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Abstract

This research focuses on the phenomenon of cosmological redshift, a crucial aspect in contemporary

cosmology and our understanding of the universe. The study uses photometric redshift determination

techniques based on artificial intelligence, utilizing the ugriz photometric bands extracted from the

Sloan Digital Sky Survey (SDSS) and the infrared bands from Wide-field Infrared Survey Explorer

(WISE) as input. The primary objective is to demonstrate the effectiveness of neural networks in solving

regression problems, as compared to empirical techniques.

The work introduces ANNz2, a code developed by Sadeh et al. (2016), and compares it with a

neural network implemented in Keras, as well as the empirical method for determining redshifts from

the SDSS. The results exhibit superior performance of neural networks in the range of 0.0 < z < 0.8

when compared to the empirical method of the SDSS. Additionally, it is identified that the ugriz+WISE

bands are not sufficient for predicting redshifts in the interval of 0.8 < z < 1.5, although they still

outperform other empirical techniques.

Key Words:Galaxies: distances and redshifts – Catalogs: SDSS – Large-scale structure of Universe

– Methods: data analysis – Methods: numerical
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Chapter 1

Introduction

This research work will focus on explaining the techniques for determining photometric redshifts and

applying them in the inference of a vast number of galaxies. Models for determining redshifts using

photometric information have been the subject of study for many years. The original idea, proposed by

Baum in 1962, is centered on estimating the redshifts of galaxies and other celestial objects solely based

on the relationships between the available photometric information and the redshifts, contrasting with the

more conventional method that relies on utilizing spectroscopic information of the object in question.

These types of models have been extensively tested, successfully demonstrating the estimation of

redshift values quite close to reality and showing that Photometric redshifts will be one of the key com-

ponents for enhancing our understanding of the Universe in the next decade (Abdalla et al., 2011). These

photometric determination techniques range from the most conventional physical methods, motivated by

seeking theoretical relationships that explain redshifts based on physical and mathematical foundations,

to photometric models driven by empirical experimentation, aiming to derive redshifts through statistical

models that best fit the observed data.

Thanks to computational advances that have facilitated the handling and processing time of large

databases, the interest of the scientific community has focused on exploring this virtues. This is also the
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case in cosmology, considered a theoretical science twenty or thirty years ago when there was not enough

information to determine the validity of a model. Nowadays, it is impossible to think about cosmology

without dealing with large accumulated observational data on the terabyte scale (Csabai et al., 2007).

In this context of technological innovation, artificial intelligence models begin to emerge, with the

advantage of handling large databases and discovering complex relationships often surpassing physically

motivated methods. Nowadays, artificial intelligence is a thriving field with many practical applications

and active research topics (Goodfellow et al., 2016). Among these, one of the most crucial areas for

astronomy is the study of redshifts.

The study of redshifts has played a fundamental role in shaping our understanding of the universe.

Thanks to this, we have different perspectives on the evolution and expansion of the cosmos, as well as

cosmological probes of dark matter and dark energy. All these measurements rely on accurately and pre-

cisely measuring galaxy redshifts of hundreds of millions of galaxies (Jones et al., 2023). However, the

precision in measuring these redshifts, especially in the context of large astronomical datasets, has been

a challenge. Conventional techniques are often constrained by the costs of spectroscopic information

or the complexity in photometric data. It is in this context that the application of artificial intelligence

emerges as a promising tool capable of overcoming these barriers. This evolution in methodology has

the potential to revolutionize our understanding of the universe.

The objective of this research is to compare the performance of photometric redshift determination

methods using artificial intelligence. This will be achieved by employing a neural network code named

ANNz2 (Sadeh et al., 2016) and training it on a photometric database. The model’s outcomes will be

contrasted with another neural network implemented in Keras, as well as a photometric method indepen-

dent of artificial intelligence techniques.

This research work will be divided as follows: In the theoretical framework (2), key concepts nec-

essary to understand this investigation will be explored. The cosmological redshift will be addressed,

along with its interpretation and the various methods to determine its value, including both spectroscopic
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and photometric techniques. Additionally, a detailed examination of galaxies, their properties, and the

common methods for determining their redshifts will be conducted. Furthermore, pivotal concepts in

photometry will be analyzed, with a focus on the measurement of fluxes and magnitudes. Finally, arti-

ficial neural networks will be explored as fundamental tools for the precise prediction and estimation of

redshifts from photometric data.

In the methodology section (3), the procedures and techniques underlying the three photometric

redshift determination methods used in this thesis will be detailed. ANNz2, based on various machine

learning techniques, the photometric redshift determination method used by the Sloan Digital Sky Survey

database, and a neural network developed specifically for this research. The implementation of each of

these methods will be explained. Additionally, metrics and notation will be introduced to measure and

compare the results obtained from each of the methods.

In the input data section (4), the methodology used to obtain the databases, which served for both

training our models and testing them, will be detailed. In the results section (5), the outcomes of evalu-

ating the models in different redshift intervals will be presented, followed by a brief discussion. Finally,

in the conclusions section (6) the results will be summarized, and suggestions for future research in this

field will be provided.
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Chapter 2

Theoretical Framework

2.1 Cosmological redshift

In the field of astrophysics, there are various challenges that the scientific community must face, and

among them, one of the most important and recurring problems is the determination and characterization

of astronomical objects. Properties such as luminosity, temperature, mass, metallicity, and position are

necessary for the proper study of the structure and evolution of the universe. Among all these, knowing

the position of galaxies is one of the most important quantities that we are capable of measuring, allowing

the study of several phenomena such as the identification of galaxy clusters, understanding the nature

of dark energy, e.g. through surveys like the Dark Energy Survey (DES) and telescopes like the Large

Synoptic Survey Telescope (Sadeh et al., 2016). The position of an astronomical object is determined via

the right ascension (R.A.), declination (Dec.) and distance to us. Although obtaining the values of right

ascension and declination can be achieved relatively easily, estimating the distance between the observer

and the galaxy constitutes a more complicated problem that has required the use of various techniques

throughout the history of physics.

Thanks to the current cosmological model, we are aware that the universe is expanding. This phe-
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nomenon causes a redshift (z) in the spectral lines of any astronomical object observed from Earth, i.e.

we detect spectral lines at longer wavelengths compared to their original values. This change in wave-

length, caused by the expansion of the universe can be compared to wavelength shift due to the Doppler

effect:

z =
λ− λ0
λ0

, (2.1.1)

where λ0 refers to the original wavelength, and λ represents the wavelength that reaches our mea-

suring instruments. Because this effect is caused by the expansion of the universe, we refere to it as

cosmological redshift.

This redshift was first observed by Hubble in the late 1920s. He noticed that more distant galaxies

exhibited more pronounced redshifts, suggesting that they were receding at higher speeds. This dis-

covery not only confirmed the expansion of the universe but also established a relationship between

cosmological redshift (z) and distance (r), known as the Hubble’s Law.

z =
H

c
r (2.1.2)

In this equation, c represents the speed of light, and H corresponds to the Hubble constant. It is

important to note that this equation becomes more complex in current cosmological models as the rate

of cosmic expansion changes over time, and other factors such as the density of matter and dark energy

are taken into account. Nevertheless, the correlation between distance and recession velocity remains.

