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Abstract

In this work, we present a probabilistic model for directed graphs where nodes have attributes and labels. This
model serves as a generative classifier capable of predicting the labels of unseen nodes using either maximum likeli-
hood or maximum a posteriori estimations. The predictions made by this model are highly interpretable, contrasting
with some common methods for node classification, such as graph neural networks. We applied the model to two
datasets, demonstrating predictive performance that is competitive with, and even superior to, state-of-the-art meth-
ods. One of the datasets considered is adapted from the Math Genealogy Project, which has not previously been
utilized for this purpose. Consequently, we evaluated several classification algorithms on this dataset to compare the
performance of our model and provide benchmarks for this new resource.

1 Introduction

A graph is a pair G = (V, E) representing a collection of entities V, called nodes, and a binary relation between them
E C V x V. This general structure enables graphs to effectively represent a diverse array of objects across various
domains, including physics, biology, social networks, and chemistry, among others. Consequently, in recent years,
there has been a substantial increase in the availability and significance of graph-structured data [25, 3]. Within this
context, the ability to learn from this graph representation becomes essential. Specifically, given a property or label
available for a subset of the nodes, a common task is to extend this property to unlabeled nodes. This task, known as
node classification, has gained importance in a variety of fields [17, 33].

For node classification, machine learning techniques, especially Graph Neural Networks (GNNs), are widely used
due to their ability to capture relational information in graph-structured data [13, 22]. GNNs have achieved state-of-
the-art performance across various tasks, making them a preferred choice for node classification [40, 42]. However,
a major challenge for neural network based models is their lack of interpretability. Despite high predictive accuracy,
their complex architectures often lead to opaque decision-making processes, rendering them “black boxes” [7, 37].
Understanding a model’s decision-making is essential for trust in its predictions [4], and in some cases, simpler inter-
pretable models are favored [30]. This is particularly crucial in fields such as healthcare, finance, and criminal justice,
where transparency and trustworthiness are vital [32, 5, 1].

In response to this, we propose a non-neural network model for node classification that yields interpretable pre-
dictions. Specifically, we introduce a probabilistic model to describe the underlying behavior of the data presented
in a directed graph. This general model allows us to define the degree and label distribution, as well as the behavior
of labels of connected nodes. Namely, the model defines the probabilities associated with several events, taking into
account the information within the graph. This model serves as a generative classifier for node classification, where we
consider two approaches for making predictions: maximum likelihood estimations and maximum a posteriori estima-
tions. To estimate the probability regarding the label of a single node , the proposed model considers information from
the first-order neighborhood and assumes conditional independence among each component. Making inferences using
the proposed model is not computationally expensive, and the iterative prediction process can even be parallelized to
enhance execution time. Moreover, by estimating the parameters of the probabilistic model, we can make predictions
for unseen nodes in the graph. This means that not all nodes in the graph need to be present during training, allowing
us to obtain an inductive method for node classification [14].

We applied our model for node classification on two datasets, comparing its performance with benchmarks and
other methods for node classification, including Graph Neural Networks. The first dataset for testing our method is
a newly created dataset derived from the publicly available information of the Math Genealogy Project!, specifically

Mttps://mathgenealogy.org/index.php



adapted for the node classification task. This data has never been used before for classification tasks, necessitating
adaptations for this purpose. We also evaluated several common classification methods on this dataset to serve as
benchmarks and to compare their predictions with those generated by our model. Additionally, we applied our model
to the ogbn-arxiv dataset [15], a widely recognized dataset used for benchmarking node classification algorithms.

The contributions of this work are:

* Introduction of a probabilistic model for describing directed attributed graphs.

« Utilization of this model for node classification, resulting in interpretable predictions. All the code is available
in a GitHub repository.”

* Introduction of a new dataset for node classification, consisting of an adaptation of the Math Genealogy Project
data.

2 Preliminaries

This section introduces the foundational concepts necessary for describing our model and the experimental evaluation
of node classification. We begin by establishing notation in probability theory and introducing parametric distribution
families relevant to our experiments. Following this, we provide an overview of several standard machine learning
classification algorithms, which are subsequently evaluated in the experiments.

2.1 Probability theory

Let Z be an m-dimensional discrete random vector (m = 1 for the case of a random variable), we denote by f :
R™ — [0, 1] the probability mass function of Z, given by

fz(2) =P(Z = 2),
for each z € R™. For two discrete random vectors Z and Z’, of dimensions m and m/, respectively, we denote by
fz.z : R™t™ — [0, 1] their joint probability mass function. It is given by
f2.2/(2,2")=P(Z =2,Z" =2),

for each z € R™, 2/ € R™ . For two random variables (or vectors) Z and Z’, the conditional probability function
of Z given Z' = 2/, for 2’ such that f/ () > 0, is expressed as

_ fZ7Z'(Z»Z/>_

faz (= 7) = fz(2)

2.1.1 Multinomial distribution

Let d,k € N, and let § € R* be a vector § = (61,05,...,0;) such that §; > 0 for each i € {1,... k}, and
Zle ; = 1. A k-dimensional discrete random vector Z is said to follow a multinomial distribution with parameters
d and 6, denoted by Z ~ Multinomial(d, 9), if

! k e
foe) = J T i 007 3 Eiyzi=d
0 otherwise.

forall z = (z1,22,...,2x) € (No)*, where Ny = {0, 1,2, ...} denotes the set of non-negative integers. Denote
by g(z;d, 6) the probability mass function of a discrete random vector that follows a multinomial distribution with
parameters d and 6, evaluated at z.

2https ://github.com/DiegoHuertal /A-Probabilistic-Model-for-Node-Classification-in-Directed-Graphs



2.1.2 Discrete truncated power law

A discrete random variable Z with support on the positive integers is said to follow a power law distribution with
parameter x > 0 if its probability mass function f satisfies
fz(2) o 27",
The truncated power law distribution (also known as power law with exponential cutoff), is a power law multiplied
by an exponential function. That is, the discrete random variable Z with support on the positive integers is said to
follow a truncated power law distribution, with parameters x > 0, and A > 0 if its probability mass function satisfies

fz(2) ox z7Re™*A,

2.1.3 Log-normal distribution

A continuous random variable Z is said to follow a log-normal distribution with parameters ; and o2, denoted as
Z ~ Lognormal(y, o2), if the natural logarithm of Z follows a normal distribution with mean y and variance o2, i.e.,
In(Z) ~ N (1, a?). The probability density function fz(z) of a log-normal random variable is given by

2
f2(2) = (02v2m) lexp (W) : (1)

The log-normal distribution is widely used for modeling citation count data, which is inherently discrete in nature
[34]. However, applying the log-normal distribution to such data requires a discretized version of the distribution.
Several approaches exist for discretizing the continuous log-normal distribution. For example, one common method
involves calculating the probability of a discrete value by integrating the continuous probability density function over
the unit interval surrounding that value. In this work, we adopt the discretization approach described in [35]. Specif-
ically, we treat the p.d.f. given in equation (1) as the probability density function of a discrete log-normal random
variable, with the appropriate normalization.

2.2 Machine Learning Models for Classification

This section describes three common machine learning methods used for classification. Specifically, we outline: the
Naive Bayes algorithm, a probabilistic classifier; BERT, a neural network-based model that can be used for text classifi-
cation; and Graph Convolutional Networks (GCNs), a neural network-based approach for node classification in graphs.
These methods are selected for their diverse theoretical foundations and proven performance across various applica-
tions. We apply these three methods to the Math Genealogy Project dataset to evaluate and compare the effectiveness
of our probabilistic model in classification.

