+ (n2n3—711n4)(%‘2/ (2:)4qD]k +/ (27T)q4§jk)}}u7—(k2)

= ajkvu(kl){(nlng — n2n4)(k2102 + ICl) + (n1n3 + n2n4)mBICQ

+ ’75{(”1714 + nanz)mgIC2 + (nans — nyng) (k102 + ICl)}}uT(kg)
(4.20)

where IC'1 and IC2 are the two integral cases. IC1 is the integral with g4
and IC?2 is the integration of ﬁ' We use the tool FeynCalc to calculate and
J

evaluate these integrals. The result of integral IC1 is in Ec. and IC2 is in
Ec. 4.26] Now we use the Dirac Ec. which states

Four(k2) = mrus (ke)
v (k1)ky = —0u(k1)my,
(4.21)

Mjk = ajkvu(kl){(nlng — n2n4)(mTIC2 + ICl) + (n1n3 + n2n4)m1§IC2

+ ’ys{(n1n4 + nanz)mplC2 + (neng — ning)(m1C2 + ICl)} }u-,—(kg)
(4.22)

We call as Sji to the scalar part of M;; and Pj to the pseudoscalar part.

Sik = (ning —nang)(m,1C2 4 IC1) + (n1n3 + nana)mzIC2
Py, = fys{(nln4 + nong)mpIC2 + (ngng — ning)(m,1C2 + ICl)}
(4.23)
And therefore
Mjr = ajktu(k){Sik + Pjxtur (k2) (4.24)

We show in table the sixteen scalar and pseudoscalar parts of the different
M. The following expressions are the two possible integrals in M}, where we
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used FeynCalc for these results.

IntegralCasel
16 = /d4q1 4 2 2\( 2 ¢ 2
(2m)4 (a1 + k2)? —m3)(gf —m? )((qr + k2 + k1) — m%))
_ —im?
(Mo = (my +me)?][mie — (my —mz)?]
o - ) bt =
+[%1(”120 - mi - m?) - 2mik2]BOmbj + [szh + kz( th + m +m )]BOtbk
{}él[ (mho m +m2) +mio(m? — m ) +m mfg + mimz - 2mfc~_m§ + mf;ka —m}]
—k, [m%(mio + mi —m2) +mpo — mho(m + m T 2m?2) + mumfk —2m m?;k —m2m?
+m?~jm3 +m}] }Fco}
(4.25)
IntegralCase2
d4
10, = / - — —— = in’Feo
(2m)4((q1 + k2)? = m%)(aF — m% ) (a1 + k2 + k1) — m% )
(4.26)

where we labeled as mj to the mass of the s-particle with the momentum ¢;
and m 7 to the s—partlcle with momentum gs.
Furthermore

2
Botvi: fBO(m m%, ms

Bonji = Bo(mhmm m7

F —CO(th,m2 m? m? 7mf ;M5
Expression of Intregal Case 1 |4.25| u 5| has dependence of §; and f,. We eliminate
this dependence using the dirac equations in with the following operations.

We start with equation [1.24]

N

)
)
BOmbj = BO(m mQBam?c )
)

(4.27)

Mji = otu(k){Sjk + Pirtur(k2)
= ajk{f)u(kl)sj'ku-,—(kg) + @H(kl)ijuT(kz)} (428)
where
’L_}“(kl)Sjku.,—(k'g) = @lt(kl){(nlngg — n2n4)(mT[C'2 + 101) + (n1n3 + n2n4)m3102}u7(k2)

= (n1n3 — n2n4)(m717u(k1)102u7(k2) + ﬁﬂ(kl)IC’luT(kg))
+ (n1n3 + n2n4)méz’)u(k1)102u7(k2)
(4.29)
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We obtain in the equation above the multiplcation v, (k1)IClu,(k2). We
use the dirac equation [£.21] and remove the momentum k; and ko dependence
of the Integral Case 1[4.25

—im?

