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Abstract— In this project it was used Surface Electromyography (sEMG) of 4 muscles to identify knee abnormalities. Using signals
from 22 individuals (11 with and 11 without knee abnormalities) from the UCI repository, an algorithm was programmed in MATLAB
that processes sEMG signals and helps to label whether the patient has healthy or abnormal signals. For the characterization the stages of
feature extraction and feature selection were important. For each patient there are 3 movements, walking, knee extension and flexion, and
the recording of 4 muscles; therefore, 12 signals were processed per person. In the pre-processing stage, Empirical Mode Decomposition
(EMD) was used to obtain a new physical view of the features, thus decomposing each of the 12 signals into 8 new components. Five Time
Domain (TD) features were extracted from each component, resulting in 480 characteristics that defined each patient. Since there are so
many characteristics, there is a possibility that some of them are redundant, and therefore not all of them add value to the model. The goal
is to have enough features to help differentiate the subjects and they should be the ones that contribute the most to the model. So Principal
Component Analysis (PCA) was used for dimension reduction and the first 3 principal components were used and the 22 subjects with
these components are are visually represented to determine if the selected features help identify each patient. Then, with Back-Propagation
Neural Networks (BPNN), a two-layer network is trained to determine in a 3D graph the areas where sEMG signals are most likely to
belong to an individual with abnormalities and differentiate them from people with normal signals.
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I. INTRODUCTION

E lectromyographic signals (EMG) are used in differ-
ent applications such as diagnosing conditions (such

as neuromuscular diseases) [1], monitoring the rehabilitation
progress of a patient [2] and controlling prostheses; which is
related to the recognition of movement intentions [3]. Cur-
rently, EMG signals are interpreted by manual analysis of the
signal, which requires time and expertise on the part of the
professional [4]. That is, from the moment the doctor visu-
alizes the signal, he concludes and detects anomalies, which
become significant if the signals come from areas such as the
knees, as they raise suspicions of the existence of severe mus-
culoskeletal diseases in the body [5]. Some knee conditions
that are detected with EMG are injuries to the sciatic nerve,
meniscus or cruciate ligament. So, if it is desired to assist in
the diagnosis with EMG and if the signals are normally in-
terpreted by a trained specialist and takes time, how can the
diagnosis process be faster? One idea is for a computer to
carry out the process of identifying the most significant char-
acteristics so that the diagnosis is assisted; similar to what is
done with a laboratory test that separates normal cases from
abnormal ones by means of a variable.

In this sense, ways were investigated to ensure that a
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computer is capable of identifying and interpreting an EMG
signal by itself. A review including 203 papers analyses
Surface Electromiography (sEMG) signals with Artificial In-
telligence methods [2], and there it mentions that in general,
the procedure to analyze and conclude from sEMG signals
using AI has 4 or 5 stages. It begins by pre-processing the
signal, then it is the feature extraction, and depending the
feature sets it can jump into dimension reduction stage or go
directly to classification, and finally the activity prediction,
being the last stage a unique characteristic of HAR.
Some examples using AI and EMG are the articles that pro-
posed applications like stress detection [6], or the diagnosis
of nephropathy muscle diseases [1], or to control upper-limb
exoskeleton [7].

Likewise, with the use of sEMG, there are studies focused
in knee anomalies detection. Rani et al. [4] proposed
to automatically diagnosed knee abnormalities using the
empirical wavelet transform (EWT) to decompose the signal
then get entropy-based features and finally use 3 Machine
Learning (ML) models; Naive Bayes (NB), Suppport Vector
Machine (SVM) and K Nearest Neighbors (KNN); resulting
in a level accuracy results of 89.6%, 93.5% and 96.4%
respectively. On the other hand, Vijayvargiya et al. [8] uses
Wavelet Denoising (WD), 11 Time Domain (TD) features
and 6 different classifiers that have an 95% confidence
interval for 100 randomized tests in an oversampling situa-
tion. Similarly, Erkaymaz et, al. [9] used Discrete Wavelet
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Fig. 1: Stages of the proposed approach for knee abnormalities detection.

Transform (DWD), TD feature extraction and Artificial Neu-
ral Network (ANN), particularly the Levenberg-Marquardt
backpropagation algorithm, resulting in a good classification
performance. Another classification accuracy of a multi
featured set with six TD features is of 83.3% [10].

Another useful method to analyze signals is the Empiri-
cal Mode Decomposition, designed to handle non-stationary
and nonlinear signals. This makes it suitable for analyzing
signals that exhibit changes in both amplitude and frequency
over time. Some current applications with biomedical signals
are the respiratory rate monitoring [11], ECG signal enhance-
ment [12] and EEG signal analysis [13].