2.2.1 Naive Bayes

The Naive Bayes algorithm is a well-known and efficient probabilistic classifier with a wide range of applications
[38]. It is frequently employed in text classification due to its computational efficiency and relatively strong predictive
performance, often competitive with more sophisticated methods [8, 41]. Here, we describe the Naive Bayes classifier
in the context of text classification, following the detailed explanation in Chapter 4 of [19].

Multinomial Naive Bayes is a supervised generative classification algorithm that assigns documents to predefined
classes based on their content. The classifier is trained on a dataset {(z;,y;) })\.,, where each x; represents a document
and y; € ) is its corresponding class label. Each document x; is represented by the terms (i.e. words) ¢; it contains,
where the algorithm assumes a bag-of-words representation [27] (i.e., word identity matters, but not their position
within the document). Given a new document, with terms ¢4, ..., t,,, the Naive Bayes classifier predicts the class by
maximizing the posterior probability of the class given the terms in the document, as follows:

uvp = argmax logP(y) + 3 logP(t; |y)

J Epositions



Here, P(y) represents the prior probability of class y, and P(¢; | y) represents the likelihood of the term ¢; appearing
in a document of class y. To estimate the prior probabilities P(y) using maximum likelihood, let NV, be the number
of documents in the training data with class y, and N be the total number of documents. The estimates of the prior
probabilities are given by:

For the likelihood of a term ¢; given a class y, Laplace smoothing can be employed on word frequencies [24]. This
smoothing addresses the problem of zero probabilities for words that do not appear in the training data for a specific
class. The likelihood P(¢; | y) is estimated by concatenating all documents of class y, and using the frequency of the
term ¢; in this concatenated document. The Laplace-smoothed estimate is given by:

. count(t;,y) + 1
P(t;|y) = ’ : )
/ ey (count(t,y) + 1)
where V' is the vocabulary consisting of all possible terms in the dataset. The smoothing term “1” in both the
numerator and denominator of Equation 2 can be replaced by a hyperparameter « to generalize the estimation method
to to additive smoothing [9].

2.2.2 BERT

Bidirectional Encoder Representations from Transformers (BERT) is a language representation model designed to
pretrain deep bidirectional representations from unlabeled text [10]. BERT has been successfully applied to a variety
of Natural Language Processing (NLP) tasks [2], such as question answering [10], sentiment analysis [39], depression
classification [31], and phishing email detection [26].

BERT is built on the transformer model, a neural network model based on attention mechanisms [36]. Its archi-
tecture is a multi-layer bidirectional Transformer encoder, comprising L = 12 layers, a hidden size of H = 768, and
A = 12 self-attention heads, contributing to a total of 110 million parameters [10]. The input to BERT is a sequence of
text, to which a special token, called the classification token and denoted [CLS], is added at the beginning. The model
outputs vector representations 7; € R¥ for each term in the sequence, along with a representation C' € R¥ for the
[CLS] token. This [CLS] vector serves as an aggregate representation for classification tasks. BERT is pretrained using
the Masked Language Model (MLM) and Next Sentence Prediction (NSP) objectives, which allow it to learn general
language representations.

For classification tasks, BERT can be utilized by initializing the model with pretrained parameters and appending a
classification layer. This output layer takes the vector associated with the [CLS] token, C, and computes the predicted
class. The classification layer introduces a new parameter matrix W € RX*H where K is the number of distinct
classes in the classification problem. All model parameters, including those from BERT, are fine-tuned during the
training phase. Given the vector C, the output layer produces the probabilities for the K classes, represented by
Z € RX, by computing:

Z = softmax(CW7T).

2.2.3 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) are neural network-based models designed for classifying nodes within a
graph, where labels are only available for a subset of the nodes [20]. GCNs have demonstrated strong capabilities in
learning effective graph representations, resulting in superior performance across a variety of tasks and applications
[42]. They have been successfully applied in diverse fields, including computer vision [21, 6], natural language pro-
cessing [11, 23], and anomaly detection [18]. Their versatility in handling different data types and expressive power
makes them a compelling choice for node classification tasks.

Let G = (V, E) be a graph with n = |V| nodes, an adjacency matrix A € R™*", and a feature matrix X € R"*¢,
where each row of X represents the d-dimensional feature vector associated with a node. The ordering of nodes in
X is consistent with that in A. Additionally, each node i in the training set Vi,;, € V has a known label y; out of
C possible classes. The objective is to predict labels for nodes outside of the training set. A general Graph Neural
Network (GNN) model for node classification [22, 13] is composed of L graph filtering operations (layers) followed



by a final classification layer. Each layer updates node features based on the features from the previous layer and
information from each node’s neighborhood. Formally, the [-th graph filtering layer h; takes the form

X0 = hy(4, X0,

where X(O ¢ Rnxd® represents the node features at the I-th layer, with each node having a d")-dimensional
feature vector. The initial features are X (© = X and d(©) = d. In the Graph Convolutional Network (GCN) model
[20], each layer h; is defined as

<XU):hﬂAVYQ*U::J(D’%Aﬁ’%X”’UWﬂ”).

Here, A= A+1, is the adjacency matrix with added self-loops, I,, € R™*™ is the identity matrix, and D e R"*n
is the degree matrix of A, thatis D;; = Z;;l A;;. The matrix WO represents the learnable weights for layer [, and o
is an element-wise non-linear activation function. The output of the L-th graph filtering layer provides the final node

features X L), which are used for node classification as follows

Z = softmax (X DW).

In this equation, the softmax function is applied row-wise to X "), where W € R4 %C i5 a learnable parameter
matrix. This transformation maps the final node features X () to the output probabilities Z € R"*® with each row
Z; representing the probabilities of different classes for the ¢-th node. The entire GCN model can be expressed as

Z = fGCN(AaX7@)7

where © includes the final matrix W and the weight matrices W (?) for each layer. These parameters are learned by
minimizing the cross-entropy loss function £(., .) over all training nodes. Namely, by minimizing

L= UZiy)-

1€ Virain

3 Model

Consider a directed simple graph G = (V, E), with n = |V| nodes, where V' = {1,2,...,n} and m = |E| edges,
where £ C V x V. For each node v € V, x,, € X denotes the attributes of the node, and y,, € ) represents the label
assigned to node v. We assume that the attribute set X is any countable set, and the label set ) contains K distinct
labels, ¥ = {1,2,...,K}. Letv € V be a node in the graph, denote by N'"(v) and N°"(v) the sets of predecessors
and successors of v. That is, N™(v) = {u € V : (u,v) € E} and N°*(v) = {u € V : (v,u) € E}, the neighborhood
of a node v is given by N(v) = N™™(v) U N°(v). The in-degree di" and out-degree d" of a node v are defined as
dn = |N™(v)| and d°" = |N°"(v)|. Moreover, let p, € (Ng)¥ and s, € (No)¥ represent the vectors indicating the
frequencies of labels in the predecessors and successors of v, respectively. That is,

(po)i = [{u € N™(v) : yu = K},
(sv)e = {u € N™(v) : yu = k}|.

for each k € ). Note that Zle(pv) k= d"and Zﬁil(sv) & = do". In Figure 1 we provide a simple example that
lustrates this notation.