v k) ICiur(ke) =
Uy ( 1) 1% ( 2) [leLO o (m# + mT)Q][m%O _ (m” _ m7)2]

x wl){ o —m ) gl 2 — ) B

+  [Ki(mpo — mi - m?2) — 2mik2]BOmbj + 2m2 Ky + Ky (—mio + m +m2)] Bowk

- {,}él[ (mho—m +m)+mho(m2—mf)+mm +mm2 = 2m% m? +m% mZ — mj]

BT T fr
— Ka[m%(mpo +mi —m2) + mpo — mio (m, + mfj +2m2) + mim%ﬂ - 2mim}k —mZm}
—&-m%mf +m}] }FCO}uT(k‘g)
—in? - 2 2 2
= O D e ““““’{ Ll = )

2

W m?2) — 2mimT]BOmbj

—  mg(mjo +m; —m2)|Bonjk + [—mu(mjo —m

+ [=2mimy, +me(—mpe +my +m )]Bowk—{—mu[ % (mio —mz +m?3)
2

+ mio(mz—mf;k)—i—mim?gk—i—mim —2mfm —l—mfm mi]—m{m%(mio +mi—mi)

+  mio — mio(m —|—m + 2m? )+m m*% —2m,, 22 —m2m2+m2~vmf+mﬁ]}Fco}uT(k2)

Jr T T fi
(4.30)
The expression above is general since we can introduce also the spinors in Pjy.
From we have 0, (k1) Pjru, (ko) which is expressed as
0, (k1) Pjrus (ko) = ﬁﬂ(kl)%{(nlm; +non3)mzIC2 4 (nang — ning)(m, 102 + IC’l)}uT(kg)
= (n1n4 + ngng)méﬁu(kl)’y5102u7(k’2) + (712’/13 — n1n4)(mTiu(kl)%IC’QuT(kg)
=+ ﬁu(k1)75101u7—(k2))
(4.31)
As it can be noticed that all terms of Integral Case 1 are multiplied by
one of the slashed momentums(§;, f,). Therefore all terms are multiplied by
A since fy = y*k1, and fy = y*ko,. Consequently 751C1 = —IC1vys because
from eq. we know that y57* = —y*~5. We obtain
U (k1) Pjrur (ko) = (nina + nong)m a0, (k1) vs1C2ur (ko) + (nansg — nina)(m-o, (k1) vs1C2ur (ks)
= Uu(k)ICIys5ur (k2))
(4.32)

In the equation above we would introduce the spinor v, (k) in IC1 and eliminate
the dependence of f;. Then we factorize once again the spinor v, (ki) and
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rearrenge as we have the expression in eq. Therefore the expression
is applied to the IC1 in Sj; and Pji. Therefore th expression for IC1 is given
by.

;2
—im
IC, = —[—m,(m? —m? +m?
[mio _ (m“ + mT)Q][miO _ (m“ _ mT)Q} { [ H( ho ”w ‘r)
— me(mio +mi —m?)|Bonjk + [—mpu(mio —m, —m2) — 2m2m-| Bomb;
b T2t (o o+ )] B~ { =, [ (o — md 4 )
+ mio(m2 — mf;k) + mim?«k + mimz - Qm}jmf + m?; m?2 —m?

4 2 (02 2 2 2,2
+ mho—mho(m#—i—mfj +2m7)+mumf~k—2mu . = 7,y

We continue simplifying the expresion of the Integral Case 1 in order to make
more clear the calculations. We will make three new expressions labeled as By,
(expression with all the BO functions),Cj, and Cho,,,. Firstly

B = —[-mulmdo —m? +m2)

— my(mpo +mj, —m3)] Bonji + [=my(mpo —mj, —m?) — 2mim:] Bomb
+  [-2mZm, +m,(—mie + mi +m2)| Botk (4.34)
If we factorize the common products of the masses, we obtain

Bjr = miomu[Bonjk — Bombj] + miom.[Bonjx — Bowk]

mi [Bonjr — Bomb;] — m2[Bonjr — Bowk] + mum2[Bonjr + Bomb; — 2Botr]