Therefore, with a robust cosmological model, it is possible to determine distances using redshifts. In

general, the most reliable method for estimating the distance to a source is through its redshift, except

for limited and mostly local samples of redshift-independent ”distance indicators” (Bilicki et al., 2018).

It is for all these reasons that the concept of redshift is so important in the field of astrophysics.
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2.1.1 Spectral Redshifts

Like almost all physical properties of an astronomical object, redshifts are determined through the study

of their spectra. Spectroscopy, which is the study of the interaction between matter and electromagnetic

radiation, provides a way to obtain information by using instruments that separate light into its different

wavelengths, such as dispersion spectrographs, slit spectrographs, integral field spectrographs, etc.

The basic equation of spectroscopy establishes a relationship between the energy difference of two

quantum states (∆E) of an atom and the wavelength (λ) of the light emitted or absorbed when the atom

moves between those quantum states. It involves Planck’s constant (h) and the speed of light in a vacuum

(c).

4E = h
c

λ
(2.1.3)

Because energy differences are characteristic of each atomic element, this equation reveals that each

atom emits or absorbs radiation only at specific wavelengths. Thanks to laboratory experiments, the

wavelengths of some of the most important absorption or emission lines are known, such as the hydrogen

Balmer lines, the lines of neutral helium, the iron lines, and the H and K doublet of ionized calcium

(Karttunen et al., 2017). In this way, if we can accurately identify the elements interacting with the light

emitted by an astronomical object, such as the elements in the atmosphere of a star or the elements in the

intergalactic medium (IGM) for a galaxy, we can then determine the actual value of λ0.

This is achieved by comparing at least two absorption or emission lines from the source with ref-

erence lines measured in a laboratory, which would be observed if there were no redshift. Once these

values are known, the spectroscopic redshift (specz) can be calculated. (see equation 2.1.1).
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2.2 Galaxies

In the night sky, there are many celestial bodies that can be observed thanks to various astronomical

instruments. Throughout the history of humanity, different objects have been observed, from stars of

various sizes and colors, to nebulae, asteroids, and more recently, objects such as black holes or neutron

stars. Today, it is known that all these objects do not exist in isolation, but are components of much larger

systems called galaxies.

These systems form when a large number of stars, gas, and dust interact gravitationally. More re-

cently, this concept has been redefined to include the presence of dark matter; therefore, a star cluster

would be classified as a galaxy only if it contains dark matter in addition to stars (Karttunen et al., 2017).

Given the immense variety of shapes that galaxies can exhibit, the most common way to classify them

is through the system proposed by Edwin Hubble, which categorizes galaxies into four primary groups

based on their shapes: A) The elliptical galaxies, which have no distinctive features apart from their

smooth, elliptical shape, can vary greatly in size and are typically found in dense galaxy clusters. B) The

lenticular galaxies, which are a hybrid between ellipticals and spirals, characterized by a flat, disk-like

shape with a bright central bulge. C) The spiral galaxies, which are characterized by large arms around a

luminous core, and whose most interesting member is our own Milky Way galaxy. Lastly, D) the irregu-

lar galaxies, wich have no distinct shape such as the Milky Way´s satellite galaxies, the large and small

Magellanic clouds. We can think of galaxies as the fundamental blocks of the universe, even though they

are not uniformly distributed, since they form clusters of various sizes. Their study as individual pieces

has been of great importance in the history of physics.

As the information we obtain from galaxies takes time to reach us while light travels across the

cosmos, the farther a galaxy is from Earth, the further back in time we observe it. Since this relationship

depends on the distance of the observer from the source, we can immediately relate cosmological redshift

to the study of galaxies over time. Time is commonly discussed using z as a unit of measurement; for
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example, it is expected for the first stars to have been born at redshifts close to 20. When z=6, almost

all the hydrogen in the universe was ionized, and the most massive stars were already born. Finally, at

z=2, we observe the abundance peak of galaxies whit Active Galactic Nuclei galaxies (AGN) (Karttunen

et al., 2017).

In order to study galaxy properties, the spectral energy distributions (SEDs) are our primary source of

information (Walcher et al., 2011). We can think of the SED of a galaxy as a graphical representation of

the energy emitted as a function of wavelength, ranging from ultraviolet (UV) wavelengths, λ < 3500 Å

(10 Å = 1nm), through the visible region, and extending into the far-infrared (FIR), 25 < λ < 250 µm.

Excluding AGN-type galaxies, the electromagnetic radiation from all galaxies comes mainly from the

light emitted by the different stars that compose them, each one distinct in luminosity, mass, size, color,

metallicity, etc. The method for creating the SED of a galaxy, called stellar population synthesis (Tinsley,

1972; Searle et al., 1973), is based on assuming that the radiation from a galaxy can be represented as the

sum of the spectra of simple stellar populations (SSP). Each of these SSPs is an idealized set of stars that

share one or more attributes, depending on the employed model. This way, the flux for each frequency ν

of an SSP with mass M , age t and metallicity z is given by the contribution of its individual stars

Lv(t, Z) =

∫
M

φ(M)t,ZLv(M, t, Z). (2.2.1)

In this equation φ(M)t,Z represents the stellar mass function and describes when a star will end its

life cycle. Constructing these types of models is a challenge itself, and there is a significant amount of

research in this area (Pietrinferni et al., 2009; Weiss and Schlattl, 2008). Among many other properties,

spectroscopic redshifts can be derived from the SED of a galaxy using spectroscopic techniques as the

analysis of absorption patterns of light at different wavelengths.
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2.3 Photometry

Throughout history, humanity has endeavored to measure the brightness of celestial objects. From this

intrigue and curiosity arises photometry, which is the branch of astronomy that measures the brightness

of radiating objects in the sky (Budding and Demircan, 2007). This discipline plays a vital role in the

field of astrophysics as it strives to quantify the light emitted by galaxies and stars. In the following

discussion, we will explore the key concepts within this discipline and the reasons why its study can help

us with the determination of redshifts.

2.3.1 Flux density and magnitude

One of the most important concepts when discussing photometry is the flux density, which represents

the average power per unit area and per unit frecuency (W/m²/Hz). Flux density is a useful measure for

determining the total amount of radiant energy reaching a measurement instrument, such as a radiometer.

In radio astronomy, janskys are commonly used as the flux density unit, where one jansky (Jy) is equal

to 10−26 W/m²/Hz.

