Tesis profesional presentada por
Licenciatura en Física. Departamento de Actuaría, Física y Matemáticas. Escuela de Ciencias, Universidad de las Américas Puebla.
Jurado Calificador
Asesor: Dr. Daniel Grün
Asesor: Dr. Luca Tortorelli
Asesora: Dra. Milagros Zeballos Rebaza
Cholula, Puebla, México a 30 de noviembre de 2023.
Spectral Energy Distributions (SEDs) represent how the energy of an object is arranged considering different wavelengths. These are useful in astronomical research, as are known as the object?s fingerprints that bring insights to the characteristics of, e.g. galaxies. This study focuses on building a self-organizing map (SOM) to bring order to a set of restframe galaxy SEDs. The aim is to find patterns within thie galaxy zoo, providing insights and techniques that are crucial for photometric redshifts. Morevoer, the SOM's outcomes are expected to contribute to the construction of a comprehensive model for the galaxy population, aiming to provide insights and techniques that will be useful for photometric redshifts and more generally to build a model of the galaxy population useful for future cosmological galaxy surveys. Through this work, we intent to offer alternative methods for interpreting and categorizing galaxy spectral profiles.
Keywords: Spectral Energy Distribution, Galaxy, Variarional Autoencoder, Self Organizing Map.
Portada
Agradecimientos
Índices
Capítulo 1. Introduction
Capítulo 2. Models and numerical tools
Capítulo 3. Results and analysis
Capítulo 4. Conclusions
Referencias
Contreras Miranda, P. 2023. Mapping the Zoo of Rest-Frame Galaxy SEDs using Unsupervised Machine Learning. Tesis Licenciatura. Física. Departamento de Actuaría, Física y Matemáticas, Escuela de Ciencias, Universidad de las Américas Puebla. Noviembre. Derechos Reservados © 2023.