+

m'rmi [Bonjk — 2Bomb;j + Botbk]

(4.35)

The result of the expression above is extremely important. The B0 function
has a divergent term Ay which needs to be eliminated in order to obtain a
finite result. It is important to have the same number of BO functions in the
calculation expression with postive sign and negative sign in order to eliminate
all the divergencesEI In equation it is possible to verify that all divergences
will be eliminated. It is an important and remarkable result since it means
that our loop correction does not need more contributions in order to be finite.
Similarly we label

Chor = 3o — (my, + mo)?)mdo — (my, — m.,)’] (4.36)
And
G = —my[m(mds —m2 +m) + miy(m2 —m? ) +mim?
2,2 2,2 2 2 4
+ mymi — mejmT +m% my — mT]

2 (2 2 2 4 2 (2 2 2 2,2 2
— me[mE(myo +mi, —m2) +mjye —mie(ms, +my + 2mz) +m,m ;o 2mmy

f

+ mfgjmz + mﬂ

1 The finite expression from any substraction pair of BO functions is given in Appendix.

2
fr

2,2
—m,mz

(4.37)



40 Decay h°— > 7 in MSSM extended in FV

Using Ec[4.35] [£.36] and [£.37] we can express the generalized and final result for
as

1 - - {Bj. — FaoCji.}
- Chop,r Jk c0Vjk

(4.38)

Now that we have the general expression for M, and its respective terms
we proceed to calculate |Mj;g|2 that is given by

| M |* = M My (4.39)

|Mj> = My M,
{0 (k1) i (S + Pir)ur (k) Hou (k1) o (Six + Pjn) ur (ko) }
|k {0 (k1) (S + Py ur (ko )ul (ko) (ST, + P, ) o) (k1))

0

|| {0 (k1) (Sjk + Py ur (k) Yl (k) (ST, + Pl )7 v, ()}
(4.40)

Sj is composed of complex numbers multiplied by the unit matrix. Therefore
we can conmute 7Y, Furthermore, P;j;, has complex numbers and multiplied by
the 75 matrix. The complex numbers are not affected by the conmutation of
7°, however v57° = —7°v5. Consequently we obtain

| Mji? = |oj|* {0 (k1) (Sj + Pix)r (k)i (k2) (ST, — Pl v (k1) }
(4.41)

Since it is not known the final states of the spins of the particles p and 7, we
make an average of the posible states. Proceeding firstly with the average of
the final state of @, (k2) and wu, (k2)

o P (0 () (S + Pi) g 30 e (o) w i (k) (S — Pl)ua(hn))

spin=1,2

_ %\ajk\z{ﬁu(kl) (S5 + Pyi) [y + me] (ST = Pl va(kn)}

| M|

(4.42)

We label as Q = (Sjx + Pjx) [y + m.| (SI, — PJ,), to simplify and clarify the
calculations.
We proceed to sum over the spins of 7, (k1) and v, (k1). Also, the multiplication
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of matrixes will be expressed as the sumation notation.

| M|?

%\ajk\Q{%(’ﬂ)ij“u(kl)}

1 4
= 1\0@‘/«\2 DD 0u(k1)iQijuu(ka);

spin=1,21,j=1

= el 3@ Y flnm b

i,7=1 spin=1,2

1 4
= 1\%%\2 Z Qijlky

i,j=1
1 4
= Z‘O‘jk‘zz[Q(%l
=1
= L PTrQU — m,)]

= i\aa‘k\zﬂ‘[(sjk + Piy) (Ko +my) (Sh — Pl) (k1 —my)]

(4.43)
Expanding the products
|Mj? = *|Oégk| Tr[{(Sjk + Pix)koS] i — (S + ij)%Pka
+ ( ik + Pi)me S5 — (Sik + Pig)m- Pl Yk, — my)]
= *|0‘3k| TT[ ik + Pjr) ks jk‘kl (Sjk + Pjr)ks jk‘kl
+  (Sjk + Pjk)m,S kk1 (Sjk + Pjr)m, P 'kkl
—  (Sjk + Pjr)ksS kmﬂ+(sk+ij)k2 km#
= (Sjk + Pje)ms kmu + (Sjk + ij)mTP;kmM]
(4.44)