For every node v € V, denote by X, and Y,, the random variables indicating the attributes and the label of v,
and denote by P, and S, the random vectors indicating the frequencies of labels in the predecessors and successors
of v. We assume that these random variables follow the same distribution for every node v € V. Therefore, any
differences in the probabilities associated with distinct nodes arise from conditioning on different events. We assume
that, conditioned on every other random variable of the graph, Y, is only dependent on P,, .S, and X,,. That is, the label
of a node only depends on the labels of the direct predecessors and successors of the node, and on its own attributes.
Additionally, we assume that these random variables are conditionally independent given Y,,, namely



Figure 1: Example of notation. Let the label of a node denote its color, and consider J = {1,2,3} where label 1
indicates red, label 2 indicates green, and label 3 indicates purple. Therefore, y3 = 2, N™(3) = {1,2}, N°"(3) =
{4,5,6} d = 2,d3" = 3, p3 = (1,1,0) and s3 = (2,0, 1).

TP, 80, %0y, (0,8, 2,7) = [ v, (0, 0) fs,v, (5,9) fx, v, (z,1). (3)

Next, we describe the probabilistic behavior governing the labels. Denote by m = (my,72,...,7x) € RX the
vector containing the information of the probability mass function of the marginal distribution of Y,,. Formally,

Wi:va(i):P(Yv :i)7 Vie ). )

The labels of nodes in the neighborhood of v directly impact these probabilities. For instance, let © € RE*X be
a matrix with the conditional probabilities of a node label conditioned on a predecessor label. More specifically, let
©; ; represent the probability that a node has label j, given that one of its predecessors has label ¢. Analogously, let
= € RE*X be a matrix with conditional probabilities of a node label conditioned on a successor label. That is, we let
E;,; be the probability that a node has label j, given that one of its successors has label i.
Formally,
0i; =P, =7|Fue N"v) st Y, =i), 5)

Ei; =P(Y, =j|Jue N"w) st Y, =1i), (6)

forall 4, j € )V, also note that Zszl 0, = Zszl Ei,; = lforallic ).
Denote by D" and DS the random variables indicating the in and out degree of v. For each i € ), let 1; (and ¢;)
denote the probability mass functions of DI (and D), conditioned on the event Y,, = . Namely,

$i(d) = fomy, (d, i) =P(DY =d | Y, =), ©)

di(d) = fpoy, (d,i) =P(DY" =d | Y, =1). ®)

Suppose that D" = d and Y,, = i, where d,i € N are known values. Then P, is a random vector of fixed sum
indicating the labels of the d predecessors of v. We assume that, conditioned on Y,, = i, the labels of the predecessors
are independent of each other and follow the same distribution, determined by the i-th row of =, denoted by &; € R,
Consequently, given these conditions, P, follows a multinomial distribution with parameters d and &;, denoted by
{P,|D™ = d,Y, = i} ~ Multinomial(d, &;). Similarly, we get that {S,|D%" = d,Y, = i} ~ Multinomial(d, 6;),
where 6; € R¥ is the i-th row of ©. Additionally, note that { P,|DI* = 0,Y, =i} and {S,|D% = 0,Y, = i} follow
the same distribution, as both must be the zero vector of length K in this case.

Finally, for each ¢ € ), let w; denote the probability mass function of X, conditioned on the event Y,, = i. Namely,

wi(z) = fx, v, (2,1) =P(X, =2 | Y, =1). 9)



4 Parameter estimation

Given a simple directed graph G = (V, E), where each node v has associated attributes z,, and labels y,, we assume
the graph is governed by the probabilistic model described in Section 3. Our goal is to estimate the parameters of this
model. Specifically, we aim to estimate the vector 7, the matrices © and =, as well as the functions 1;, ¢;, and w; for
eachi € ).

The parameters 7, O, and = can be estimated based on the observed data frequencies. These estimators correspond
to the maximum likelihood estimators and provide unbiased estimates. Nevertheless, we can utilize additive smoothing
to avoid having zero probabilities. This is useful to avoid making estimations of events with zero probability and will be
useful when doing a node classification task with the model. Specifically, let o, vg, a= > 0 represent the smoothing
hyperparameters for w, ©, and = respectively. The case « = 0 corresponds to frequency-based estimation (i.e., no
smoothing), while & = 1 applies Laplace smoothing. The smoothed estimates 7, ©, and Z are then computed as
follows:

A HveV:y, =i} +ax

K2

n+ Ko, ’
éij _ |{(U7U) EFE:y, =i,y?} :j}‘+a@,
’ H{(u,v) € E:y, =i} + Kag
o U@ € By, = =i} tos
7 H(v,u) EE iy, =i} + Kaz

We consider two main approaches to estimate the functions 1); and ¢; for each label 7 € ). The first approach
involves estimating these conditional probability functions using additive smoothing, with hyperparameters o, oy, >
0. Specifically, we select finite sets Dy, Dy C Ny, which define the degrees for which we want to ensure positive
estimates of ¢; and ¢;, respectively. That is, we assume 1;(d) = 0 for d € Ny \ Dy, and ¢;(d’) = 0for d’ € Ny \ Dy.
Ford € Dy and d’ € D,, the estimates are given by:

eV d=dy, =i} + ay

. (10)
HveV iy, =i} + |D¢|a¢

Ju(d) = B(D" = dly, = i) = |

HoeV:d"=d,y, =i} +ay

- (11)
Hv eV iy, =i} + |Dglayg

Gi(d) =B(DY = dly, =) =

Alternatively, since the random variables { DI"|Y, = i} and {D%"|Y,, = i} can take values over all of Ny, we can
opt to fit a parametric distribution. This approach reduces the number of parameters to estimate and can provide greater
interpretability to the model. However, the choice of parametric family depends on the specific case, and its validity
should be confirmed using a goodness-of-fit test.

The estimation of the functions w; is highly case-specific, as the structure of the attribute set X can vary significantly
across different applications. We provide an example of estimating the functions w; when each z € X represents a
document, which is defined as a piece of text. This is common in many real-world applications. First, we define a
vocabulary ¥ = {t1,¢2,...,t,} consisting of 7 unique terms, and let M be the maximum length that a document can
have. Then, the attribute set X’ consists of all possible sequences of at most M terms from the vocabulary. Formally,
X = U%:l Y. For each € X, the vector T € (Np)7 is used to represent the frequency of each term t; in the
document z. The process of transforming the document z into a vector Z is referred to as text vectorization. In this
context, Z; represents the number of occurrences of the term ¢; in , given by

2= (=), (12)
tex
foreach j € {1,...,7}. Then, the estimated conditional probability &;(x) of observing the text z: given the label
is
A o~ . 1 T ~ Ts
@i2) = P(X, = alY, =1) = - H(m,j) i, (13)



Here, 1); ; is the estimated conditional probability that the term ¢; appears in the attributes of a node v given y,, = 1,
foreachi € Y and j € {1,...,7}. These probabilities are estimated using additive smoothing with a hyperparameter
a,, > 0 on the term frequencies across different classes, namely

Z’UGV ]]'(yv:i) (‘/'E'U)J + Cw
EUEV Ty,=) Z;:1(§3v)j + Ty

Note that the parameters 7); ; correspond to the conditional probabilities ]f”(tj|yv = 4), and their estimation, as
given by Equation 14, follows a fundamentally similar procedure as the multinomial Naive Bayes classifier for text
classification (see Equation 2). In fact, the example presented in this section for modeling the functions w; for text-
based attributes is based on the probabilistic framework of multinomial Naive Bayes. If we restrict our model to a graph
with no connections between nodes, the probabilistic inference performed by our model for text attributes reduces to
multinomial Naive Bayes applied to the nodes’ text attributes. In this sense, our probabilistic model can be viewed as
an extension of the Naive Bayes algorithm to graph-structured data, allowing it to incorporate both the content of the
node and the graph structure for classification tasks.