From the diverse techniques that can be used in the pro-
cessing of sEMG, which are mentioned in the review [2], this
paper focus is on knee anomalies detection with an alternative
tool, that also follows the procedure stated in the review, but
addresses the need of improvement in classification perfor-
mance. From each set of knee sEMG signals and using signal
processing and machine learning techniques, it is enhanced
the time signal with the use of EMD so that each raw signal
is decomposed into several imfs and from the new signals 5
Time Domain (TD) features are extracted and analyzed using
a supervised ML method to predict new sEMG; about which
is more likely to be, normal or abnormal signals.

II. METHODOLOGY

Overview

The proposed approach for knee abnormalities detection is
separated in stages as shown in Figure 1, one pre-processing
stage to filter the signals, another stage to extract Time Do-
main Features, another stage for Dimension Reduction to sort
the features that contribute the most to characterize each of
the 22 participants, and a final stage to predict new the data.

Dataset

The dataset used in this project was obtained from UCI-
sEMG [14] and it is one of the most employed for research
work. The information was extracted from 22 male partici-
pants, 11 of whom have been previously diagnosed by experts

with knee abnormalities and the other 11 have normal knees.
The atypical patients were injured in the sciatic nerve, the
anterior cruciate ligament, the meniscus and six other liga-
ments. There is a folder containing all data of the 11 patients
with knee abnormalities and another for the 11 healthy pa-
tients.
The dataset includes information of each subject with 3 differ-
ent movements: march, leg extension in a sitting position and
flexion of the knee while standing up. Each movement has
information of the four knee muscles; vastus internus, semi-
tendinosus, biceps femoris and rectus femoris; and also the
goniometry of the knee. Figure 2 shows that there are 33 files
with abnormal signals and 33 files with normal signals. Each
file contains 5 signals, making it then 66 files and 330 signals.
However, in this analysis only the sEMG signals will be used,
leaving out of the analysis the gonometry of each movement,
giving a total of 264 signals to be processed.

Fig. 2: Dataset explanation.

A set of signals of any patient, doing one of the three move-
ments is exemplified in Figure 3, where the EMG provides in-
formation about a specified muscle activity. The called "flex-
ion of the knee" indicates when the muscles were activated
due the movement the subject is doing. illustration corre-
sponds to a flexion movement, in which there is a change in
angle while the muscles are activated simultaneously.
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A. Pre-processing

Skeletal muscles are made up of collections of motor units
(MUs), each of which consists of a motor neuron, its
axon, and all muscle fibers innervated by that axon. When
stimulated, each motor unit contracts and causes an electrical
signal that is the summation of the action potentials of all of
its constituent cells, and it is called single-motor-unit action
potential (SMUAP). A surface acquired EMG is the sum of
several SMUAP trains. It can be represented as a function
of time and muscular force produced. Spatiotemporal sum-
mation of the MUAPs of all of the active motor units gives
rise to the EMG of the muscle and one EMG signal indicates
the level of activity of a muscle [3]. The EMG signal can be
obtained via intramuscular (iEMG) or on the surface (sEMG).

Huagng et al. [15] introduced in 1998 the Empirical
Mode Decomposition (EMD). Individually, decomposition
is the separation of the signal into components to gain new
insight into inherent features. And mode is the name of the
components obtained from the decomposition, a portion of
the complete signal. Empirical stands for not being based
on a prescribed system, so the data itself describes the de-
composition. Some other decomposition methods as Fourier
Transform (FT), Wavelet Transform (WT), Singular Value
Decomposition (SVD) or Dynamic Remote Decomposition
(DMD) are used but are better suited for linear and stationary
data. Unlike them, the EMD ability to process non-linear and
non-stationary data makes it then its most important feature
because EMG, like several biomedical signals, is non-linear
and and non-stationary. Such property is achieved by using
an adaptive basis system, which is dictated by the data itself,
and the modes are additively biased towards locally dominant
frequencies for time dependant signals. This allows to extract
physical meaningful modes.

The decomposition of the original signal into components
that should help analyze the features of the data it is of ut-
ter importance because these components reflect physical fea-
tures. And EMD unlike the other modes, that produce mathe-
matically meaningful modes, produces physical significance
so the conclusion drawn from it is hardly misleading.

The modes produced from EMD are called Intrinsic Mode
Functions (IMFs). The algorithm to get IMFs is to

1. Find the local extrema of the signal.

2. Fit envelop through the founded maxima Eup and an en-
velop through the minima Elow. Al envelops must cover
all data between them.