If we consider the following properties of the dirac matrices, we can considerly
simplify the |M|? expression, since §; = v*k1,, £y = 7"k, and Pj = factorsx
75

DTry"] =0
2)Tr[y* ] =0
3)Trlysy"y"1 =0
)73 = Iyzs
5)17" = —="v56)T'r[Laza] = 4 (4.45)

Consequently we obtain

| M |* = \%k\ {[1S5* + 1P 1T (o] + 411 Pl = [Sjul*Tmem,} (4.46)
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where Pj/- i is the scalar part of Pj.
In order to find the traces in the above expression, we use

TT[%zkl] = 9" kauk1,
4ko - k1
= 41{:5/{1”

Ey - FE -
= 4(—, ko) - (—,—k
(6’2)(67 1)

(4.47)

If we take as our reference the partilce h°, the momentum conservation leads us
to
Pro =ki +ky =0
kr = —ko (4.48)
Then

EyEy

22 4 o)

TT[%z%ﬂ = 4
(4.49)

where we labed Er as the total energy, and used the conservation of Energy.
We re-express |ks|

[a|? = [ks?
=
E? E?
?22 — m§C2 = 0723 — m§C2
—
ES - Eg = m§c4 - m§c4
(B + E3)(Ey — E3) = mic* —m3c! (4.50)
If we use
ET = mh062 = EQ + Eg
—
mpoc? — 2E3 = By — Ej3 (4.51)
We obtain
mpoc®(mpoc® — 2E3) = mic* — m3ct (4.52)

Substituing Es5 and isolating | k2| we have
C LT
= Y Wt (4.53)
tho

where we just renamed |k2| as p. For our special case, all the labed momentums,
masses and Energies with the number 2 will be referenced to the 7 and with the
number 1 to the p



Decay h°— > T in MSSM extended in FV 43
Taking ¢ = 1,h = 1, the expression |M|? is given by
M0 =l 2 (532 4 1PUP) (BB 47) + (Pl = 3 2)mem, |

(4.54)

We have that

1 S(mpoc — EL)p
I'(h°— = Mjy|* ————""dEp (4.55
=1 =3 L > v (4.55)

Substituing |M|? , we obtain.

0 _ c 2 2 2 2
L(h"=>pr) = Z mb‘jﬂ {(Sjk| + | Pjyl )(E-E, + p?)
J
/ S(Er — mpoc?
Pl = 52, | B e P i
(mr+my)c? T
(4.56)
Using the function delta property
/ f(@)6(x — 2 )de = f(z) (4.57)
o l*p ' '
L= > pr) = Z m (|Sjk\2 + \ij\Q) (E-E, + 02) + [|ij|2 — |8k [PJmymy,
jk

(4.58)

Once again taking ¢ = 1,h = 1.

T(h0— > pr) = é';‘rg’fii {|Sjk|2(ETEH +p2 —memy) + [P 2 (B-E, + p* + meM)}
ik
J (4.59)
where
E, = \/WW (4.60)
E; = V/m2 +p?
(4.61)

We divide the expression by the total width. We used the value of 4 [MeV],
which is between the range 6.1777[MeV] [26] and in good accuracy with different
papers where the total width is given [27], [2§], [29], [30].
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ff S [1/GeV] Pii [1/GeV]
finfiy | -8 “;“ {B Fco[cjk + Cho,”( mg+ mT)]} 6i7T2mBFCOV5
finfia 6ir*m Foo 8017;; {Bji, = FalCir + Chopir(mr = Tms 1
TG 0 0
/NLHN'Q -8 m“ {B FC()[CJ]C + Chow(mT + mB)]} 6i7TQFCOmB’Y5
fafi bir* mpFe -8 Mu {B FCU[CJK u Ch“w( mp+ mr)]}
ﬂ2ﬂ2 8017;; {Bjk - FCO[Cjk + ChO/n(mT - %mBm (i FcOmeYE’)
finFy 8#?,{337« = FaolCyi + Chogr e = gmp)]} b Fam s
2T 0 0
Tifl1 0 0
s~ i :