Nij = (14)

5 Node Classification

Suppose we have a simple directed graph G = (V, E'), with node attributes x,, for each node v. However, the labels y,
are not available for all nodes. Instead, there is a subset of the nodes L C V' for which vy, is known for every v € L,
while labels of nodes in U := V' — L are unknown. In that case, the objective is to learn a function § : U — ) such
that §(v) is the label prediction for the node v € U. This task is referred to as node classification.

To predict the label of nodes v € U, we can assume that the graph follows the probabilistic model described in
Section 3. We first estimate the model parameters, as outlined in Section 4, and then use these parameters to make
label predictions. In this section, we explain how to predict node labels using the probabilistic model.

5.1 Prediction over a single node

Consider a node v € V for which y,, is known for each v € N (v). The prediction §(v) is derived from estimating the
random variable Y,,. Due to the assumption that Y,, is only dependent on P,, S, and X,,, which are known, we only
use these values for computing §(v). To simplify notation, we drop the subscripts from the random variables, as we are
currently considering only the information pertaining to a node v. There are two primary approaches to estimate Y:
maximum likelihood (ML) estimation and maximum a posteriori (MAP) estimation. We explain both methodologies.

5.1.1 Maximum Likelihood Estimate

The Maximum Likelihood (ML) estimate of Y, denoted by ymyg, is the solution to the following maximization prob-
lem.

IMLE = argrglea)gifp’s’my(p,s,x,i). (15)
Transforming this maximization problem to a minimization problem and using of equation 3, we obtain:
UMLE = arg Tzlélsf} —fery (0,7) fsv (5,0) fx)v (2,9). (16)

Since the random vector { P|D'" = d,Y = i} follows a multinomial distribution with parameters d and &;, we can
express:
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fP|Y(pai) = Z fP,Di"|Y(pa da Z)

d=0

K
= fppny (1% me Z)

k=1
= fp,pmy (p,d", i)

= fpipny (D, d",0) fpmy (", 4)

= g(p; d™, &)i(d™). (17)

Using a similar argument, we get that

Fsiy (s,4) = g(s;d™, 0;) i (d™). (18)

Substituting Equations 17 and 18, plugging the estimations of the unknown parameters, and taking into account
that the logarithmic function is monotonically increasing, we rewrite Equation 16 as

e = arg min —log(g(p; d", &)) — log(g(s; d™, 0;)) — log(ihi(d™))
—log (s (d®™)) — log(w;(z)).

Since the set of labels ) is typically not large, the minimization can be efficiently performed by evaluating all
possible labels.

5.1.2 Maximum A Posteriori Estimation

The Maximum A Posteriori (MAP) estimation of Y, denoted by gmap is the solution to the following maximization
problem:

UMAP = arg max fyips,x(i,p,s,2).

By applying Bayes’s Theorem, we get that:

. Ipsxy(p,s,x,i) fy (i)
YMAP = argmax
i€y fP,S,X(p7S7x)

= arg%aiifP,S,XW(pv s7x72>fY(Z)

Note that the first term in this equation corresponds exactly to the quantity in the minimization problem presented
in Equation 15. Thus, we can derive

fase = argmin —log(g(p: ")) ~ log(g(s: d™, ) ~ log(d(d")
_log(qlgi(dout)) —log(@;(x)) — log(7;).

Note that the MAP and ML estimates of Y involve solving almost the same minimization problem, with the only
difference being that the MAP estimate incorporates an additional term corresponding to the prior distribution of Y.
When uniform priors are assumed in the MAP estimate, i.e when 7; is constant for all 4, it is equivalent to the ML
estimate. Additionally, note that estimating labels using this approach corresponds to a generative classifier.
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5.1.3 Interpretability

Both the ML and MAP estimates are derived from minimization problems that involve a sum of positive terms. For
each ¢ € ), these positive terms represent discrepancies between specific information in the graph and the belief that
the true label is Y = ¢. Then, the minimization process selects the label that minimizes these discrepancies, thereby
reflecting the label that is most congruent with the observed data.

Each term in the minimization problem provides insight into how well a potential label aligns with different aspects
of the graph. A term with a high value indicates a significant discrepancy between the label and a particular piece of
information. The interpretation of each term is as follows:

* Label Predecessors Discrepancy: —log(g(p; dina éz))
« Label Successors Discrepancy: —log(g(s; d**, ;)).
* Predecessor Count Discrepancy: —log(;fzi(din))_

* Successor Count Discrepancy: —log(¢;(d™)).

Attribute Discrepancy: —log(w;(z)).
* Prior Belief Discrepancy: —log(7;).

By utilizing the probabilistic model for prediction, we can identify the elements of the node that support the as-
signed label. Furthermore, we can analyze which factors might have led to the exclusion of alternative labels, thereby
enhancing our understanding of the underlying mechanisms influencing the model’s predictions. In Section 6.5 we
provide examples to illustrate the interpretability of the predictions computed by the model.

5.2 Prediction over several nodes

In many cases, the objective is to predict the label of a node v € V for which one or more of its neighboring nodes
have unknown labels, i.e Ju € N(v) such that uw € U. Under these circumstances, the method described in Section
5.1 cannot be directly applied to compute the prediction §j(v). Instead, we can first compute an estimate §’(u) for
the neighboring node u and use this estimate as a substitute for the actual value of y,, in order to predict y, using the
previously outlined methodology. While the estimate §’(u) may not be completely precise, it is unlikely to have a
significant impact on ¢(v), as this estimate depends on multiple factors.

To compute §’(u), any straightforward heuristic can be employed. We propose to utilize a simplified version of the
method described in Section 5.1, where the information of the neighborhood of w is not utilized. Consequently, the
estimation is given by

9’ (u) = arg min —log(w;(z,,)). (19)
ey

Moreover, we explore another heuristic for computing 4’ (u), which is by examining near nodes. Specifically, the
neighborhoods of different orders of u are explored until a node with known label w is found, then 3’ (u) = ¥.,. If no
node has known label in the explored neighborhoods, then 4’ (u) is randomly selected. For the experiments, we consider
both approaches for computing the simple estimations ¢’ (u). We select the approach that gives the best results, treating
this option as a hyperparameter.

