
Chapter 3

Flavour Violation within
the Minimal
Supersymmetric Standard
Model

The Minimal Supersymmetric Standard Model(MSSM) is a Quantum Field
Theory which extends the Standard Model. This theory annexes a new sym-
metry, this is reason for the name of the theory. In theoretical physics we name
a symmetry the transformation that leaves invariant the equations of the in-
teractions. Example of it is the Electromagnetic Equations of Maxwell which
are invariant under the Lorentz transformations. In the case of the Minimal
Supersymmetric Standard Model the new symmetry transforms the fermionic
fields and the bosonic fields into one another. As an implication of this trans-
formations we have that every elementary particle mentioned in chapter 2 have
a super-partner. Each superpartner particle differs of 1

2 of spin. For example
the sleptons will be spin 0 particles. The Higssino which is the superpartner of
the Higgs boson will be spin 1

2 particle. In figure 3.1 are shown the particles
predicted in the Standard Model and their respective super-partners of the
MSSM.

Supersymmetry(SUSY) has become a controversial theoretical model because
many scientists consider it the correct model to extend the Standard Model.
It is considered a very natural model that can explain dark matter, gravity,
vanish the radiative divergences to the quantum corrections to the Higgs boson.
However, other scientists consider it incorrect arguing that the superparticles
should have already been discovered. It will be the experiments in the particle
accelerators that will tell us the truth.

We calculate within the MSSM the branching ratio of the decay h0 → τµ that
recently was found in CMS Experiment in CERN [10]. We will use an Ansatz
that mixes the second and third family of sleptons. We firstly show the basic
features of any supersymmetric theory. We based on Ref. [23] for all explicit
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14 Flavour Violation within the MSSM

derivations of Supersymmetry. After that, it will be shown the MSSM main
characteristics. Finally we explain the Ansatz used for our calculations.

The Lagrangian of MSSM has two general terms. The first one LMSSM and
Lsoft. The soft supersymmetry breaking Lagrangian Lsoft has a trilinear scalar
couplin term called Ajk trilinear coupling. This thesis is based on the Ansatz
proposed in [11]. In general, the work done in this thesis was modifying the
MSSM interaction Lagrangians using the Ansatz in the trilinear coupling and
calculate the Branching Ratio.

Figure 3.1: Standard Model Particles and their respective super-partner parti-
cle. [Illustration by CERN&SAR]

3.1 The Super-Poincaré Algebra

Any supersymmetric theory must satisfy the Super-Poincaré Algebra. Therefore
the extension that we performed of the MSSM, satisfies the algebra mentioned.
The Super-Poincaré Algebra extends the Poincaré Algebra where the Poincaré
Algebra is defined by.

[Pµ, Pv] = 0 (3.1)

[Mµv, Pρ] = −i(ηµρPv − ηvρPµ) (3.2)

[Mµv,Mρσ] = −i(ηµMvσ + ηvσMµρ − ηµσMvρ − ηvρMµσ) (3.3)

where Pµ is a generator of translation and Mµv is a generator of Lorentz trans-
formation. In appendix C is shown the matrix representation of ηµρ,MµvThe
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extension should accomplish with the following algebra

[Pµ, Qa] = 0 (3.4)

[Mµv, Qa] = −(σ4
µv)abQb (3.5)

{Qa, Q̄b} = 2(γµ)abPµ (3.6)

{Qa, Qb} = −2(γµC)abPµ (3.7)

{Q̄a, Q̄b} = 2(C−1γµ)abPµ (3.8)

where σ4
µv = i

4 [γµ, γv], Qa are 4 spinor charges generators,

C = ηcγ
2γ0 = ηc

(
−σ2 0

0 σ2

)
, C−1 = η∗c

(
−σ2 0

0 σ2

)
and a, b ∈ {1, 2, 3, 4}

3.2 The Wess Zumino Model

The Wess Zumino Model is the most basic SUSY Model that exists. It is not
a realistic model, however it is an excellent starting point to understand su-
persymmetric models. The supersymmetric transformation is a transformation
from bosons to fermions and visceversa. The Lagrangian proposed is

L =
1

2
(∂µA)(∂µA)− 1

2
m2A2 +

1

2
(∂µB)(∂µB)− 1

2
m2B2 +

1

2
Ψ̄(i/∂ −m)Ψ

− mgA(A2 +B2)− g(Ψ̄ΨA+ iΨ̄γ5ΨB)− 1

2
g2(A2 +B2)2 (3.9)

with A = A† , B = B† and Ψ = CΨ̄T , where C is the charge conjugation

matrix

(
iσ2 0
0 −iσ2

)
and σ2 is the Pauli matrix. “A” is a scalar field. A scalar

field associates to each point of the space a scalar value. In particle physics
the scalar fields are associeted to spin 0 particles such as the Higgs Boson.
B is a pseudo-scalar field, where the pseudoscalars change their sign under
parity transformations ((x, y, z) → (−x,−y,−z)). The slashed derivative, is
the Feynman notation for /∂µ = γµ∂µ. The field Ψ is associeted to majorana
particles. A majorana particle is any particle that is its own antiparticle. In
this model all fields have the same mass m and couple with the same strength
g. All these assumptions are given by the model. The Lagrangian is given by

L = L(q, q̇) (3.10)

i.e. the Lagrangian is dependent of the generalized coordinates and its derivative
with respect time. In quantum field theory the Lagrangian will depend on the
fields.