3. Determine mean of upper and lower envelop.

Emean(t) =
Eup +Elow

2

4. Determine a residual res(t), by subtracting the mean
from the original signal.

res(t) = f (t)−Emean

5. Check stopping criterion to determine if it is an IMF.

∑
t
=

[res(t)− f (t)]2

f (t)2 < ε

Which is the standard deviation normalized, that com-
pares the result with a threshold called ε

6. If the stopping criterion is true then im f (t) = res(t) And
the original data is then updated as f (t) = f (t)− im f .

This is an iterative process to obtain as many IMFs are
needed and it is stopped when the residual approaches a
monotonic function.

Fig. 3: Patient information at one movement.

Using the MATLAB emd function, it is possible to obtain
the IMFs of the sEMG. But given its property of being an uni-
variate approach, the function is applied on one sEMG signal
at a time, which does not guarantee that the sEMG signals
are decomposed into the same number of modes and would
cause the number of extracted functions characterizing each
individual to vary.

To decide the number of modes to extract, it is extracted all
the possible IMFs per sEMG and stored. Then the number of
IMFs per sEMG are counted and finally the extracted modes
are adjusted to the smallest number there were. The smallest
number of IMFs was 8. So from each sEMG the first 8 modes
were saved. The process did not prove futile as there were
sEMGs from which up to 10 IMFs were derived.

B. Feature Extraction

The analysis is time domain involves indicators based on sta-
tistical approaches to make up the features while the EMG
signal is treated as a function of time, making it more intu-
itive and with a low computational burden [2]. Instead of
using all the information found in the signal, some variables
will be extracted that are descriptive of what happens, which
are a finite set of characteristics of the different knee muscles.
The selected features to extract are:

• Mean value
∑

n
i=1 xi

n

• Variance

σ
2 =

∑
n
i=1(xi − µ̄)2

n−1

• Skewness
∑

n
i=1(xi − µ̄)3

(n−1)×σ3
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Fig. 4: IMF components derived from data shown in Figure 5.

• Kurtosis
1
n

n

∑
i=1

(
xi −µ

σ

)4

• Energy
n

∑
i=1

|x(n)2|

Five features were extracted from each IMF.

C. Dimension Reduction

And with the union of the decomposition in empirical mode
and the extraction of characteristics in time, a time-frequency
analysis is obtained. Where it must be guaranteed that the
characteristics obtained must be representative in the sense
that they help to discriminate between a population that does
not have anomalies and a population that does.

Classical datasets often consist of many features, mak-
ing dimensionality reduction methods particularly appealing.
PCA, that stands for Principal Component Decomposition is
a straightforward frameworks to that goal and it is hard to
find a domain in machine learning or statistics where it has
not proven to be useful. PCA considers new decorrelated fea-
tures by computing the eigendecomposition of the covariance
matrix. PCA transforms the data into a new coordinate sys-
tem where the greatest variances by any projection of the data
come to lie on the first coordinates (principal components),
the second greatest variances on the second coordinates, and
so on, in other words, PCA reduces the number of variables
in a dataset by identifying the most important features that
capture the majority of the data’s variability [16].

Researchers findings demonstrate that extracting PCA is
also helpful for classification. To classify the time-domain
properties of the EMG signal researchers made a scatter plot
[17] by using (PCA) to reduce the number of features and
have been proved to be very accurate. The MATLAB func-
tion "pca" was used with each with each dataset, healthy and
abnormal signals, and the scores were obtained and then plot-
ted to contrast and have a visual representation of the dataset.

D. Backpropagation

Machine Learning (ML) is an algorithm that can take new
information to adjust the architecture of an ANN. It aims to
create a computer system that can learn and respond based
on previous observation; this process can be supervised or
unsupervised [2].

Back-Propagation Neural Networks (BPNN) is a multi-
layer, feedforward neural network which consist of an input
layer, hidden layer and output layer. The input and output
layers serve as nodes to buffer input and output respectively,
while the hidden layer provides a means for input relations
to be represented in the output. The initial output might not
be accurate. The network needs to learn from its mistakes
and adjust its weights to improve. And Back-Propagation is
essentially an algorithm used to train neural networks, apply-
ing the principle of error correction. So after forward propa-
gation, the output error, which is the difference between the
network’s output and the actual output, is computed. Back-
propagation adjusts the weights and the biases of the network
to minimize that error, and the objective here is to improve the
accuracy of the networks output during subsequent forward
propagation, in essence is a process of optimization [18, 19].
BPNN was used to determine the spaces where the features
were most likely to belong to patients with or without abnor-
malities according to the points obtained from each dataset.
After training the Neural Network, a prediction was made,
based on simulating 3000 new points (which served as new
patients) and classifying them according to their similarity to
the 22 known patients. This divided the geographical space
into zones belonging to normal sEMG signals and zones for
abnormal sEMG.