Generalizing this idea to the whole graph, we learn the function § : U — ) through an iterative process. In this
framework, we utilize simple estimates of all unknown labels to generate improved estimates, iteratively refining these
predictions. This process is described in Algorithm 1, where the estimations can be derived using either ML or MAP
estimates. This iterative process is advantageous, as it can be efficiently parallelized, thereby significantly reducing
computational time and making it well-suited for large datasets. The iterative process of generating estimations can be

stopped after a fixed number of iterations, or whenever the label predictions remains constant for most of the nodes.
The outcome of this process is a set of estimations {,1}50), g)ﬁl), e ,g]f,T)} for each node v € U. To select the final
estimations ¢, a specific iteration ¢ must be chosen, leading to the assignment g(v) = gﬁ”, for all v € V. The selection
of iteration ¢ can be achieved by defining a validation set of nodes with known labels, and subsequently selecting the

iteration that yields the best performance on this validation set.
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Algoritm 1 Prediction over several nodes

Input: Attributed directed graph G = (V, E) with labels defined for a set L C V (labeled nodes), number of iterations 7', and convergence
tolerance € € (0, 1).
Output: Estimations {@1(,0), QS,U, ceey ”I(,T)} for each node v € U = V' \ L (unlabeled nodes).
g}SO) + estimation ¢’ (v) using any simple method, for each v € U.
t<1
repeat

forallv € U do

Update g]vt < Yy assuming g}ffﬁl) as the real labels of the neighbors.
end for
t—t+1

until ggt) = gff‘l) for at least 100(1 — €)% of nodes v € U, ort > T

6 Math Genealogy Project

The Math Genealogy Project is an initiative aimed at compiling comprehensive information about mathematicians
worldwide®. The goal is to collect data about individuals who have obtained doctorates in mathematics, statistics,
computer science, mathematics education, operations research or similar. This dataset is significant for understanding
the lineage and contributions of mathematicians, which can illuminate the evolution of mathematical thought. For each
mathematician, the math genealogy project records:

The full name of the individual.
* The year the degree was awarded and the university granting it.

* The complete name(s) of the advisor(s).

The title of the dissertation.

* The Mathematics Subject Classification (MSC) for the dissertation.

The MSC is a classification scheme used by numerous mathematics journals to categorize research topics. The
MSC is hierarchical, encompassing 63 mathematical disciplines at its highest level. This classification is particularly
useful in the Math Genealogy Project for identifying a mathematician’s primary area of interest and research focus.

6.1 Learning task

The dataset from the Math Genealogy Project is incomplete, with several mathematicians lacking certain fields of
information. Consequently, it is of interest to predict these missing values using the available data. Specifically, we
aim to predict the Mathematics Subject Classification (MSC) of each mathematician. To accomplish this, we train
classification algorithms that leverage the advisor-student relationships, as well as the titles of dissertations associated
with each mathematician, to predict the MSC. The first step in making predictions was to acquire the dataset. The web
page of the Math Genealogy Project was fetched to gather all available information. This data collection procedure was
conducted on October 2, 2023, using a modified version of publicly available code for scraping the math genealogy
website?.

Based on the fetched dataset, a directed graph was constructed where mathematicians serve as nodes, with directed
edges going from each advisor to their respective students. The resulting directed graph comprises 297,377 nodes and
329,209 edges. We utilize the titles of dissertations as node attributes. Therefore, we filtered the graph to include
only those nodes with available dissertation titles, resulting in a reduced graph with 267,774 nodes and 281,288 edges.
Notably, over 90% of the mathematicians in the dataset have their dissertation titles available, affirming the validity of
this attribute for our predictions. This resulting graph is the one considered for the node classification task. In figure
2 we present a visualization of an induced subgraph, where colors with different MSC classification are drawn using
distinct colors.

3available online at: https://mathgenealogy.org/index.php
4GitHub repository: https://github.com/j2kun/math-genealogy-scraper/tree/main
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Figure 2: Induced subgraph of size 500 of the resulted directed graph representing the information of the Math Geneal-
ogy Project. The size of a node is given by its out degree. The distinct colors represent different MSC of the nodes,
where the nodes with missing MSC are represented in black.

Out of the 267,774 mathematicians with available dissertation titles, only 174,501 possess corresponding MSC
classifications, which accounts for approximately 65% of the graph. The 93,273 nodes with dissertation titles but
lacking MSC labels are retained to enhance graph connectivity and facilitate information flow within the network. The
subset of 174,501 nodes with both dissertation titles and MSC classifications will be employed for training and testing
the different classification algorithms.

Following standard machine learning protocols, we partition this subset into three categories: the training set,
containing 141,345 nodes, is used to estimate the parameters of the models; the validation set, consisting of 15,705
nodes, is employed to select the optimal hyperparameters; and the testing set, comprising 17,451 nodes, is utilized
to evaluate the predictive performance of the models. Thus, the final graph comprises 52.79% training nodes, 5.87%
validation nodes, 6.52% testing nodes, and 34.83% nodes without MSC classifications. This is the division considered
in the following sections. Additionally, the same evaluation metric is employed to assess the performance of the various
algorithms. Due to the class imbalance in the MSC labels, we propose using the F1-score as an appropriate evaluation
measure.

6.2 Application of the model

The main classification algorithm employed for the Math Genealogy Project is our probabilistic model. As outlined in
Section 4, estimating the parameters of the model necessitates an adaptation to the specific characteristics of the data.
In this section, we detail the process of adjusting the model to accommodate the Math Genealogy Project graph, where
the titles of dissertations serve as node attributes and the Mathematics Subject Classification (MSC) represents the node
labels. To begin, note that the key parameters of the graph are given by: n = 267, 774, the number of mathematicians;
m = 281, 288, the number of advisor-student relationships; and K = 63, the total number of unique MSC categories.



14

6.2.1 Estimating the functions w;

The titles of dissertations serve as node attributes, meaning that for every node v, the attribute z,, € X is a piece of
text. Therefore, to estimate the conditional probabilities w; we follow the procedure outlined in Section 4. To construct
the vocabulary 3, we include all unigrams and bigrams (i.e. groups of one or two words) that appear at least twice in
the corpus, which consists of the titles of dissertations from the training nodes, with English stop words removed.

The vectors z,, are obtained using Equation 12, and the parameters 7); ; are estimated through additive smoothing
with a hyperparameter o, > 0, as described in Equation 14. The smoothing hyperparameter «,, is optimized using
the validation set. Finally, the estimation of w; is carried out according to Equation 13, with the difference that the
term ﬁ is omitted. Note that this term is not relevant for label estimation, as it is a constant within the optimization
problem. Consequently, the estimated functions w; are proportional to, but not equal to, the conditional probabilities,
which suffices for the node classification task. Specifically,

> @ilx) =C,
rEX
for all « € ), where C'is a constant. Furthermore, we explored an alternative approach for text vectorization,

different than Equation 12. The vectors Z, can also be computed using a Term Frequency-Inverse Document Frequency
(TF-IDF) transformation [28]. This transformation generates vectors Z, that quantify the importance of each term
within the respective text, resulting in entries that can take any positive real number. The parameters 7); ; and the
estimations w; are computed using the same procedure, following Equations 14 and 13 (without considering the term
ﬁ). Under this approach, the estimated functions &, are proportional to the conditional probabilities; however, the
normalization term may vary across classes. Namely,

Z (I)Z‘ (33) = Ci,
reX
where C; is a constant dependent of the label i € ). Employing these functions to perform node classification

requires the assumption C; ~ C; for all 4,5 € ). Both approaches of text vectorization are considered in our
experiments, treating the selection of the methodology as a hyperparameter chosen based on the validation set results.