L(φi, ∂µφi) (3.11)

Here φi includes scalar and pseudoscalar fermionic fields i.e. φ ∈ A,B,ΨΨ̄.
We apply the equations of motion can be obtained with the Euler-Lagrange
equation for each of the fields.

∂L
∂φi
− ∂µ

∂L
∂(∂µφi)

= 0 (3.12)
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where φi ∈ {A,B,Ψ, Ψ̄}.
Let φ = A. Therefore we obtain

∂L
∂A
− ∂µ

∂L
∂(∂µA)

= 0 (3.13)

where from 3.9

∂L
∂A

= −m2A− gψ̄ψ −mg(3A2 +B2)− 2g2A(A2 +B2),

∂L
∂(∂µA)

= ∂µA (3.14)

If we substitute eq. (3.14) in eq. 3.13

(2 +m2)A = −g[Ψ̄Ψ +m(3A2 +B2) + 2gA(A2 +B2)] (3.15)

For the pseudoscalar field B we have that.

∂L
∂B
− ∂µ

∂L
∂(∂µB)

= 0 (3.16)

where

∂L
∂B

= −m2B − igΨ̄γ5Ψ− 2mgAB − 2g2B(A2 +B2),

∂L
∂(∂µB)

= ∂µB (3.17)

Hence we obtain that eq.(3.16) is

(2 +m2)B = −g[iΨ̄γ5Ψ + 2mAB + 2gB(A2 +B2)] (3.18)

For the antifermionic φ = Ψ̄, the Euler-Lagrange Equation becomes

∂L
∂Ψ̄
− ∂µ

∂L
∂(∂µΨ̄)

= 0 (3.19)

where

∂L
∂Ψ̄

=
1

2
(i/∂ −m)Ψ− gΨA− igγ5ΨB,

∂L
∂(∂µΨ̄)

= 0 (3.20)

Therefore

(i/∂ −m)Ψ = 2g(A+ iγ5B)Ψ (3.21)

Finally, for the fermionic field φ = Ψ

∂L
∂Ψ
− ∂µ

∂L
∂(∂µΨ)

= 0 (3.22)
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where

∂L
∂Ψ

= −1

2
mΨ̄− gΨ̄A− igΨ̄γ5B,

∂L
∂∂µΨ

=
i

2
Ψ̄γµ (3.23)

Hence

i(/∂ +m)Ψ̄ = −2g(Ψ̄A+ iΨ̄γ5B) (3.24)

Now, we are interested to include supersymmetric transformations. As it was
mentioned before, the supersymmetric transformations will transform from a
boson field to a fermion field. If these transformations leave the action invariant
they can be considered as symmetries. The action is defined as usual.

S =

∫
Ld4x (3.25)

where L is the Lagrangian density where and the variation of L is a total deriva-
tive if the transformation δ is a symmetry.

L
′
− L := δL = ∂µV

µ 6= 0 (3.26)

It follows from Noether Theorem that the invariance of the action under a sym-
metry transformation always implies the existence of a conserved current.

∂µj
µ = 0 (3.27)

where jµ would be the current. We are interested in finding a current which is
invariant under supersymmetry transformation. The variation of the Lagrangian
density under an arbitrary infinitesimal variation of the fields yields to

A −→ A
′

= A+ δA,⇒ A
′
−A = δA

B −→ B
′

= B + δB,

Ψ −→ Ψ
′

= Ψ + δΨ

δL = L(φ
′

i, ∂µφ
′

i)− L(φi, ∂µφi)

=
∂L
∂φi

δφi +
∂L

∂(∂µφi)
δ∂µφi

=
∂L
∂φi

δφi − ∂µ
∂L

∂(∂µφi)
δφi + ∂µ

∂L
∂(∂µφi)

δφi +
∂L

∂(∂µφi)
δ∂µφi Summing Zero

=
{ ∂L
∂φi
− ∂µ

( ∂L
∂(∂µφi)

)}
δφi + ∂µ

( ∂L
∂(∂µφi)

δφi
)

= ∂µ
( ∂L
∂(∂µφi)

δφi
)
We used Euler-Lagrange equation (3.12)

(3.28)

From equation (3.26) we get

δL ≡ ∂µV
µ =⇒ ∂µ

(
V µ − ∂L

∂(∂µφi)
δφi
)

= 0

∴ jµ = V µ − ∂L
∂(∂µφi)

δφi Using Eq.(3.27) (3.29)
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where we obtained the definition of the current to express the conservation equa-
tion.
We propose the symmetries of the fields which transform fermions and bosons
into each other and we find the expression for the current jµ. After we show
that the action is invariant, we can conclude that this is a theory with a new
supersymmetric symmetry, which is called the Wess-Zumino Model. The follow-
ing variations for the different fields represent a supersymmetry transformation
i.e. bosons⇔ fermions

δA = ε̄Ψ(x)

δB = −iε̄γ5Ψ(x)

δΨ = −(i/∂ +m)(A− iγ5B)ε

δΨ̄ = ε̄(A− iγ5B)(i
←
/∂ −m)

(3.30)

where ε is an independent Grassman variable. The equations above constitute
the infinitesimal supersymmetry transformation of the fileds A,B and Ψ. We
have now the properties to compute δL.