It is important to emphasize that the flux density is a measurement that varies depending on the

distance to the radiating object, whether we are talking about flux density at a specific frequency (Fv) or

referring to the total flux density (F ). In astronomy, the total power emitted by a star is called luminosity

(L), and it is also defined in relation to the frequency Lv = (WHz−1). Unlike flux,density luminosity

does not depend on the distance (r), and a relationship can be established between them as

Fv =
Lv

4πr2
. (2.3.1)

Despite having techniques nowadays to measure the flux density and therefore the apparent bright-

ness of astronomical objects, the study and characterization of celestial brightness has been doing since

around 200 B.C. During that time, magnitude (m) was the value used to determine brightness and was

11



assigned only through visual observation. In 1856, Norman R. Pogson realized that this scale followed a

logarithmic increment derived from the nature of the human eye, and established a relationship between

these magnitudes (m) and the flux density (F ) (Budding and Demircan, 2007)

m = −2.5 log10(
F

F0
). (2.3.2)

Where F0 is the total flux density of an object such that its magnitude is zero. It is important to

emphasize that in this scale, brighter objects have smaller magnitudes, while the faintest objects we have

been able to observe exhibit magnitudes of 30. The color is another very useful concept in photometry

and it is defined as the difference in magnitude of any object observed at two specified wavelength

regions of observation (Budding and Demircan, 2007), It is expressed for example as B − V where B

and V are magnitudes in the blue and green regions of the electromagnetic spectrum.

Depending on the observation method and the value of F0 , many systems of magnitudes can be

defined, such as the multicolor or UBVRI system. This work will focus deeply on the use of the AB

magnitude system. which is characterized by a value of F0 = 3631 Jy, and is the same system used by

the Sloan Digital Sky Survey (see section 4.1).

2.3.2 Photometric redshifts

As previously mentioned, the most efficient way to determine important properties of a galaxy, is through

its spectral information. However, due to the nature of the method, it is time-consuming and also limited

by the spectral range of multi-object spectrographs (de Diego et al., 2021), making it impractical for the

dimmest galaxies. On the other hand, obtaining photometric values is an easier task to perform and due

to limited telescope time, photometry becomes a better option for studying faint galaxies that may not

be accessible for spectroscopic analysis (Li et al., 2007). It is in this context that the idea of determining

redshifts using photometric data arises.

12



Photometric redshifts (photoz) are a technique originally proposed by Baum (1962) and were used

in the 1980s on low-redshift samples. Their interest has recently increased with the development of

large field and deep field surveys (Bolzonella et al., 2000). This method relies on collected observations

in different and specific wavelength bands, contrasting with the detailed spectral analysis provided by

spectroscopy. A more practical definition can be given by Koo (1999), who mentions that photometric

redshifts are those derived from images or photometry with spectral resolution λ/4λ ≤ 20, In this

way, they are not taking into account images derived from slit and slitless spectra, narrow band images,

ramped-filter imager, Fabry-Perot images and Fourier transform spectrometers.

Due to the limited information available, photometric redshifts have lower precision compared to

spectroscopic values, which are generally assumed to be the true redshift. However, they remain highly

useful for determining the properties of numerous galaxies. Consequently, determining the photoz of a

galaxy is quite tolerable and sometimes even more effective than specz (Li et al., 2007).

The estimation of photometric redshifts has been a broad field of research for the scientific commu-

nity, as it enables measuring the distance of a much larger number of galaxies whose spectral information

is not known (Beck et al., 2016), The different approaches to obtain photometric redshifts rely on having

some kind of information about the galaxy in question, whether it is its magnitudes, one, two or more

colors, its surface brightness, light profile, etc. Due to the multitude of parameters and the wide range of

ways in which they can be related to estimate photometric redshifts, different types of techniques have

been developed over the years. These various methods, whose compilation can be found in Hildebrandt

et al. (2010) or Abdalla et al. (2011), can be easily divided into two categories: empirical and template

fitting methods.

Template fitting methods

The template fitting methods were the first technique developed to obtain photometric redshifts and be-

came the most popular tool among the scientific community in the past decade. This method was adopted
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by Puschell et al. (1982), who introduced the maximum likelihood approach (χ2) fitting by modeling

SEDs to broad-band (RIJHK) photometry. This method has the advantage of predicting redshifts using

SED templates without having any spectroscopical redshifts. A more precise definition can be provided

by Benı́tez (2000), who mentions that any template fitting method is based on storing a library of tem-

plate spectra, either generated empirically or through population synthesis techniques. These templates,

after being redshifted and corrected for intergalactic extinction, are then compared with the galaxy’s

colors to determine the photoz that best fits the observations. In general the χ2 method it is based on

minimizing the following function:

χ2(z) =

Nfilters∑
i=1

(
Fobs,i − b ∗ Ftemp,i(z)

σ2
)2 (2.3.3)

where Fobs is the observed flux density, Ftemp are the template flux densities and σ the uncertanty

for the filter i, In this equation b is a normalization constant.

Templates spectra are intended to represent a great variety of the galaxies, e.g. diferent types of

galaxy morphology and luminosities. The most popular template libraries can be found in Coleman

et al. (1980) or Bruzual A. and Charlot (1993). these templates also incorporate astrophysical effects,

such as dust extinction in the Milky Way or in the observed galaxy (Sadeh et al., 2016).

One of the main problems we may encounter when using a template fitting method is mismatches

between the templates and the galaxies in the sample. As we can see, the entire method relies on assum-

ing that the SED templates provide a good representation of the actual SEDs. Therefore, they depend

on proper calibration, which is commonly performed using spectroscopic data (Sadeh et al., 2016). This

method can encounter challenges due to factors such as the influence of emission lines, templates that

may not adequately represent the majority of galaxies in the sample, sensitivity to various other mea-

surements (e.g., bandpass profiles and photometric calibrations), the impact of dust-induced reddening,

and the presence of AGN, which necessitate the use of significantly different templates (Walcher et al.,
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2011).

In summary, template fitting methods offer a way to estimate the photometric redshift for a galaxy

primarily using SED fitting techniques. Despite the potential inherent errors in the method, they are a

good choice when exploring new regimes in a survey or when investigating a region of space for which

we lack spectroscopic information. This method has been widely used since 1982, as it allows for the

determination of other physical properties of galaxies in addition to their redshifts.

Empirical methods

Unlike template fitting methods, which rely on physically motivated models, the concept behind em-

pirical methods is based on discovering relationships between photometric variables and spectroscopic

redshifts. Once these relationships have been derived in a training dataset, the method can be applied to

datasets for which spectroscopic information is not available.

To understand the bases of this method, we can think of C = c1, c2, ...cn as the set of colors (or

magnitudes) that are sufficient for estimating photometric redshifts. The method aims to fit a surface

z = z(C) by training the data with its corresponding set of spectroscopic data. For this to make sense,

the surface z = z(C) must be a well-defined function in the color space, where for each value of C

there is only one vaule of z, In reality, the relationship between redshifts and colors does not behave in

this way, as a galaxy with photometric values (C) may have slightly diferent redshifts (Benı́tez, 2000),

However, it has been observed that for z < 1 it is possible to assume that the surface z = z(C) does not

curve back on itself, making it a good approximation to the real picture (Brunner et al., 1997).

There are many ways to derive a relationship z = z(C) over the training data, ranging from a simple

polynomial fit (Connolly et al., 1995) to the implementation of advanced machine learning techniques

like the use of neural networks (see Section 2.4). Since its inception, this method has proven to be

superior to template fitting techniques. Its success stems from the fact that its training set consists of

real galaxies, which helps avoid the problem of inaccurate templates. Additionally, since the training set

15



is a subsample of the survey, it also encompasses the effects of filter bandpasses and flux calibrations

(Walcher et al., 2011).