6.2.2 Estimating the functions ¢;

Note that ¢;(d) represents the probability that a node with label 7 has d students, where d is a non-negative integer.
To model these conditional probabilities, we propose probability mass functions parameterized by 5; € (0,1), k; > 0
and \; > 0. The parameter f3; directly defines the probability that a mathematician with label 7 has no students.
Additionally, the proposed parametric functions follow a truncated power law distribution with parameters x; and \;
when restricted to the positive integers. Formally, we define the probability mass functions as follows:

B ifd =0,
(bz(da ﬁh Ki, )\’L) = (1 _ ﬂz) d—Fie— i lfd Z 1. (20)

AN,
Z?:1 d'—Fie—d' A

The estimation ﬁl is computed as the proportion of nodes with label ¢ that do not have any students. Then, the esti-
mations ; and \; are computed by maximum likelihood via a computational program. Consistent with the estimation
of other parameters, the estimations BZ #; and \; are computed using the samples of out-degrees obtained considering
only the training nodes. However, the out-degree of each node in the training set is computed by considering all nodes
in the graph, rather than restricting it to other training nodes. This approach is similarly applied to the estimation of the
functions ;.

To validate the suitability of the parametric functions outlined in Equation 20, we employ goodness-of-fit hypothe-
sis tests. These tests incorporate all available information within the graph, rather than just considering training nodes,
to enhance accuracy of the results. For each label ¢ € ), we conduct a Chi-squared goodness-of-fit test with & = 15
cells. If the expected cell values are not valid (i.e. if any value is below 1 or more than 20% of the values are below
5), the number of cells is reduced until the expected values meet the validity criteria. Then, the p-value is calculated
using a chi-square distribution with 15 — 1 — 3 = 11 degrees of freedom (or different when the number of cells is not
15). We set the significance level at 0.05. Consequently, we do not reject the null hypothesis that the data follow the
proposed distribution if the resulting p-value exceeds 0.05; in such cases, we conclude that the data aligns with the
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proposed distribution. An example of this methodology is presented in Figure 3, were we show the goodness of test
test associated with the out degree of nodes with label 46.

Following this methodology, we find out that 58 out of the 63 samples follow the proposed distribution, this is a
92.06% success rate. Moreover, even in unsuccessful cases, the proposed distribution appears to be a good approxima-
tion of the data distribution, an example of an unsuccessful case is presented in Figure 4. Given that the majority of
labels appear to adhere to the proposed distribution, we employ these parametric functions to model the functions ¢;.

Frequencies Frequencies (log scale) Data in cells
25000 —— Expected under HO Expected under HO —e— Expected under HO
= Oberved 10* s  Observed mmm Cbserved
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15000 2
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Figure 3: Chi-squared goodness-of-fit for the out degree of nodes with label 46 (68—Computer science). For this

sample, the test statistic takes the value 7' = 12.109, yielding a p-value of 0.35. Therefore, the test concludes that the
data follows the proposed distribution.
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Figure 4: Chi-squared goodness-of-fit for the out degree of nodes with label 58 (91—Game theory, economics, social
and behavioral sciences). For this sample, the test statistic takes the value T' = 25.5, yielding a p-value of 0.007.

Therefore, the test concludes that the data does not follow the proposed distribution. However, this distribution appears
to be a good approximation.

6.2.3 Estimating other parameters

To estimate the transition probabilities ©, = and the probabilities 7, we employ additive smoothing as outlined in
Section 4. The hyperparameters o, ag, and a= are optimized using the validation set. Regarding the estimation of
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the functions 1);, note that 1;(d) represents the probability that a node with label ¢ has d advisors. The number of
advisors is inherently limited, 98.5% of mathematicians have at most 2 advisors, with a maximum observed count of
6 advisors. Consequently, it is not necessary to fit a parametric distribution for estimating these functions. Instead, we
utilize additive smoothing with hyperparameter c,,, which is also optimized using the validation set.

6.3 Baselines for subject classification

In addition to our proposed probabilistic model, we employed other classification algorithms to predict the Mathematics
Subject Classification (MSC) of mathematicians. This approach enables us to compare the performance of our model
with established methods. First, we recognize two primary approaches to the MSC classification task:

 Utilizing only the titles of dissertations, treating it as a text classification task.

* Incorporating both the titles of dissertations and graph information, treating it as a node classification task.
Furthermore, we categorize the potential classification methods into two main types:

* Models based on probabilistic inference.

¢ Models based on neural networks.

To encompass a diverse array of classification algorithms, we selected one algorithm for each combination of ap-
proach and method. Our probabilistic model corresponds to an algorithm based on probabilistic inference for the node
classification task. For text classification, we implemented a Naive Bayes algorithm, which serves as a model based
on probabilistic inference. In the context of neural network-based algorithms, we opted for a Bidirectional Encoder
Representations from Transformers (BERT) model for text classification and a Graph Convolutional Network (GCN)
for node classification. The categorization of algorithms utilized for MSC classification is summarized in Table 1. Ad-
ditionally, we evaluated Label Propagation [16] on this dataset, as this method has demonstrated superior performance
compared to certain graph neural network models and serves as a common benchmark for node classification tasks.

Classification | Probabilistic Inference Neural Networks
Text Classification Naive Bayes BERT
Node Classification Our Model GCN

Table 1: Classification of Algorithms Used for MSC Classification.

6.4 Results on the Math Genealogy Project Dataset

This section presents the best hyperparameters selected for each method, and the classification results on the test set.
Hyperparameters were tuned on the validation set based on F1-score.

6.4.1 Hyperparameter Selection

Naive Bayes: Given its low training time, we explored a broad hyperparameter space via grid search. The selected
hyperparameters are as follows:

¢ N-gram range: Unigrams and bigrams (1-2).

¢ Minimum term frequency threshold: 1 (no threshold).
* Maximum vocabulary size: No limit (551,776 terms).
¢ Additive smoothing parameter: o = 0.01.

¢ Prior distribution: Estimated from label frequencies.
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BERT: Due to the computational intensity of fine-tuning, we explored a smaller hyperparameter space, selecting
the best configuration as follows:

* Weight decay: 0.01.

* Loss function: Non-weighted.

* Epochs: 7.

* Learning rate: 1075,

Graph Convolutional Network (GCN): For GCN, the graph is treated as undirected, considering both directions
for every edge. For the hyperparameters, we considered two variations in the node feature matrix based on vocabulary
size (1500 or 108,672 features), along with layer configurations, and loss function options (weighted or non-weighted).
The best hyperparameters are:

« Feature size: d(*) = 108, 672 (all terms in the training set).

L]

Loss function: Non-weighted.

Learning rate: 0.01.

Layer configuration: Two layers, d(*) = 300, d® = 300.

Training epochs: 100, with early stopping at 10 consecutive epochs without validation improvement.

Proposed Probabilistic Model: The hyperparameters for the probabilistic model are described in Section 6.2, we
consider MAP and ML estimations using the same parameters and hyperparameters. We performed six iterations of
generating predictions, selecting the final iteration as the one that achieved the best validation performance. Table 2
summarizes the selected hyperparameters.

Hyperparameter Selection
Text vectorization method TF-IDF
N-gram range Unigrams and Bigrams (1-2)
Minimum document frequency 2
Maximum document frequency 0.5
Max features in vocabulary No limit
Q) 0.03

o7 0

ae 1

a= 1

Qi 0.1
Estimation at iteration O Nearest node
Best iteration ML 5

Best iteration MAP 5

6.4.2 Prediction Results and Discussion

Table 2: Selected Hyperparameters of our model for MSC Classification.