For simplicity we consider only the free part of the Lagrangian Lfree = L|g=0

Lfree =
1

2
(∂µA)2 − 1

2
m2A2 +

1

2
(∂µB)2 − 1

2
m2B2 +

1

2
Ψ̄(i/∂ −m)Ψ

(3.31)

Using Eq.(3.30)

δLfree = (∂µA)δ(∂µA)−m2AδA+ (∂µB)δ(∂µB)−m2BδB +
1

2
δΨ̄(i/∂ −m)Ψ +

1

2
Ψ̄(i/∂ −m)δΨ

= ε̄(∂µA)(∂µΨ(x))−m2Aε̄Ψ(x)− iε̄γ5(∂µB)∂µΨ(x) + iε̄γ5m2BΨ(x)

+
1

2
ε̄(A− iγ5B)(i

←
∂ −m)(i/∂ −m)Ψ− 1

2
Ψ̄(i/∂ −m)(i/∂ +m)(A− iγ5B)ε

= ε̄(∂µA)(∂µΨ(x))−m2Aε̄Ψ(x)− iε̄γ5(∂µB)(∂µΨ(x)) + iε̄γ5m2BΨ(x)

+
1

2
Ψ̄(2 +m2)(A− iγ5B)ε Using Eq.(3.21)forL|free (3.32)

where

/∂ /∂ = ∂µγ
µ∂vγ

v =
1

2
∂µ∂v(γ

µγv + γvγµ) = ∂µ∂vη
µv = ∂µ∂

µ = 2 (3.33)

However the last term in Eq. (3.32) vanishes. From eq. (3.18) we know that
2 +m2 = 0 for L|free

δLfree = ε̄(∂µA)(∂µΨ(x))−m2Aε̄Ψ(x)− iε̄γ5(∂µB)(∂µΨ(x)) + iε̄γ5m2BΨ(x)

= ε̄(∂µA)(∂µΨ(x)) + 2Aε̄Ψ(x)− iε̄γ5(∂µB)(∂µΨ)− iε̄γ52BΨ(x)

= ∂µ{ε̄(∂µA)Ψ− iε̄γ5(∂µB)Ψ}
= ∂µ{ε̄[∂µ(A− iγ5B)Ψ]}
=: ∂µV

µ (3.34)
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Hence

V µ = ε̄[∂µ(A− iγ5B)]Ψ (3.35)

Now, we find the current defined in Eq.(3.29). We use equations (3.14), (3.18)
and (3.23). First we find the value of the second term of 3.29∑

i

∂L
∂(∂µφi)

δφi =
∂L

∂(∂µA)
δA+

∂L
∂(∂µB)

δB +
∂L

∂(∂µΨ)
δΨ +

∂L
∂(∂µΨ̄)

δΨ̄

= (∂µA)δA+ (∂µB)δB +
i

2
Ψ̄γµδΨ

= (∂µA)ε̄Ψ− i(∂µB)ε̄γ5Ψ− i

2
Ψ̄γµ(i/∂ +m)(A− iγ5B)ε

= ε̄[∂µ(A− iγ5B)]Ψ− i

2
Ψ̄γµ(i/∂ +m)(A− iγ5B)ε

= ε̄[∂µ(A− iγ5B)]Ψ +
i

2
εT (A− iγ5B)T (i

←
/∂ +m)T γTµ Ψ̄T

(3.36)

where we used transpose properties for conmutating factors as X = ([X]T )T∑
i

∂L
∂(∂µφi)

δφi = ε̄[∂µ(A− iγ5B)]Ψ +
i

2
εTC−1C(A− iγ5B)T (i

←
/∂ +m)T γTµ Ψ̄T

= ε̄[∂µ(A− iγ5B)]Ψ− i

2
ε̄(AC − iC(γ5)TB)(i

←
∂ p(γ

p)T +m)γTµ Ψ̄T

(3.37)

where we introduced the identity matrix as I = CC−1 , where C is the charge
conjugation matrix. In the second step, since A = A† and B = B†, there is no
modification by the transpose operation. A and B can conmmute with the C
matrix since they are scalar and pseudoscalar fields. Also ε̄ = εTC−1

∑
i

∂L
∂(∂µφi)

δφi = ε̄[∂µ(A− iγ5B)]Ψ− i

2
ε̄(AC − iC(γ5)TB)(i

←
∂ p(γ

p)T +m)γTµ Ψ̄T

= ε̄[∂µ(A− iγ5B)]Ψ +
i

2
ε̄(A− iγ5B)(i

←
∂ pC(γp)T +mC)C−1γµCΨ̄T

= ε̄[∂µ(A− iγ5B)]Ψ +
i

2
ε̄(A− iγ5B)(i

←
∂ pC(γp)TC−1 +m)γµCΨ̄T

= ε̄[∂µ(A− iγ5B)]Ψ− i

2
ε̄(A− iγ5B)(i

←
∂ pγ

p −m)γµΨ (3.38)

where we used (γµ)T = −C−1γµC and Ψ = CΨ̄T Therefore

jµ = V µ −
∑
i

∂L
∂(∂µφi)

δφi

=
i

2
ε̄(A− iγ5B)(i

←
/∂ −m)γµΨ (3.39)

The current jµ found is called the supercurrent in Supersymmetry. The exis-
tence of it, by Noether Theorem affirms us that the transformations from bosons
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to fermions that we defined leave the action invariant.