While it is true that empirical methods tend to outperform template fitting (Bilicki et al., 2018; Hilde-

brandt et al., 2010), it is important to emphasize that they also come with considerations. This method

becomes more uncertain when applied to objects further from the training data. By establishing rela-

tionships solely with this data, an empirical method may struggle to associate a redshift with a distance

greater than what was covered in the training set. Additionally, the training dataset must be large enough

to span the entire color space. This is why the selection of training sets is crucial when calibrating a

model of this nature.

One of the most significant empirical methods, which will be discussed in this research work, in-

volves the use of neural networks. Therefore, a brief explanation about the subject and its applications

in photometric redshifts will be provided below.

2.4 Artificial neural networks

Neural Networks (NN) are an information processing architecture inspired by the functioning of the

human brain. This concept was first introduced in 1943 by the neurologist Warren McCulloch and the

mathematician Walter Pitts. Since then, various neural networks architectures have been proposed and

interest in NN has evolved over time. In the 1960s, psychologist Frank Rosenblatt built the first computer

capable of learning through trial and error using a neural network. However, it was in the 1980s when

architectures with more robust training methods were proposed, proving to be a useful tool for tasks

involving a large amount of data.

The interest in neural networks waned in the 1990s, as other machine learning techniques showed

better results for classification and regression problems. However, recently, the research and use of

neural networks have experienced a resurgence in popularity. This resurgence is mainly due to the avail-
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ability of a huge quantity of data for training, a significant increase in computing power since the 1990s,

improvements in training algorithms, and the demonstration that theoretical issues, such as algorithms

getting stuck in local optima, do not pose a real problem (Géron, 2017).

Neural networks are part of machine learning techniques, which, as the name suggests, are based

on algorithms that allow the computer to learn from a set of data. Tom Mitchell (1997) give us a more

formal definition : ’a computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with

experience E.’

It is expected that a neural network can improve its performance on a task with more experience, sim-

ilar to how neurons in a brain function. While a single neuron does not exhibit any form of intelligence,

a large ensemble of interconnected neurons can exhibit intelligent behavior (Géron, 2017).

The basic unit of information processing in an NN is the neuron. Each neuron receives a set of

numerical inputs, either from other neurons or from the input data, and produces a single output. These

neurons are grouped together to form layers. The first layer (i=0) is known as the input layer, where the

number of neurons is equal to the number of input variables. The last layer (i=N) is called the output

layer, and in a regression problem, this layer would have only one neuron representing the predicted

value. The intermediate layers are known as hidden layers, and the number of layers and neurons per

layer is arbitrary depending on the chosen architecture. The value of each neuron j in layer n is calculated

using the following formula:

a
(n)
j = f(

M∑
i=0

(wjia
(n−1)
i ) + bj), (2.4.1)

where M is the set indexing the number of neurons in the previous layer (n-1), wji represents the

weights connecting neuron a(n−1)i in the previous layer to neuron a(n)j in the current layer. bj is known as

the bias of the neuron, and it is a value that allows adjusting the starting point of the activation function f .
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The activation function introduces nonlinearities in the neural network, enabling it to learn and represent

more complex relationships in the data. The choice of the number of layers in the network and the

number of neurons is arbitrary, meaning that there are no fixed rules to determine how many layers and

neurons should be used. On the other hand, the choice of the activation function depends on the nature

of the problem, although the most common ones in the neural network literature are:

Function Sigmoid: f(x) = 1
1+e−x

Function ReLU (Rectified Linear Unit): f(x) =MAX(0, x)

Function Tanh: f(x) = tanh(x)

The objective of an NN is to find the values for wij that minimize the cost function C during the

training process:

C(w, b) =
1

n

n∑
i=1

(oi − ti)2. (2.4.2)

Here, w and b are the values of all the weights and biases in the network, n is the number of training

inputs, oi refers to the values predicted by the NN for the ith sample and ti is the actual output value

that these samples have. In this way, when C(w, b) ≈ 0 we can see that oi approximates ti ∀i ∈ n.

Therefore, we can say that the algorithm is doing a good job finding the weights and biases.

The way an NN minimizes the cost function is through a process called backpropagation. This

process initializes random values for each weight (w) and through minimization algorithms such as

gradient descent, the value of the function is iteratively reduced until reaching a local minimum. Once

this training process is completed, the neural network is ready to make predictions on new data. By

adjusting the weights and biases, the network has learned to detect patterns in the training data, enabling

it to generalize these patterns and make inferences on unknown data.

In the field of astronomy, neural networks are widely employed instruments. Their capability to

establish relationships between input and output variables allows for versatile applications across various
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problem types. They have found extensive use in classification tasks, such as galaxy classification (Ball

et al., 2004), spectral classification (Weaver, 2000), and the classification of astronomical objects (Zhang

and Zhao, 2007), among others.

One of their most popular applications in regression problems lies in the determination of photomet-

ric redshift estimations. In this context, each value of C (colors or magnitudes) is inputted into the neural

network. The predicted value by the network corresponds to the redshift (Firth et al., 2003; Collister and

Lahav, 2004; Singal et al., 2011), or a probability distribution of the redshift (Pasquet et al., 2019).
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Chapter 3

Metodology

This work will compare the performance of three methods for determining photometric redshifts: ANNz2,

NNk, and the SDSS method. This section will encompass a comprehensive description of the methods,

including how they derive redshifts and the required inputs for their operation. Additionally, the metrics

used to evaluate the performance of each method will be defined in the results section (see Section 5).

3.1 ANNz2

The first method employed for calculating photometric redshifts relies on empirical approaches utilizing

various machine learning techniques. This method is known as ANNz2.

ANNz2 is a code developed by Sadeh et al. (2016)1. It is a program that employs various machine

learning techniques to address both classification and regression problems. ANNz2 is a new implemen-

tation of the public software for computing photometric redshifts, originally created by Collister and

Lahav (2004). The innovation of this code lies in how uncertainties for the predicted redshift values

are estimated. Unlike its predecessor, ANNz2 incorporates the generation of probability distribution

1https://github.com/IftachSadeh/ANNZ
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functions.

ANNz2 is based on the Toolkit for Multivariate Data Analysis (TMVA) package (Hoecker et al.,

2007). Many machine learning techniques are included in this package, such as cuts, likelihood, k-

nearest neighbors (KNN), boosted decision and regression trees (BDTs), linear discriminant analysis,

Fisher discriminants, support vector machine, among others. However, for this research only neural

networks and BDTs will be used.

The available architecture in ANNz2 for neural networks consists of a multi-layer perceptron (MLP).

The number of hidden layers as well as the number of neurons can be defined by the user and vary de-

pending on the selected operating mode. The activation function for each neuron is TANH. Unlike a

classic MLP, which employs the backpropagation algorithm (see Section 2.4), ANNz2 uses a minimiza-

tion algorithm called Broyden-Fletcher-Goldfarb-Shannon (BFGS). The main difference between the

two methods is that in backpropagation, minimization is done with gradient descent, which is a first-

order approach, while the BFGS method minimizes by estimating the inverse of the Hessian matrix,

which is a second-order approach. This difference can offer advantages in terms of convergence and

overcoming local minima, but the algorithm becomes computationally more expensive.