Tiflg BWW{B]-;f ~ F[Cji + Choper(my = R} 6ir“Foms
~ox i :

T 8m{8jk = Foo[Cjt + Chope (mr - 1jgomB)]} 6ir*Fom s
T 6i7r2mBch 8 in” {B FcO{C]k + Chow.( mg+ mT)]}
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ToTy | -8 h’rw {Bi, = FoolCj + Chom( mg+me )]} 6i7r2mBFm5

Table 4.1: It is shown the Scalar and Pseudoscalar parts of Mj;. Units in ﬁ
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fha fho —9n0fi fig . fgsv tan29w
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[i172 —gpo i 291—6“"t(m29w
,[1«2[61 _ghom,ul 19 iigsw t(m29w

7
~ ~ 197 Cp 8
MZ/"LQ _ghop,gug g 1g <ptan29w
7

" o~ 1g°c D)
P2t —n0jin7, g2 tan Oy
[i2T2 0
1 b1 0
~ o~ igzscht 29
T1 W2 ghOTluz “ 16 an=ty
)
~ o~ 19°CyS 2
TIT | —Onoas 6 ctan ty
)
~ o~ 19°CyS 2
T1T2 Jho7 7~ 16 tan 0.
.~ o~ 19°s D)
Tofl —Jn%5i; —1g- tan“ Oy
To 2 0
)
~ ~ 19°8,C 2
Tl | —Gnoss — e ctan Oy
)
~ ~ 19°Cy S 2
ToTo “Gn07,7 1g £tan Qw

Table 4.2: The respective coupling «y, for each of the possible loop corrections.
Units in GeV

Particle | Propagator

B i(¢22 +m2;§)
qd5 _mB

~ 1

Hs q%,:& _m,21

~ 1

7‘ —_—

° q%,s _mZ%S

Table 4.3: Expressions for the respective Propagators of the different parti-
cles,where n is the label of the momentum and it depends on how the diagram
is constructed. j can be either 1 or 2 and are the different possible s-muons and
s-taus
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4.1.1 Calculations and Computing the Branching Ratio

We used FORTRAN to calculate the branching ratio. Since we have five free
parameters in our Branching Ratio expression, we made the analysis taking into
account randomly all the possible values that could take the parameters in cer-
tain regions. These regions are constrains of the experiments or there would be
no theoretical reason to extend the variables to bigger or lower regions. The
regions are given by

® [isusy IS @ parameter that experimentally must be bigger than |500] GeV.
Therefore we make plots variating this parameter randomly with posi-
tive values fisusy > 500 and negative values prsusy < —500. In figure

ususy < 0) and in figure ususy > 0) are shown the randomly plot-
ing of the Branching Ratio vs the free parameter fiysy.

e My is the a paramter that comes from the trilinear term in our Ansatz for
Flavour Violation. It is the parameter for all the masses and it must be
mo 2 500GeV . If the value of m0 is lower than 500 GeV, the masses tend
to be lower than 300 GeV, and if that were the case, the s-particle would
have been already discovered. We take as a maximal value 5000GeV for
the same reason as the parameter A0. In figure (Msusy > 0) and in
figure ,ususy < 0)are shown the randomly ploting of the Branching
Ratio vs the free parameter mg.

e In figure (ususy < 0) and in figure ,ususy > 0) are shown the
randomly ploting of the Branching Ratio vs the free parameter tan(f).