We will show that the supercurrent is a conserved current. We re-express the
supercurrent by the relation

jµ =
1

λ
ε̄kµ (3.40)

where λ is just a real constant. Thus in the Wess-Zumino model the spinor
current density

kµ =
i

2
λ(A− iγ5B)(i

←
/∂ −m)γµΨ

= − i
2
λmγµ(A+ iγ5B)Ψ− 1

2
λ[/∂(A+ iγ5B)]γµΨ (3.41)

Verifying that the supercurrent is conserved for free Lagrangian

∂µk
µ = − i

2
λm/∂[(A+ iγ5B)Ψ]− 1

2
λ[/∂ /∂(A− iγ5B)]Ψ− 1

2
λ[/∂(A+ iγ5B)]/∂Ψ

= − i
2
λm(/∂A− iγ5 /∂B)Ψ− i

2
mλ(A− iγ5B)/∂Ψ

− 1

2
λ[/∂ /∂A− iγ5 /∂ /∂B]Ψ− 1

2
λ[/∂(A+ iγ5B)]/∂Ψ

= −1

2
λ(/∂A− iγ5 /∂B)(/∂Ψ + imΨ)− 1

2
λ[∂µ∂

µA− iγ5∂µ∂
µB]Ψ− i

2
mλ(A− iγ5B)/∂Ψ

=
i

2
λ(/∂A− iγ5 /∂B)(i/∂ −m)Ψ− 1

2
λ[2A− iγ52B]Ψ− 1

2
m2λ(A− iγ5B)Ψ

= −1

2
λ{(2 +m2)A− iγ5(2 +m2)B}Ψ

= 0 (3.42)

where we used the anticonmutation relation {γµ, γ5} = 0. Therefore the su-
percurrent is conserved which implies that there exists a symmetry with the
transformations from bosons to fermions and viceversa. From Noether Theo-
rem, it implies that the charge is the integral of the zero component of the zero
component of the density current in the volume.

Qa =

∫
d3xk0

a (3.43)

where from (3.41)

k0
a =

i

2
λ

[
{(A− iγ5B)(i

←
/∂ −m)}γ0Ψ

]
a

(3.44)

It can be demonstrated that this supersymmetric charge satisfies the Super-
Poincaré algebra

{Qa, Qb} = 2Pµ(γµ)ab (3.45)

Therefore we have found a complete supersymmetric model. It is important
to understand this basic model, since other supersymmetric models are built in
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similar way. We exposed this model since for the thesis purposes there would
be no point in finding all the supersymmetric lagrangian of MSSM. The MSSM
Lagrangian is extremely long and the goal of the thesis could be missed with
so many calculations. Therefore, we just showed the general steps for finding a
supersymmetric theory.

3.3 SuperFields and Supercoordinates

In the specific case of the Minkowski space, the Euclidian space of three dimen-
sions is extended to a four dimensions one (space-time). The reason is that it is
needed to have an space where theories can be constructed with Lorentz invari-
ance. In the analogous case, the superspace is constructed for supersymmetric
invariances.

The Minkowski space is extended with four more dimensions. The elements
of the superspace are called supercoordinates. The elements consist of the four
space-time coordinates and four anticommuting Grassman numbers. In terms of
the two-component Weyl spinor formalism, the four extra terms are {θA}A=1,2

and {θ̄Ḃ}Ḃ=1̇,2̇. Both two-component Weyl spinors which transform under the
self-representation of SL(2,C) and the complex conjugate self-representation of
SL(2,C) respectively. The SL(2,C) is the group of invertible complex matrices
with unit determinant and the Lorentz transformation group.

The anticommutation relations of the two-component Weyl spinors are

{θA, θB} = 0 (3.46)

{θ̄Ȧ, θ̄Ḃ} = 0 (3.47)

{θA, θ̄Ḃ} = 0 (3.48)

And every element of the superspace is denotaded by

(xµ, θA, θ̄Ȧ) (3.49)

The important closure relations of the Super-Poincaré Algebra
{QA, QB} = 0

{Q̄Ȧ, Q̄Ḃ} = 0

{QA, Q̄Ḃ} = 2σµ
A,Ḃ

Pµ

(3.50)

They can be rewritten as conmutators with the super-coordinates
[θAQA, θ

BQB ] = 0

[θ̄ȦQ̄
Ȧ, θ̄ḂQ̄

Ḃ ] = 0

[θAQA, θ̄ḂQ̄
Ḃ ] = 2θAσµ

A,Ḃ
θ̄ḂPµ

(3.51)

In section 3.2 we mentioned infinitesimal supersymmetric transformations that
left the action invariant. The transformations can be extended to finite super-
symmetric transformations. Therefore it can be constructed and defined the
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following operator in terms of the super-coordinates

L(xµ, θA, θ̄
Ȧ) := exp(−ixµPµ + iθQ+ iθ̄Q̄)

(3.52)

The terms Pµ, QA and QȦ are hermitian operators which act on functions in
superspace. These operators correspond to the basic elements of the Super-
Poincaré algebra.