Among the operating modes of ANNz2, the first one is the ”single regression” mode. In this mode, a

simple regression is performed using a single neural network. The architecture of this network defaults

to three hidden layers with N + 1, N + 9, N + 4 neurons, where N is the number of input variables.

This is the most basic mode of ANNz2 and it also allows for running a classification algorithm with the

same architecture.

The second available mode in ANNz2, and the one to be used for this research work, is the ”random

regression” mode. Unlike single regression, this mode employs an ensemble of different machine learn-

ing techniques, which can be either BDTs or NN. These techniques differ from each other in terms of

architecture, initial random seed, and the input parameters used for training.

The random regression mode in ANNz2 offers several advantages over a simple NN. Once a large

21



number of NNs are trained—100 in this research—ANNz2 initiates an optimization process. This pro-

cess derives a distribution of photo-z solutions for each galaxy and selects a subset of NNs that achieve

optimal performance. In this stage, uncertainty estimates are also generated using a KNN method (Oy-

aizu et al., 2008).

Another significant advantage of this code is the high level of automation achieved through Python

scripts. This means that the user does not need to individually define the properties of each NN or

manually set the training criteria. This automation is particularly valuable when training a large number

of neural networks, in such cases, the number of hidden layers and neurons are randomly generated for

each NN.

The final output of random regression includes the best solution from all the NNs, referred to as

”best Z”. Additionally, the code provides the full binned probability distribution function. The number

of bins is a parameter that can be defined by the user, and for this research work, it was set to 80. Finally,

the code outputs the uncertainty value for each ”best Z”. This uncertainty should not be interpreted

as an error of the method with respect to the original redshift (defined in Section 3.4), but rather as a

quantification of the uncertainties inherent to the photo-z derivation method.

Sadeh et al. (2016) explains that the uncertainties of the method primarily arise from three distinct

phenomena. First, there are uncertainties associated with the inputs used in training. This is because

the magnitudes utilized may not always be sufficient to accurately determine the redshift. The second

type of uncertainty stems from the inherent variability of a neural network, which can be influenced by

factors such as different random seeds, parameters, or even the choice between using NNs and BDTs.

The third type of error can result from the training database not being entirely representative, leading to

an incomplete color space. This effect can be exacerbated if the evaluation data does not reside in the

same color space defined by the training database.
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3.2 SDSS method

The second methodology for obtaining photometric redshifts corresponds to the empirical method un-

derlying the database of the Sloan Digital Sky Survey Data Release 16 (Ahumada et al., 2020). Unlike

the other methods presented in this research, this one was not tested on a new database nor replicated

using any code. Instead, the predicted photoz values by the SDSS method are available for download

along with the magnitude values and specz values that were necessary to train the other methods (see

SDSS in Section 4.1).

Similar to earlier SDSS releases (Csabai et al., 2007), this method relies on adopting a local linear

model to describe the dependence between broad-band colors/magnitudes and redshifts. A detailed

explanation of the method can be found in Beck et al. (2016). In this section, only the relevant parts for

this research work will be described.

If we index the galaxies in a set of objects(Q) for which we would like to estimate their redshifts,

we can define zi as the redshift and di as the magnitude vector for the i-th galaxy. Similarly, let j be the

index of the galaxies in the training set (T ), for which we know both the values of zj and dj . The local

linear model is defined as follows.

zi ≈ ci + aidi = zphot,i. (3.2.1)

In this ecuation zphot,i refers to the redshift value estimated by the method, while ci is a constant

and ai is a vector with linear coefficients. To determine these values, an empirical relationship must be

found using the training set T . In this method, this relationship is found by identifying the k-nearest

neighbors of the galaxy i within T . This means finding the k galaxies whose dj magnitudes are close

to di in Euclidean distance. Therefore, these parameters can be determined by minimizing the following

expression.
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χ2
i =

∑
j∈O

(zj − ci − aidi)2

wj
(3.2.2)

In this ecuation the set O comprises the k nearest galaxies to i, wj is a weight that serves to represent

uncertainties in zj and the minimization must be performed over every galaxy j in O.

For the determination of redshifts in the SDSS DR16, the components of vector d consist of the r-

band magnitude and the u−g, g−r, r−i, i−z colors (As defined in section 4.1).The nearest neighbours

are weighted equally, wj = 1 ∀j ∈ T . Additionally, it is assumed that the reported error of specz in

SDSS is zero, therefore Zspec,j = zj .

3.3 Keras Neural network

The final method for obtaining photometric redshifts was carried out under an empirical approach, where

the relationships between magnitudes and redshifts were derived using a neural network implemented in

Keras and executed in TensorFlow (Abadi et al., 2016). This method will be referred to as Keras Neural

Network (NNk).

The architecture of the neural network consists of an input layer with N neurons, one for each

magnitude value. It includes nine hidden layers, each with two hundred neurons and a ReLU activation

function. The output layer consists of a single neuron without an activation function.

The loss function of the neural network is defined as mean squared error. This means that the

network will seek to minimize the squared difference between the network’s predictions and the actual

training value.

An important parameter when creating a neural network in Keras is the optimizer, which is responsi-

ble for adjusting the weights and biases of the neurons. The optimizer used was Adam, which combines

the stochastic gradient descent method with learning rate adaptation techniques. The learning rate is a

parameter that controls the size of the steps taken during optimization. A small learning rate allows for
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more precise adjustments at the cost of being computationally more expensive, while a large learning

rate can make the process unstable but significantly reduce training time. The commonly used learning

rate for deep learning is 0.001, so we use this value as the default parameter.

The training parameters were kept constant for all experiments reported in the results (see 5). These

are epochs=200, batch size=30, and validation split=2.5.

The parameter epochs refers to the number of iterations through the entire training dataset. During

an epoch, the neural network adjusts the weights using each example from the training database. This

parameter needs to be tuned to strike a balance between precision with the trained data and generalization

for making inferences on unknown data.

The batch size is a parameter in Keras that enables the division of data during the training pro-

cess. This way, the model’s weights will be adjusted after processing each batch, meaning that 30

examples will be processed before recalculating the weights. It is recommended to keep this parameter

small to prevent overfitting.

The validation split parameter allows for regulating what percentage of the training data will

be exclusively used as a validation set. The purpose of this division is to test the model’s performance on

a dataset that was not used for training. This allows for simulating the behavior of the network in terms

of generalization and adjusting the weights to prevent overfitting.