Fig. 5: Patient 11 normal sEMG, walking movement,
semitendinosus muscle.

III. RESULTS AND DISCUSSION

Figure 5 shows an example of data that was used in this inves-
tigation. The decomposition of the original signal into com-
ponents help analyze the features of the data because these
components reflect physical features. Figure 4 illustrates the
ways in which a signal was decomposed. It can be seen how
a higher mode number contains, smaller frequencies. EMD
was applied to all 22 patients in their 3 movements. Given
that each patient has 3 movements, which are recorded from
4 muscles that originate the sEMG, to which EMD is applied
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to obtain 8 IMFs per signal and to each component 5 features
are calculated, then it can be said that there are 480 features
that distinguish each patient.

Number o f f eatures = 3×4×8×5 = 480

PCA is used to take into account only the features that add
value to the model. From PCA it is obtained the principal
components, which are the linear combinations of the ob-
served variables.

To demonstrate that the proposed analysis in the time-
frequency domain is better with the use of EMD, time fea-
tures were extracted from EMG signals without using EMD.
This caused 60 characteristics to be obtained that were later
treated with PCA and the result was presented in a graph.

As can be seen, there are too many features so there is a
possibility that some are redundant and do not add value to the
model. Since it is not possible to simply eliminate variables
arbitrarily.

Fig. 6: Time Domain

In the ?? and 7 figures, the 22 points corresponding to the
subjects to which the signal sEMGs belong are presented. In
both figures there is a a 3D plot of the first, second and third
principal components, which in this case represent 80% of
the original data. Eleven red dots and eleven blue dots are ob-
served, representing patients with normal and abnormal sig-
nals respectively. The ?? figure is the result of treating the
signal without EMD and the 7 figure includes the analysis
with EMD. The comparison between these figure is that in 7
figure is clearer the distinction between patients with abnor-
malities and patients without abnormalities.

Fig. 7: Domain Time-Frequency

Figure 7 shows that mostly normal points are spatially
contained within the abnormal signals, which means that
the characteristics of people with abnormal knee sEMG

are distanced from a certain pattern that people without
abnormalities do have, as the points are scattered throughout
the space. This demonstrates that with EMD, TD features
and PCA it was possible to characterize and differentiate
both sets of patients in a way that is visually understandable.

Fig. 8: Qualitative appreciation of Neural Network

The neural network fundamentally comprises multiple lay-
ers of neurons interconnected by weight. There is an input
layer, two layers in the middle as hidden layers and the layer
on the end here that is the output layer. These neurons are all
interconnected with each other across the layers, so each neu-
ron is connected to each other neuron and the weights define
the strength of the connections between each of the neurons.
The accuracy of predicting knee abnormalities depends on the
quality of the extracted features, in other words, whether they
distinguish one set of patients from the other.

The extracted features, which are the 1st, 2nd and 3rd Prin-
cipal Components, were used to train the neural network.
Twenty hidden neurons were used in the algorithm.

To evaluate the algorithm, 3000 random data were intro-
duced and, based on the training of the network, the algorithm
predicted based on the probability to which class the data be-
longed. The result is Figure 8, which spatially demonstrates
how likely it is that the data is a patient with knee anoma-
lies (blue dots) or without anomalies (red dots). And like the
result from PCA stage, shows that overall the blue dots en-
close the red dots that corresponds to abnormal knee principal
components. It shows potential as a tool for signal visualiza-
tion, because after the linear PCA transformation, if an expert
looks at the location of patient features, he can conclude from
whether the signal is in an abnormal or normal region.

IV. CONCLUSIONS

This paper presents a unique approach that uses knee sEMG
data with EMD to improve knee features identification sig-
nificantly. The recommended methodology achieves a visu-
ally good distinction by combining Time Dimension features,
PCA for dimension reduction, and EMD for noise reduction
and physical meaningful features. This contribution has the
potential to improve the perception of the results in a graphi-
cal way and by incorporating mathematical performance tools
there is a possibility to boost effectiveness and accuracy of
knee abnormalities diagnosis. Characteristics that define the
patients were obtained, it was shown that the time domain
frequency is better than the time domain to extract features.
Future research work can be carried out by enhancing clas-
sification accuracy in the back propagation algorithm along
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with the response time in order to be a helpful medical tool.
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