A general superfield Φ is an operator-valued function defined on superspace
in terms of its power series expansion in θ and θ̄. An expansion example would
be

Φ(x, θ, θ̄) = f(x) + θAφA(x) + θ̄Ȧχ̄
Ȧ(x) + (θθ)m(x) + (θ̄θ̄)n(x)

+ (θσµθ̄)Vµ(x) + (θθ)θ̄Ȧλ̄
Ȧ(x) + (θ̄θ̄)θAΨA(x) + (θθ)(θ̄θ̄)d(x)

(3.53)

where f(x), φA(x), χ̄Ȧ(x), n(x),m(x), Vµ(x),ΨA(x), d(x), λ̄Ȧ(x) are called com-

ponent fields. (θθ) ≡ θAθA and (θ̄θ̄) ≡ θ̄Ȧθ̄
Ȧ. In general it can be thought

just as the sum of the requiered fields in order to construct the theory. The
superfield must have all of the bosonic, fermionic, and auxiliary fields within
the corresponding supermultiple. Therefore we can stablish that

f(x),m(x), n(x) −→ complex scalar or pseudoscalar fields (Bosons)

Ψ(x), φ(x) −→ left-handed Weyl spinor fields (fermions)

χ̄(x), λ̄(x) −→ right-handed Weyl spinor fields (fermions)

Vµ(x) −→ Lorentz four-vector field.(Any vectorial field as electromagnetic field)

d(x) −→ scalar field (As an example it could be the Higgs Boson field)

(3.54)

And the infinitesimal transformation of a superfield would be

δsΦ = TαΦ(x, θ, θ̄)− Φ(x, θ, θ̄)

= {α ∂

∂θ
+ ᾱ

∂

∂θ̄
+ i(θσµᾱ− ασµθ̄)∂µ + ...}Φ(x, θ, θ̄) (3.55)

where Tα = Φ(x + iθσᾱ − iασθ̄, θ + α, θ̄ + ᾱ). Similarly it can be thought
the infinitesimal transformation as the transformation applied to each of the
component fields.

δsΦ(x, θ, θ̄) = δ
′

sf(x) + θAδ
′

sφA(x) + θ̄Ȧδ
′

sχ̄
Ȧ(x) + (θθ)δ

′

sm(x) + (θ̄θ̄)δ
′

sn(x)

+ (θσµθ̄)δ
′

sVµ(x) + (θθ)θ̄Ȧδ
′

sλ̄
Ȧ(x) + (θ̄θ̄)θAδ

′

sΨA(x) + (θθ)(θ̄θ̄)δ
′

sd(x)

(3.56)

After many operations and manipulations of the properties of the superfields



3.3. SUPERFIELDS AND SUPERCOORDINATES 23

and super-coordinates it would be found for this specific superfield that

δsΦ(x, θ, θ̄) = αφ(x) + ᾱχ̄(x) + θ{2αm(x) + i(σµᾱ)∂µf(x) + (σµᾱ)Vµ(x)}

+ θ̄{2ᾱn(x) + i(ασµε)∂µf(x)− (ασµε)Vµ(x)}+ (θθ){ᾱλ̄(x)− i

2
∂µφ(x)σµᾱ}

+ (θ̄θ̄){αΨ(x) +
i

2
ασµ∂µχ̄(x)}

+ (θσµθ̄){ασµλ̄(x) + Ψ(x)σµᾱ+
i

2
α∂µφ(x)− i

2
∂µχ̄(x)ᾱ}

+ (θθ)θ̄{2ᾱd(x) +
i

2
ᾱ∂µVµ(x) + i(ασµε)∂µm(x)}

+ (θ̄θ̄)θ{2αd(x)− i

2
α∂µVµ(x) + i(σµᾱ)∂µn(x)}

+ (θθ)(θ̄θ̄)
i

2
{∂µΨ(x)σµᾱ+ ασµ∂µλ̄(x)} (3.57)

Comparing each of the coefficients of the same powers of θ and θ̄ in Eq. 3.56 and
Eq. 3.57 we know the particular infinitesimal transformations of the component
fields.

δ
′

sf(x) = αφ(x) + ᾱχ̄(x) (3.58)

δ
′

sφA(x) = 2αm(x) + i(σµᾱ)∂µf(x) + (σµᾱ)Vµ(x) (3.59)

δ
′

sX̄
Ȧ(x) = 2ᾱn(x) + i(ασµε)∂µf(x)− (ασµε)Vµ(x) (3.60)

δ
′

sm(x) = ᾱλ̄(x)− i

2
∂µφ(x)σµᾱ (3.61)

δ
′

sn(x) = αΨ(x) +
i

2
ασµ∂µχ̄(x) (3.62)

δ
′

sVµ(x) = ασµλ̄(x) + Ψ(x)σµᾱ+
i

2
α∂µφ(x)− i

2
∂µχ̄(x)ᾱ (3.63)

δ
′

sλ̄
Ȧ(x) = 2ᾱd(x) +

i

2
ᾱ∂µVµ(x) + i(ασµε)∂µm(x) (3.64)

δ
′

sΨA(x) = 2αd(x)− i

2
α∂µVµ(x) + i(σµᾱ)∂µn(x) (3.65)

δ
′

sd(x) =
i

2
{∂µΨ(x)σµᾱ+ ασµ∂µλ̄(x)} (3.66)