While the first two parameters in Keras were chosen arbitrarily, attempting to strike a balance be-

tween the model’s learning capacity and computational cost, the third parameter was selected specifically

to replicate the default validation split parameter of ANNz2. This ensures that both methods use

25% of the training data for validation.
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Metric Equation
Bias δz = photoz − specz (1)
Normalised bias nδz =

photoz−specz
1+specz

(2)

Outlier O :
|photoz−specz|

1+specz
> 0.15 (3)

Catastrophic Outlier Oc : |photoz − specz| > 1.0 (4)
Loss function L = 1− 1

1+(nδγ )2
(5)

Standard deviation of normalised error σnδ =
√

1
N−1

∑
(nδ − 〈nδ〉)2 (6)

Scaled Median Absolute Deviation (SMAD) Ω ·median(|nδ −median(nδ)|) (7)

Scaled Root Mean Square (RMS) RMSnδ =
√

1
N

∑
(nδ)2 (8)

Table 3.1: Metrics employed for evaluating the photometric redshifts methods.

3.4 Metrics

In order to effectively quantify the performance of the various methods previously presented, it is essen-

tial to establish a set of specific metrics that will allow us to evaluate their performance. These metrics

will provide us with a method to compare the performance of the three photometric redshift techniques

presented in this research work.

These metrics will be meaningful after testing each of the methods with an evaluation dataset con-

taining N galaxies, for which we have both the spectroscopic redshift (specz) and the photometric red-

shift derived by the methods (photoz). For each galaxy, the bias (δ) defined in the Eq. 1 of the table

3.1 represents the difference between the predicted value and the true redshift value, which will always

be considered as the spectroscopic redshift. This measure is highly useful as it enables us to observe

whether the method is overestimating or underestimating the values. Additionally, it serves as a clear

indicator of the method’s performance, with smaller bias values indicating better performance.

While the bias is an absolute measure of error, the Normalized Bias (nδ) in the Eq. 2 of the table

3.1 serves as a relative measure of error. It quantifies the error in relation to the actual value. This

metric helps us understand how significant the error is relative to the magnitude of the redshift. It proves

especially valuable when analyzing redshift bins with varying magnitudes.

For this work, it was decided to categorize two different types of outliers in the photometric redshifts.
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In Eqs. 4 and 5, an outlier (O) is defined if |nδz| > 0.15, and a catastrophic outlier (Oc) if |δ| > 1.0.

The choice of 0.15 to categorize an outlier was made to be consistent with other analyses of photometric

methods (Hildebrandt et al., 2010; de Jong et al., 2017), while the catastrophic outlier is presented as

provided by Jones et al. (2023). Similarly, the Loss function (L) in Eq. 5, which was evaluated using

γ = 0.15, is useful in regression problems as the metric produces a normalized value between 0 and 1,

Proximities to zero in values imply a high degree of proficiency concerning γ, whereas closeness to 1

indicates a deterioration in performance. The outliers will be presented as a percentage of the number of

galaxies N , while the rest of the metrics as an average over the data, where the symbol 〈A〉 refers to the

average of A.

The standard deviation of normalized error (σnδ) in Eq. 6 is a metric that indicates how much

dispersion exists in the data with respect to 〈nδ〉. The scaled median absolute deviation (SMAD) in

Eq. 7 is also a measure of variability, but unlike σnδ , it is less sensitive to outlier values. This is why

visualizing both can help understanding the complete nature of the training. We chose Ω = 1.4826 as

used in Bilicki et al. (2018). The last included metric is the Scaled Root Mean Square of normalized

error (RMS) as shown in Eq. 8.

27



Chapter 4

Input data

In this section, we present the samples that will be used to test the three photometric redshift methods,

along with a description of the surveys from which they were obtained. For this research work, data

from SDSS DR16 were used to create two datasets. The first sample covers redshifts 0 < z < 0.8. This

interval was chosen in order to compare the methods in a space where they have been experimentally

shown to yield good results (Sadeh et al., 2016). The second sample, with 0 < z < 1.5 aims to include

the WISE bands to test if the empirical methods can extend their accuracy to regions of higher redshift.

4.1 Sloan Digital Sky Survey data

The Sloan Digital Sky Survey (SDSS) is a space research project that provides both photometric and

spectroscopic data over a large region of the sky, specifically covering approximately π steradians with

a Galactic latitude of 30°, in five broad optical bands (York et al., 2000). Since 1998, the data published

by the SDSS has been collected from the Apache Point Observatory using the 2.5 m Sloan Foundation

Telescope (Gunn et al., 2006). Since 2017, observations have also been made using the 2.5 m du Pont

telescope located at the Las Campanas Observatory (LCO). The SDSS observes in five filters, with
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Figure 4.1: Query used in the DR16 SDSS

effective design wavelengths of 3550, 4770, 6230, 7620, and 9130 Å for the u, g, r, i, and z bands,

respectively (Fukugita et al., 1996).

This research project retrieved data from the 16th data release (DR16) of the SDSS 1. For each of

the two databases, celestial coordinates (Right Ascension and Declination), Pogson galaxy magnitudes

in five bands (ugriz), the value of the spectroscopic redshift, and the value of the photometric redshift

derived using the SDSS method were obtained.

fig 4.1 is an example of the query used in the SDSS DR16 database for a redshift range from 0 to

0.1. It is requested that s.class=’GALAXY’, as the color space for quasars is fundamentally different

from other galaxies and they are avoided to achieve better performance in empirical methods. Since one

of the most important premises in the methodology is that spectroscopic redshifts are interpreted as the

actual redshift, the value of the spectroscopic error was limited to s.zErr<0.0001. If a magnitude is

not associated with an error in the survey, a warning is assigned to it, as this is often an indication that

the measurement is not correct, only values with warnings a.zWarning=0 were admitted.

The sample 1 consists of 156,573 galaxies with an average redshift of 〈z〉 = .39 distributed in the

range of 0 < z < .8. We aimed for the data to be uniform within the interval in order to achieve a

complete color space. The general properties of the data set are shown in fig. 4.2 and fig. 4.3, figure

4.2 shows the distribution of spectroscopic redshifts in the dataset, as well as the distribution of the five

magnitudes. On the other hand, Figure 4.3 displays the correlations between the colors of the magnitudes.

1https://skyserver.sdss.org/dr16/en/tools/toolshome.aspx
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(a) (b)

Figure 4.2: Properties of galaxies in the first sample: (a) differential distribution of the spectroscopic
redshift. (b) differential distribution of the magnitudes in the five bands ugriz.

The sample 2 consists of the same galaxies as the first database plus 47,633 galaxies corresponding

to all the galaxies available in the SDSS DR16 for a redshift interval of 0.8 < z < 1.5. This leaves us

with a database of 204,206 galaxies with 〈z〉 = .5 in the interval of 0 < z < 1.5. the distribution of

spectroscopic redshifts are shown in fig. 4.4 while fig. 4.5 displays the correlations between the colors

of the magnitudes. We can observe that there are few values for the farther redshifts.

4.2 Wide-field Infrared Survey Explorer data

The Wide-field Infrared Survey Explorer (WISE) is an astronomical space telescope operating in the

infrared wavelength range, launched on December 14, 2009. It is a medium-class Explorer mission

funded by NASA. WISE is mapping the sky using four infrared bands, W1, W2, W3, and W4, which

are centered at 3.4, 4.6, 12, and 22 micrometers, respectively. This photometric information is obtained

using a 40 cm telescope that feeds arrays with a total of 4 million pixels (Wright et al., 2010).