In Table 3 we present the Fl-score and accuracy for each classification method on the test set. Naive Bayes shows the
lowest predictive performance among all methods, with an F1-score of 0.4726. This is expected, as Naive Bayes relies
solely on textual data, and it is known to be outperformed by more complex algorithms. BERT, while a powerful model
for text classification, achieves an F1-score of 0.5028, performing slightly better than Naive Bayes Despite being state-
of-the-art in text classification, BERT is outperformed in this data, highlighting the importance of graph information
in the Math Genealogy Project dataset. The GCN model, which considers both node features and graph structure,
surpasses both text-only models with an Fl-score of 0.5689. This improvement demonstrates the benefit of using a
model that integrates structural information of the graph. Our probabilistic model shows the strongest results overall,
with maximum likelihood (ML) estimations that achieve the highest F1-score of 0.5704, slightly outperforming the
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GCN model. On the other hand, the MAP estimation of our model achieve the highest accuracy across all methods at
0.7463. This divergence in performance metrics between MLE and MAP is consistent with the expected characteristics
of these estimations. ML achieves better F1-score due to balanced predictions across classes, while MAP is more biased
towards frequent labels, therefore improving on accuracy but not necessarily in F1-score. In summary, our probabilistic
model achieves competitive F1-scores and the highest accuracy from the four considered methods, demonstrating its
effectiveness for classification tasks.

Method F1 score Accuracy

Our Model (ML) 0.5705 0.7362
Our Model (MAP)  0.5495 0.7463

GCN 0.5689 0.7076
BERT 0.5028 0.6695
Naive Bayes 0.4726 0.6562

Label Propagation  0.4812 0.6436

Table 3: Results for Testing Data in MSC Classification.

6.5 Prediction example

In this section, we present examples of MSC predictions computed using our probabilistic model. This highlights the
interpretability our model provides, compared to neural networks and other machine learning models, which generally
lack such interpretative clarity. The examples presented correspond to MAP estimations at iteration 5, which achieved
the best prediction performance on the validation set. When predicting the label of a node v, if any neighbor u € N (v)
lacks a known label (i.e., it is not in the training set), its predicted label from iteration 4, obtained using MAP, is treated
as its true label. This process follows the steps outlined in Algorithm 1 For each example, we display the discrepancies
between the observed data and the three labels with the lowest discrepancies (i.e. the most suitable labels), according
to the method detailed in Section 5.1.3.

The first example considers the classification of the node with ID 1526, which is part of the test set, meaning its true
label is excluded during training. The true label for this node is 41, representing the MSC class: 57—Manifolds and
cell complexes. The dissertation title for this node is: “On Topological Vector Fields”. This node has two predecessors
(advisors), both of which are not training nodes. Thus, the model uses their predicted labels from the prior iteration:
label 40 for one predecessor and label 41 for the other. The node also has twelve successors (students), five of whom are
labeled training nodes with the true label 41. For the remaining seven students, the model uses the previous iteration’s
predictions, which assign label 41 to each. Based on this information, we calculate the discrepancies across each
component of the data.

Table 4 shows the discrepancy values across the three labels with the least total discrepancy: label 41 (57—Man-
ifolds and cell complexes), label 40 (55—Algebraic topology), and label 42 (58—Global analysis, analysis on mani-
folds). The model ultimately predicts label 41, as it minimizes the overall discrepancy. The table also illustrates that, if
only the dissertation title (the attribute data) was considered, labels 40 or 42 would be preferred. However, these labels
are not selected due to their significantly higher successor label discrepancies, label 41 is a more coherent choice given
the successors’ labels. Thus, even though label 41 is not the closest fit based solely on the attribute, it is the predicted
label due to its alignment with the broader label structure of the node’s successors.

The second example considers the classification of the node with ID 153133, which also belongs to the test set.
This node’s true label is 38, corresponding to the MSC class: 53—Differential geometry. The dissertation title for
this node is “Geometric objects in differential geometry”. Node 153133 has one predecessor (one advisor) who is also
not part of the training set. In the prior iteration, the model predicted label 38 for this predecessor. Additionally, this
node has two successors (students), both of which are labeled training nodes with a known label of 36. Using this
information, we compute the discrepancy in each data component.

Table 5 presents the discrepancy values across the three labels with the lowest total discrepancies: label 38
(53—Differential geometry), label 36 (51—Geometry), and label 42 (58—Global analysis, analysis on manifolds).
The model’s prediction for this node is label 38, as it minimizes the total discrepancy. The table allows us to analyze
the model’s reasoning behind this prediction. Despite the successors’ labels suggesting a strong preference for label
36, the node’s text attribute and the predecessor label align with label 38. Additionally, the prior beliefs reinforce label
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Label 41 40 42

Attribute discrepancy: 2132 1941 20.32
Predecessor count discrepancy: 2.08 2.13 1.98
Successor count discrepancy: 6.21 6.37 6.14

Label Predecessors discrepancy:  2.32  2.69  6.01
Label Successors discrepancy: 10.59 29.56 37.95
Prior discrepancy: 487 484 553
Total Discrepancy: 4742 65.03 77.95

Table 4: Example of MSC classification on node v with ID 12408. Information of the node: x, = “On Topological
Vector Fields”, number of predecessors d!' = 2, labels of predecessors p,, = e4o+e41, number of successors do™ = 12,
labels of successors s, = 12e41, true label y,, = 41.

38 as the most suitable prediction. Notably, the discrepancy scores for this prediction are closely matched, unlike in the
previous example where the chosen label had a distinctly lower total discrepancy than the alternatives. This similarity
indicates a lower confidence level for this prediction, which may be valuable information for certain applications where
prediction certainty is a consideration.

Label 38 36 42

Attribute discrepancy: 16.77 18.79 21.12
Predecessor count discrepancy: 027 047 034
Successor count discrepancy: 3.51 347  3.53

Label Predecessors discrepancy:  0.46  2.22 1.93
Label Successors discrepancy: 638 280 744
Prior discrepancy: 398 495 553
Total Discrepancy: 31.39 32.72 3991

Table 5: Example of MSC classification on node v with ID 153133. Information of the node: =, = “Geometric objects
in differential geometry”, number of predecessors di; = 1, labels of predecessors p, = esg, number of successors
do" = 2, labels of successors s, = 2esg, true label y,, = 38.

7 Ogbn-arxiv dataset

The second dataset considered for the application of our model is the ogbn-arxiv, a widely-used benchmark dataset
that is part of the Open Graph Benchmark (OGB) collection [15]. The ogbn-arxiv dataset was designed for node
classification tasks (also referred to as node property prediction). It consists of a directed citation network where the
nodes represent computer science papers from the arXiv repository, and each directed edge indicates that the source
paper cites the target paper. The graph contains n = 169, 343 nodes and m = 1,166, 243 edges. For each node, the
dataset provides the title and abstract of the respective paper. Additionally, a 128-dimensional vector is provided for
each node, which represents the average of the word embeddings for the title and abstract. In our experiments, we
utilize the raw text of the nodes (titles and abstracts with stop words removed) instead of the precomputed embedding
vectors. This decision allows us to directly control the text processing and ensures consistency with our approach to
the Math Genealogy Project dataset, where textual data is employed to model the attributes probabilities.

7.1 Learning task

Each paper within the graph is categorized into one of 40 designated subject areas, as determined by both the authors
and the moderators at arXiv. The goal of this learning task is to predict the subject area of each paper, making it a 40-
class classification problem. The nodes are split into three subsets: training, validation, and testing. The training nodes
are used to estimate the models parameters, the validation nodes are utilized for hyperparameter tuning, and the testing
nodes are reserved for evaluating the final performance of the trained models. For this benchmark, the dataset is split
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based on the publication year of each paper. To evaluate model performance, the accuracy metric is used, assessing
how well the models classifies papers into their correct subject areas.