From the relations above we can observe that each bosonic field transforms
into a fermionic field and viceversa. The supersymmetric transformations are
stablished automatically if we use the superspace formalism. It is the great
advantage of using the superspace formalism. We did not need to force or
establish the relations from a first instance as we did with the Wess-Zumino
Model, they came up naturally. The MSSM and other supersymmetric theories
are constructed with the superspace formalism because it ensures automatically
the supersymmetric transformations and the invariance of the action under su-
persymmetric transformations.
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3.4 Soft Supersymmetry Breaking

If supersymmetry were true in any energy scale, the super-particles would have
been already discovered in the experiments.1.Therefore, if supersymmetry is
correct there should exist a Lagrangian density that is invariant under super-
symmetry, but a vacuum state that is not. To this mechanism is called as
spontaneous supersymmetry breaking. If the vacuum state |0〉 is not invariant
under supersymmetry transformations, then

Qα |0〉 6= 0, Q†α |0〉 6= 0, (3.67)

Furthermore, if supersymmetry is spontaneously broken in the vacuum state,
then the vacuum must have positive energy

〈0|H |0〉 =
1

4

(
||Q†1 |0〉 ||2 + ||Q1 |0〉 ||2 + ||Q†2 |0〉 ||2 + ||Q2 |0〉 ||2

)
> 0

(3.68)

With the considerations above, one can construct supersymmetric theories with
this special process of supersymmetry breaking. Examples of spontaneous su-
persymmetry breaking are The O’Raifeartaigh Model,Fayet-Iliopoulos, Extra-
dimensional and anomaly-mediated supersymmetry. However, we are inter-
ested in so called soft supersymmetry breaking. We introduce extra terms
that break supersymmetry explicitly in the effective MSSM Lagrangian. The
supersymmetry-breaking couplings should be soft (of positive mass dimension)
in order to be able to naturally maintain a hierarchy between the electroweak
scale and the Planck mass scale.

The soft supersymmetry breaking Lagrangian is composed of gaugino masses
Ma for each gauge group, scalar squared-mass terms (m2)ji and bji , and 3 scalar

couplings aijk and cjki . The gaugino particles are the gluino, gravitino, the
winos and the bino. Each of them are superpartner particles of a gauge field.
We are interested in the bino particle, which is the superpartner of the U(1)
gauge field wich corresponds to the weak hypercharge. The soft terms are ca-
pable of giving masses to all of the scalars and gauginos in a theory. In next
section the soft breaking lagrangian of MSSM is discussed. We are interested in
the 3 scalar couplings, since the calculations that we performe are couplings of
higgs, sfermion, sfermion where each of them is a scalar.

3.5 MSSM

The path to construct MSSM is similar to the Wess Zumino Model. Supersym-
metric transformations are searched in order to make the action invariant and
a super-current is found. As we mentioned, a supersymetry break term should
be annexed to the model and the model is constructed under the supercoordi-
nates and superfields. The construction of MSSM is complicated and extense.
The goal of this chapter and in general of the thesis could be desviated if we
attempt to deduce all the features of the MSSM. Therefore, we are not going to

1Some published papers searching supersymmetry are cited in references [7], [8], [9]
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extend all the construction of it. We will just focus in the soft supersymmetry
breaking lagrangian. For more information about the construction of MSSM
and extensive detailed calculations, we highly recommend [5], [6].

The Lagrangian that breaks supersymmetry softly in MSSM in a general
format is given by

Lsoft = Lmasssfermion + Lmassbino + Lmasswino + Lmassgluino + LHiggsino + Lh0f̃j f̃k

(3.69)

In order to establish the free parameters of the model coming from this La-
grangian, we write down the form of the slepton masses and the Higgs- slepton-
slepton couplings, the first and last term of eq. 3.69 , which are given as

Ll̃soft = −m2
Ẽjk

˜̄Ej ˜̄Ek
†
−m2

L̃,j,k
L̃j†L̃k − (Ae,jkẼ

j ˜̄LkH1 + h.c) (3.70)

The term Aejk is called the trilinear term and Lj and EJ are the doublet and
singlet slepton fields. In this term we include the flavour violation between the
third and the second family.

3.6 MSSM Extended in Flavour Ansatz

We used the proposal given by Professor Melina Gómez Bock. [11]. It is an
ansatz that mixes the second and the third family or generation of s-leptons.
This mixture is able since any scalar particle with the same quantum numbers
can mix through the soft SUSY parameters [24]. The sleptons have spin 0 since
every sparticle differs of 1

2 to the Standard Model Particles. Consequently they
are scalars and no constraint in mixing exist. Therefore we can write a so called
mass matrix.