The data processing and analysis of the band fluxes are carried out by the Infrared Processing and

Analysis Center (IPAC) 2. For this research work, the magnitude values in the W1, W2, W3, and W4

2https://irsa.ipac.caltech.edu/cgi-bin/Gator/nph-scan?submit=Select&projshort=WISE
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filters for the galaxies were obtained from the second sample acquired from the SDSS.

The AllWISE Source Catalog enables users to perform a multi-object search using spatial coordinates

(Right Ascension and Declination) to retrieve information pertaining to specific objects. Since the values

of Right Ascension and Declination for the same object may vary slightly from those reported in other

surveys, an exact match is not the primary objective. Rather, WISE endeavors to identify all objects

whose spatial coordinates fall within a defined search cone. The output of this query provides, for each

source, all the objects found within the search radius, along with the value of the distance between the

search coordinates and the coordinates of the output.

In order to align the WISE magnitudes with the galaxies obtained from the SDSS, objects were

sought with spatial coordinates within a cone search radius of 10 arcseconds. The instrumental profile-

fit photometry magnitude and photometry flux uncertainty values were requested for each of the four

bands. For each point source, only the object with the smallest associated distance was selected.

Out of the 204,206 galaxies subjected to the search, only 181,601 were found with corresponding

magnitudes in the WISE database. One notable observation about these galaxies was that the majority

of their magnitudes did not have numerical values in the band’s errors. This indicated that the magnitude

values corresponded to a 95% confidence upper limit, or the source was not measurable. As a result, all

values lacking a numerical error were excluded.

After removing these values, Sample 2 was divided into two databases. The first one (fig 4.6) rep-

resents the redshift distribution of the galaxies after removing the values with uncertainties in all WISE

bands, and the second one (fig 4.7) represents the redshift distribution of the galaxies after removing

only values with uncertainties in the W1 and W2 bands.

This cleaning process not only resulted in having few values beyond 0.8z, but also drastically reduced

the number of galaxies. For the database where all four WISE filters were retained, the number of

galaxies was reduced to 21,302, with an average redshift of 〈z〉 = 0.28.

The aim of expanding the predictor variables to bands closer to the infrared spectrum is to enhance the
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model’s characterization capability by incorporating emissions from this region of the electromagnetic

spectrum. However, the quantity of data in the training set is also pivotal for the model’s performance.

This is why we retained the database where only the W1 and W2 bands were included, while excluding

the W3 and W4 bands due to their higher measurement uncertainties.

The figure 4.7 displays the redshift distribution of galaxies for which information is available only in

the W1 and W2 bands. This refinement yielded 166,999 galaxies with an average redshift of 〈z〉 = 0.44.

While this approach results in a loss of information about a portion of the electromagnetic spectrum, it

achieves a greater uniformity in the color-magnitude space.
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(a) (b)

(c)

Figure 4.3: Correlation between different color combinations of the first sample, where the color of each
hexagon indicates the point density in that area of the plot.
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(a) (b)

Figure 4.4: Properties of galaxies in the second sample: (a) differential distribution of the spectroscopic
redshift. (b) differential distribution of the magnitudes in the five bands ugriz.
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(a)
(b)

(c)

Figure 4.5: Correlation between different color combinations of the second sample, where the color of
each hexagon indicates the point density in that area of the plot.
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(a) (b)

Figure 4.6: Properties of galaxies with ugriz and full WISE bands: (a) differential distribution of the
spectroscopic redshift. (b) differential distribution of the magnitudes

(a) (b)

Figure 4.7: Properties of galaxies with ugriz, W1 and W2 bands: (a) differential distribution of the
spectroscopic redshift. (b) differential distribution of the magnitudes
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Chapter 5

Results

This section shows the performance of two photometric redshift determination techniques. The results

displays the different metrics obtained from training the neural networks multiple times, always compar-

ing these methods to the photometric predictions provided by the SDSS.

It is important to remember that these results should be understood as quantifiers of empirical meth-

ods on a subset of the actual photometric set. Their accuracy or impact on a complete survey of galaxies

will be constrained by the spectroscopic information available in the survey. Extrapolations of these

algorithms to other regions of the sky may yield entirely different results, especially if incomplete specz

samples are used as calibrators, as is the case for most modern photometric surveys (Hildebrandt et al.,

2010).

5.1 SDSS experiments

The initial phase of this study utilizes data sourced from SDSS DR16 to compare various methods of

determining redshifts within the range of 0 < z < 0.8. To conduct these experiments, we divided the

original database into two sets: a training set and a testing or evaluation set. We aimed for the training
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set to be as comprehensive as possible, encompassing the entire color spectrum. Consequently, the test

set size was set at 0.003% of the total data. This allowed us to train and validate ANNz2 and NNk using

a dataset of 156,103 galaxies. Subsequently, the performance of the method will be assessed using 470

galaxies. The division between these two sets was carried out randomly, ensuring that both samples

(train and test) are statistically comparable. Additionally, we opted for an evaluation with 470 galaxies

to obtain sufficiently significant information in each redshift range.

The first method to be presented involves the training and evaluation of ANNz2 using the dataset

decribed in section 4.1. We employed the random regression mode of ANNz2 and trained it using the

colors U,G, (G−R), (R− I), and (I − z) as inputs. The primary objective of this experimental phase

was to identify the best combination of parameters that would yield satisfactory results.

ANNz2 offers the user the ability to modify various aspects, including the number of machine learn-

ing methods (MLM) to be executed. Given that, ANNz2 reports the best value obtained among the n

methods, it is reasonable to assume that increasing the number of MLM during training may contribute

to improved results on the same testing set.

We utilized 1, 5, 20, 50, 100, and 150 MLM for these experiments, all employing neural networks.

figure 5.1 illustrates the execution time in relation to the number of MLM. While the time increases

linearly with the rise in MLM, the performance of ANNz2 regarding the normalized bias and the standard

deviation of the normalized bias does not increase in the same manner. This can be observed in figure

5.2. Given this behavior in the number of MLM, it was decided to train the remaining experiments

associated with ANNz2 with a maximum of 100 MLM, as the computational cost was not proportionate

to the improvement in redshift predictions.

Another training parameter that the user can modify in ANNz2 is the type of MLM with which the

dataset will be trained, with neural networks and boosted decision trees (BDTs) being the options to

choose from in this phase. Table 5.1 presents the results of evaluating ANNz2 using these two different

learning techniques, both with 100 MLM. Both techniques report values of bias and normalized bias
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Figure 5.1: Execution Time of ANNz2 as a function of the number of machine learning methods.

ANNz2
MLM

st.dev. of
nδz

SMAD of
nδz

loss of
nδz

RMS of
nδz

% of
O

NN
BDT

0.053
0.056

0.025
0.026

0.047
0.053

0.053
0.056

2.12
2.34

Table 5.1: Metrics of photometric redshift performance of ANNz2 for Neural Networks vs Boosted
Decition Trees.

that are practically identical, and they do not have any catastrophic outliers. It can be observed in

Table 5.1 that neural networks outperform BDTs in all the reported metrics, as noted in other research

papers on the subject (Bilicki et al., 2018). Although the difference in metrics is not significantly large

in comparison with their magnitude, it has been demonstrated that neural networks exhibit superior

performance. Therefore, the rest of the experiments related to ANNz2 will be trained using neural

networks as MLM. The results of these experiments can be seen in figures 5.3 and 5.4, which display the

performance of neural networks and decision trees against the spectroscopic data, respectively.