7.2 Application of the model

In this section, we detail the process of adapting the model to the ogbn-arxiv dataset. This involves estimating the
relevant parameters and outlining the statistical assumptions made to compute the predictions.

7.2.1 Estimating the functions v; and ¢;

To model the conditional probabilities ¢); and ¢;, we propose a parametric distribution. The estimation of the respec-
tive parameters is performed using the samples of in-degrees and out-degrees, considering only the training nodes.
However, for each training node, both in-degree and out-degree are computed by considering all nodes in the graph,
not just the training set.

The functions ; model the in-degree of a node, representing the number of citations a paper receives. For these
probabilities, we propose a parametric probability mass function parameterized by 5, € (0,1), u; € R, and o; > 0.
Here, 3; defines the probability that a paper with label i receives no citations. Additionally, the parametric function
follow a discrete log-normal distribution with parameters y; and o; when restricted to the positive integers. The
probability mass function is given by:

Bi ifd =0,
(0:d) "exp(—(In(d) —p1;)2(202) ") (2D

bild; Bi, iy 03) = .
— . > .
=B s et —pr@n Ty 1421

The estimation ﬁi is calculated as the proportion of papers with label 7 that have no citations. The parameters
1i; and g; are then estimated via maximum likelihood using a computational program. To validate the suitability of
the proposed parametric functions, we conduct goodness-of-fit hypothesis tests, following the same procedure as in
Section 6.2.2. Specifically, for each label ¢ € ), we perform a Chi-squared goodness-of-fit test with k = 15 cells, or
less cells if the expected values are not valid, to evaluate whether the in-degree distribution fits the proposed model. An
example of goodness-of-fit hypothesis test for the in-degree of label 2 is presented in Figure 5. Out of the 40 labels, 34
follow the proposed distribution. For the remaining 6 labels, the in-degree distribution does not fit perfectly. However,
previous work in scientometrics has shown that the probability of an article being cited can be well approximated by
a log-normal distribution [29, 34]. Thus, we proceed with using Equation 21 to model the distribution of in-degree
conditioned on the labels.
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Figure 5: Chi-squared goodness-of-fit for the in degree of nodes with label 2. For this sample, the test statistic takes
the value T' = 14.36, yielding a p-value of 0.21. Therefore, the test concludes that the data follows the proposed
distribution.
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A similar approach is applied to model the conditional probabilities ¢;, which govern the distribution of the out-
degree. We propose parametric functions ¢;(d; 8, u}, o%), of the same form of Equation 21. As with the in-degree,
the parameter 3, defines the probability that a paper with label ¢ does not cite any other paper, and the proposed
out-degree distribution follows a discrete log-normal distribution, parameterized by p; and o} when restricted to the
positive integers. To validate these parametric functions, we perform a Chi-squared goodness-of-fit test with £ = 15
cells for each label ¢ € ), as described earlier.

However, the results for the out-degree distribution are less favorable compared to the in-degree. Specifically,
only 23 out of the 40 labels pass the goodness-of-fit test. Given these results, the proposed parametric functions
may not be well-suited for modeling out-degree distributions in this dataset. As a more flexible alternative, we also
explore non-parametric estimation based on empirical frequencies, as described in Equation 11, where we set Dy =
1000. We maintain both the parametric functions and the frequency-based method, treating the choice of method as a
hyperparameter, which is tuned using the validation set.

7.2.2 Estimating other parameters

To estimate the remaining parameters, we follow the same procedure used for the Math Genealogy Project dataset.
Specifically, the transition probabilities O, =, and the prior probabilities 7 are estimated using additive smoothing,
with hyperparameters o, ag, and a= optimized via the validation set. Since the raw text (title and abstract) serves
as the node attributes, we estimate the conditional probabilities w; according to the methodology described in Section
4. The vocabulary X is constructed by extracting all unigrams and bigrams from the training nodes’ text, excluding
stop words. In line with Section 6.2.1, we also experiment with an alternative vectorization method using TF-IDF.
For the experiments, both vectorization approaches (count and TF-IDF) are considered, and the choice is treated as a
hyperparameter, selected based on performance in the validation set.

7.3 Results on the ogbn-arxiv dataset

This section presents the selected hyperparameters for our probabilistic model, and the resulting classification perfor-
mance on the test set. We compare our model against four benchmark methods reported in the original paper proposing
this dataset [15].

For our model, hyperparameters were tuned on the validation set maximizing the accuracy score. Following the
same approach used for the Math Genealogy Project dataset, we evaluate the MAP and ML estimation using shared
parameters and hyperparameters. We consider four iterations to compute predictions, selecting the one with best
performance on validation data. Table 6 summarizes the selected hyperparameters.

Hyperparameter Selection
Text vectorization method TF-IDF
N-gram range Unigrams and Bigrams (1-2)
Minimum document frequency

Maximum document frequency 0.5
Max features in vocabulary No limit
Q) 0.002
O 0

[672) 1

a= 1
Distribution of ¢; Equation 21
Estimation at iteration O Equation 19
Best iteration ML 2

Best iteration MAP 2

Table 6: Selected Hyperparameters for the ogbn-arxiv.

In Table 7 we present the accuracy scores for our probabilistic model on the validation and test sets, comparing
it to benchmark methods from [15]. These benchmarks use t he 128-dimensional node features and treat the graph
as undirected, as opposed with our model that considers the raw text data as attributes, and a directed graph. As
anticipated, the Multi-Layer Perceptron (MLP) model, which does not incorporate graph structure, exhibits the lowest
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accuracy. On the other hand, methods that leverage graph information show improved results. Our probabilistic model,
both with ML and MAP estimations, outperforms all these baselines, achieving the highest accuracy on both the
validation and test sets. Specifically, the MAP estimation achieves the best performance. These results demonstrate the
competitive advantage of our probabilistic approach in accurately classifying nodes in the ogbn-arxiv dataset.

Method Validation Accuracy Test Accuracy
Our Model (ML) 0.7573 0.7403
Our Model (MAP) 0.7586 0.7432
MLP 0.5765 0.5550
Node2Vec [12] 0.7129 0.7007
GCN [20] 0.7300 0.7174
GraphSage [14] 0.7277 0.7149

Table 7: Results for Testing Data in ogbn-arxiv. The baselines are obtained from [15].

8 Conclusion

In this work, we presented a probabilistic model for node classification in directed attributed graphs. Our findings
demonstrate that the proposed model not only provides interpretable predictions, but also achieves competitive perfor-
mance compared to existing benchmarks. The interpretability and efficiency of our model is a significant advantage
against other node-classification methods. Additionally, we introduced a new dataset for node classification and imple-
mented several learning algorithms in this dataset that can serve as benchmarks. This enhances the resources available
for researchers in this domain.

One promising direction for future research is the application of our model to graphs that do not satisfy the ho-
mophily property. Given that our model can determine transition probabilities, it may effectively learn scenarios where
connected nodes are likely to have different labels. This characteristic could lead to valuable insights and satisfactory
predictive performance in such graphs. Additionally, the model could be further generalized to consider information
beyond the first-order neighborhood of a node for the predictions, which could improve its predictive performance.
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