M̃2
l̃

=



mẽLL mẽLR 0 0 0 0

m†ẽLR mẽLRR 0 0 0 0
0 0 mµ̃LL mµ̃LR 0 0

0 0 m†µ̃LR mµ̃RR 0 0

0 0 0 0 mτ̃LL mτ̃LR

0 0 0 0 m†ẽLR mẽRR

 (3.71)

It can be written as block matrices of 3× 3 as

M̃2
f̃

=

(
M2
LL M2

LR

M2†
LR M2

RR

)
(3.72)

The MLL called the left-left block, MLR called the left-right, MRR called the
right-right, where Each block contains the terms of mass. The lepton-flavor con-
servation is violated by the non-vanishing off-diagonal elements of each matrix,
and the size of such elements is strongly constrained from experiments. There-
fore the Ansatz for flavour violation comes directly from the mass matrix. In
the Ansatz is assumed that exist a degeneracy in the Left-Left and Right Right
blocks of the matrix. Therefore
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M2
LL 'M2

RR ' m̃2
0I3×3, (3.73)

The first family, that is eL and eR, has practically no mixing with the other
two families since current data allow considerable mixing betwen the second and
third slepton families but high supression to the first family [13]. Therefore in
the Ansatz is considerated that the mixing is so small that we can despreciate
it and take as zero.

A′l =

0 0 0
0 w z
0 y 1

A0, (3.74)

The variables w,y and z can take values in the range [−1, 1]. The dominant terms
give a 4 × 4 decoupled block mass matrix, in the basis ẽL, ẽR, µ̃L, µ̃R, τ̃L, τ̃R,.
The mass matrix proposed is

M̃2
l̃

=


m2

0 0 0 0 0 0
0 m2

0 0 0 0 0
0 0 m2

0 X2 0 Az
0 0 X2 m2

0 Ay 0
0 0 0 Ay m2

0 X3

0 0 Az 0 X3 m2
0

 , (3.75)

with X3 = 1√
2
A0v cosβ − µmτ tanβ and X2 = Aw − µmµ tanβ. Where µ is

the SU(2) − invariant coupling of two different Higgs superfield doublets, A0

is the trilinear coupling scale and tanβ = v2
v1

is the ratio of the two vacuum
expectation values coming from the two neutral Higgs fields, these three are
MSSM parameters [24, 25]. The part of the matrix of our interest will be the
right inferior part, which will be a 4x4 matrix that includes the flavour violation
of the second and third family. Therefore we despreciate the first two rows and
columns of the matrix above.

Az = 1√
2
zA0v cosβ

Ay = 1√
2
yA0v cosβ

Aw = 1√
2
wA0v cosβ

Table 3.1: Explicit terms of the sfermion mass matrix ansatz.

In order to obtain the physical slepton eigenstates, the 4×4 mass sub-matrix
is diagonalized given in (3.75). The physical slepton are the values that could
be measured in a experiment. For simplicity the ansatz considers that z = y,
which represent that the mixtures µ̃Lτ̃R and µ̃Rτ̃L are of the same order .
Remembering that any matrix that is diagonalizable, we make a transformation
as follows to diagonalize it

M̃2
Diag = ZlM

2
l Z
†
l (3.76)
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where

M2
l̃

=


m̃2

0 X2 0 Ay
X2 m̃2

0 Ay 0
0 Ay m̃2

0 X3

Ay 0 X3 m̃2
0

 . (3.77)

The matrix above is the 4× 4 that has the slepton mixing in the right-inferior
part of 3.75.

After we make the transformation in 3.76 , we obtain that Zl is given by


µ̃L
τ̃L
µ̃R
τ̃R

 =
1√
2


− sin ϕ

2 − cos ϕ2 sin ϕ
2 cos ϕ2

cos ϕ2 − sin ϕ
2 − cos ϕ2 sin ϕ

2
− sin ϕ

2 cos ϕ2 − sin ϕ
2 cos ϕ2

cos ϕ2 sin ϕ
2 cos ϕ2 sin ϕ

2



µ̃1

τ̃1
µ̃2

τ̃2

 = Zl, (3.78)

with

sinϕ =
2Ay√

4A2
y + (X2 −X3)

2
,

cosϕ =
(X2 −X3)√

4A2
y + (X2 −X3)

2
(3.79)

The reason of the equate in 3.78 is that the equation give us the physical eigen-
states. When we diagonalize the mass matrix M2

l̃
we obtain the following eigen-

values.

m2
µ̃1

=
1

2
(2m̃2

0 +X2 +X3 −R),

m2
µ̃2

=
1

2
(2m̃2

0 −X2 −X3 +R),

m2
τ̃1 =

1

2
(2m̃2

0 −X2 −X3 −R),

m2
τ̃2 =

1

2
(2m̃2

0 +X2 +X3 +R), (3.80)

with R =
√

4A2
y + (X2 −X3)

2
.

We have the expressions for the s-lepton particle masses and their eigenstates.
We are now up to change the lagrangians of interaction with this new informa-
tion given from the ansatz.

3.6.1 Modified Lagrangians

It is of our interest the interactions between the higgs boson and the superpar-
ticles because those interactions will be used in our one-loop correction calcula-
tion. Furthermore we are interested in the interaction of the Bino particle, the
letptons and the superparticles. Therefore we use the Ansatz given in section
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3.6 and extend the Lagrangians.