1 < tan(B) < 60 since values lower to 1 tend to diverge to infinity. [11]
Values of tan(f) can not be bigger than 60, since it is the ratio of the
vacuum spectation values of the Higgs Boson.

e A0 is measured in GeV and the value of the A0 ~ 1000. Therefore we
took randomly possible values in the range 800 < A0 < 1200GeV. The
value could be bigger. There is no experimental constraint. However, the
value of the s-masses depend of A0 and values can make the s-particle
masses tend to infinity which would have no physical meaning. In figure
] tsusy < 0) and in figure Wsusy > 0) are shown the randomly
ploting of the Branching Ratio vs the free parameter Ag.

e my can take any value greater than 500 GeV. It can not be lower since it
would have been already discovered at experiments. We make the range
of the bino mass from 500 to 5000 GeV. In figure [4.6{jtsusy < 0) and in
figure M(Msusy > 0) are shown the randomly ploting of the Branching
Ratio vs the free parameter m .
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Figure 4.2: Plot of Branching Ratio and fisysy, for psysy < 0. All the values
of A0,mq,tan(B), my are variated. The three lines represent the value of the
best fit of the Branching Ratio found by CMS and the lower and upper limits of
error to the measure. The green region represents the solutions of our Ansatz
to the region given by CMS.
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Figure 4.3: Plot of Branching Ratio and mg with pisys, < 0. All the values
of A0, ptsysy,tan(B), my are variated. The three lines represent the value of the
best fit of the Branching Ratio found by CMS and the lower and upper limits of
error to the measure. The green region represents the solutions of our Ansatz
to the region given by CMS.
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Figure 4.4: Plot of Branching Ratio and tan(5) with fs,sy < 0. All the values
of A0,mo,tsusy, My are variated. The three lines represent the value of the best
fit of the Branching Ratio found by CMS and the lower and upper limits of error
to the measure. The green region represents the solutions of our Ansatz to the

region given by CMS.
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Figure 4.5: Plot of Branching Ratio and A0 with pgysy < 0. All the values of
ususy,mo,t(m(ﬁ), my are variated. The three lines represent the value of the
best fit of the Branching Ratio found by CMS and the lower and upper limits of
error to the measure. The green region represents the solutions of our Ansatz

to the region given by CMS.
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Figure 4.6: Plot of Branching Ratio and mb with fssy < 0. All the values of
tsusy,Mo,tan(B), A0 are variated. The three lines represent the value of the
best fit of the Branching Ratio found by CMS and the lower and upper limits of
error to the measure. The green region represents the solutions of our Ansatz

to the region given by CMS.
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Figure 4.7: Plot of Branching Ratio and psysy, for preusy > 0. All the values
of A0,mg,tan(B), my are variated. The three lines represent the value of the
best fit of the Branching Ratio found by CMS and the lower and upper limits of
error to the measure. The green region represents the solutions of our Ansatz

to the region given by CMS.
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Figure 4.8: Plot of Branching Ratio and po with freusy > 0. All the values of
A0, pisusy,tan(B), my are variated. The three lines represent the value of the
best fit of the Branching Ratio found by CMS and the lower and upper limits of
error to the measure. The green region represents the solutions of our Ansatz
to the region given by CMS.

Figure 4.9: Plot of Branching Ratio and tan(5) with fts,sy > 0. All the values
of A0,mq,tsusy, M are variated. The three lines represent the value of the best
fit of the Branching Ratio found by CMS and the lower and upper limits of error
to the measure. The green region represents the solutions of our Ansatz to the
region given by CMS.
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Figure 4.10: Plot of Branching Ratio and A0 with pisysy > 0. All the values
of fsusy,mo,tan(B), my are variated. The three lines represent the value of the
best fit of the Branching Ratio found by CMS and the lower and upper limits of
error to the measure. The green region represents the solutions of our Ansatz
to the region given by CMS.
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Figure 4.11: Plot of Branching Ratio and mb with pgysy > 0. All the values
of ftsusy,mo,tan(B), A0 are variated. The three lines represent the value of the
best fit of the Branching Ratio found by CMS and the lower and upper limits of
error to the measure. The green region represents the solutions of our Ansatz
to the region given by CMS.
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