The Supersymmetric Lagrangian wich models the interaction of the Higgs boson
with the µ̃j , τ̃j , where j = 1, 2 is given by [22]

Lh0f̃ f̃ = [Qµ +G(−1

2
+ s2

w)]µ̃∗Lµ̃Lh
0 + [Qµ −Gs2

w]µ̃∗Rµ̃Rh
0 −Hµ[µ̃∗Lµ̃Rh

0 + µ̃∗Rµ̃Lh
0]

+ [Qτ +G(−1

2
+ s2

w)]τ̃∗Lτ̃Lh
0 + [Qτ −Gs2

w]τ̃∗Rτ̃Rh
0 −Hτ [τ̃∗Lτ̃Rh

0 + τ̃∗Rτ̃Lh
0]

(3.81)

where

Qµ,τ =
gm2

µ,τsinα

Mwcosβ
(3.82)

G = gzMzsin(α+ β) (3.83)

Hµ,τ =
gmµ,τ

2Mwcosβ
(Aµ,τsinα− µsusycosα) (3.84)

(3.85)

Using the couplings that we obtained in Matrix 3.78, substituing µ̃R, µ̃L, τ̃R and
τ̃L and after some algebra que obtain

Lh0f̃ f̃ = {s2
ϕ(Qτ +Hτ ) + c2ϕ(Qµ +Hµ)− 1

4
G}h0µ̃1µ̃1

+ {s2
ϕ(Qτ −Hτ ) + c2ϕ(Qµ −Hµ)− 1

4
G}h0µ̃2µ̃2

+ {s2
ϕ(Qµ −Hµ) + c2ϕ(Qτ −Hτ )− 1

4
G}h0τ̃1τ̃1

+ {s2
ϕ(Qµ +Hµ) + c2ϕ(Qτ +Hτ )− 1

4
G}h0τ̃2τ̃2

+
1

4
G(1− 4s2

w)h0µ̃1µ̃2

+ cϕsϕ(Qτ −Qµ +Hτ −Hµ)h0µ̃1τ̃2

+
1

4
G(1− 4s2

w)h0µ̃2µ̃1

+ cϕsϕ(Qτ̃ −Qµ̃ +Hµ −Hτ )h0µ̃2τ̃1

+ cϕsϕ(Qτ −Qµ̃ +Hµ −Hτ )h0τ̃1µ̃2

+
1

4
G(1− 4s2

w)h0τ̃1τ̃2

+ cϕsϕ(Qτ −Qµ +Hτ −Hµ)h0τ̃2µ̃1

+
1

4
G(1− 4s2

w)h0τ̃2τ̃1

(3.86)

The Lagrangian that modelates the interaction of B̃f̃f is , where f̃ = µ̃, τ̃

L = − g√
2

¯̃B0

{
[−tanθwPL]µ̃∗Lµ+ [2tanθwPR]µ̃∗Rµ+ [−tanθwPL]τ̃∗Lτ + [2tanθwPR]τ̃∗Rτ

}
(3.87)
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gh0f̃ f̃ µ̃1 µ̃2 τ̃1 τ̃2
µ̃1 s2

ϕ(Qτ +Hτ ) + c2ϕ(Qµ +Hµ)− 1
4G

1
4G(1− 4s2

w) 0 cϕsϕ(Qτ −Qµ +Hτ −Hµ)

µ̃2
1
4G(1− 4s2

w) s2
ϕ(Qτ −Hτ ) + c2ϕ(Qµ −Hµ)− 1

4G cϕsϕ(Qτ −Qµ +Hµ −Hτ ) 0

τ̃1 0 cϕsϕ(Qτ −Qµ +Hµ −Hτ ) s2
ϕ(Qµ −Hµ) + c2ϕ(Qτ −Hτ )− 1

4G
1
4G(1− 4s2

w)

τ̃2 cϕsϕ(Qτ −Qµ +Hτ −Hµ) 0 1
4G(1− 4s2

w) s2
ϕ(Qµ +Hµ) + c2ϕ(Qτ +Hτ )− 1

4G

Table 3.2: Expressions of the respective interactions of the higgs boson h0 with
the s-fermions

Substitung µ̃R, µ̃L, τ̃R and τ̃L, which can be found from Matrix 3.78, and after
some algebraic steps we obtain that the lagrangian is

LB̃f̃ f̃ = − g

4
¯̃Btanθw

{
cϕ(3 + γ5)µ̃1µ+ sϕ(3 + γ5)µ̃1 + cϕ(1 + 3γ5)µ̃2µ+ sϕ(1 + 3γ5)µ̃2τ

− sϕ(1 + 3γ5)τ̃1µ+ cϕ(1 + 3γ5)τ̃1τ − sϕ(3 + γ5)τ̃2µ+ cϕ(3 + γ5)τ̃2τ

}
(3.88)

gB̃f̃f µ τ

µ̃1 − gcϕ4 tanθw[3 + γ5] − gsϕ4 tanθw[3 + γ5]
µ̃2 − gcϕ4 tanθw[1 + 3γ5] − gsϕ4 tanθw[1 + 3γ5]
τ̃1

gsϕ
4 tanθw[1 + 3γ5] − gcϕ4 tanθw[1 + 3γ5]

τ̃2
gsϕ
4 tanθw[3 + γ5] − gcϕ4 tanθw[3 + γ5]

Table 3.3: Expressions obtained from the Lagrangian, in order to use in the
different interactions of the B̃



30 Flavour Violation within the MSSM


	Flavour Violation within the Minimal Supersymmetric Standard Model 
	The Super-Poincaré Algebra
	The Wess Zumino Model
	SuperFields and Supercoordinates
	Soft Supersymmetry Breaking
	MSSM
	MSSM Extended in Flavour Ansatz
	Modified Lagrangians