The selection of colors to incorporate into a neural network is also an important discussion. Even

though we only have the five bands from SDSS (ugriz), it has been demonstrated that a proper choice

of colors often leads to better performance than just using the five magnitudes (Li et al., 2007). In the

case of ANNz2, the choice of colors was left as provided by Sadeh et al. (2016). However, we wanted to
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Figure 5.2: Normalized bias for photoz and its standard deviation as a function of the number of machine
learning methods.

experiment with NNk to see which color space yielded better results.

All color combinations were tested, and among them, Table 5.2 displays those that performed the best

when used as input variables for the neural network. As observed, C = U, (U−G), (G−R), (R−I), (z)

yields the best results in the majority of metrics. For this reason, this configuration will be used in the

training for the rest of the experiments related to NNk.

NNk
Color space

st.dev. of
nδz

SMAD of
nδz

loss of
nδz

RMS of
nδz

% of
O

(U), (U −G), (G−R), (R− I), (z) 0.054 0.039 0.075 0.054 2.12
(U −G), (G−R), (R− I), (I − Z), (z) 0.057 0.041 0.074 0.051 2.15

(U), (U −G), (G−R), (I), (z) 0.053 0.038 0.077 0.059 2.16
(U), (G), (G−R), (I), (z) 0.052 0.042 0.076 0.052 2.2

Table 5.2: Metrics of photometric redshift performance of NNk for different color combinations.

Having performed the above tests, we compared the redshift determination method of the SDSS

against spectroscopic data. The graphical comparison can be seen in figure 5.5, while the metrics are

presented in Table 5.4, along with the rest of the metrics for the redshift methods presented earlier. The

experiment with the best set of metrics was reported in the table. For ANNz2, this corresponds to the use
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(a) (b)

Figure 5.3: Performance of ANNz2 using neural networks as compared to the spectroscopic samples,
the red solid line shows the moving median while the slim lines shows the scatter (SMAD). (a) Direct
specz − photoz comparison. (b) Normalised bias as a function of photoz .

of 100 neural networks, and for NNK, it corresponds to training using the colors C = U, (U −G), (G−

R), (R− I), (z). The results are presented in bins of photoz .

Table 5.4 provides a summary of the results in this section, presenting the method with the best

performance for each metric across different intervals of photoz . It is observed that the local linear

model performs better across almost all metrics when redshift ranges from 0 < z < 0.4. However,

for higher redshifts, the method that outperforms is ANNz2. For the last two redshift bins, the SDSS

method significantly deviates from the performance of the two neural networks. These results suggest

that redshift determination using neural networks is particularly robust for redshifts between 0.6 < z <

0.8 compared to other empirical methods.

5.2 WISE experiments

The second phase of this research focuses on the two databases discussed in Section 4.2. The goal is to

determine if it’s possible to enhance accuracy in more distant redshift ranges using an empirically-based
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photoz bin Method
δz nδz

st. dev of
nδz

SMAD of
nδz

Loss of
nδz

RMS of
nδz

0 < z < 0.1

ANNz2
SDSS method

NNk

0.029
0.018
0.044

0.028
0.017
0.041

0.094
0.063
0.057

0.015
0.012
0.022

0.056
0.034
0.086

0.097
0.065
0.070

0.1 < z < 0.2

ANNz2
SDSS method

NNk

3.9× 10−4

-0.001
0.011

3.5× 10−4

-0.001
0.010

0.019
0.016
0.029

0.016
0.015
0.019

0.015
0.011
0.038

0.019
0.016
0.031

0.2 < z < 0.3

ANNz2
SDSS method

NNk

0.022
0.012
0.025

0.018
0.009
0.020

0.069
0.047
0.060

0.020
0.019
0.021

0.057
0.044
0.064

0.070
0.047
0.063

0.3 < z < 0.4

ANNz2
SDSS method

NNk

0.012
0.002
0.009

0.009
0.001
0.007

0.046
0.026
0.046

0.021
0.013
0.020

0.044
0.022
0.051

0.047
00.025
0.046

0.4 < z < 0.5

ANNz2
SDSS method

NNk

0.009
0.010
-0.011

0.006
0.007
-0.007

0.036
0.049
0.035

0.024
0.024
0.030

0.043
0.045
0.048

0.036
0.049
0.036

0.5 < z < 0.6

ANNz2
SDSS method

NNk

0.010
-0.017
-0.036

0.006
-0.011
-0.023

0.041
0.047
0.040

0.027
0.023
0.035

0.055
.059

0.079

0.041
0.048
0.046

0.6 < z < 0.7

ANNz2
SDSS method

NNk

-0.014
-0.103
-0.070

-0.009
-0.062
-0.042

0.042
0.065
0.047

0.040
0.046
0.044

0.062
0.188
0.121

0.043
0.090
0.063

0.7 < z < 0.8

ANNz2
SDSS method

NNk

-0.036
-0.123
-0.083

-0.020
-0.070
-0.047

0.029
0.086
0.047

0.022
0.072
0.028

0.046
0.239
0.114

0.035
0.111
0.066

Table 5.3: Metrics of photometric redshift performance for the first database 0 < z < 0.8. Results are
presented per bin of NNK, ANNz2 and SDSS method photoz , respectively.

photoz bin
δz nδz

st. dev of
nδz

SMAD of
nδz

Loss of
nδz

RMS of
nδz

0 < z < 0.1 SDSS SDSS NNK SDSS SDSS SDSS
0.1 < z < 0.2 ANNz2 ANNz2 SDSS SDSS SDSS SDSS
0.2 < z < 0.3 SDSS SDSS SDSS SDSS SDSS SDSS
0.3 < z < 0.4 SDSS SDSS SDSS SDSS SDSS SDSS
0.4 < z < 0.5 ANNz2 ANNz2 NNK SDSS ANNz2 ANNz2
0.5 < z < 0.6 ANNz2 ANNz2 NNK SDSS ANNz2 ANNz2
0.6 < z < 0.7 ANNz2 ANNz2 ANNz2 ANNz2 ANNz2 ANNz2
0.7 < z < 0.8 ANNz2 ANNz2 ANNz2 ANNz2 ANNz2 ANNz2

Table 5.4: Comparison of Redshift Determination Methods for Each Metric using the 0 < z < .8
database. The method with the best performance is presented by photoz bin.
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(a) (b)

Figure 5.4: Performance of ANNz2 using boosted decision trees as compared to the spectroscopic sam-
ples, the red solid line shows the moving median while the slim lines shows the scatter (SMAD). (a)
Direct specz − photoz comparison. (b) Normalised bias as a function of photoz .

model supported by artificial intelligence. This will be achieved by incorporating WISE bands along

with the ugriz bands from SDSS.

Both databases were divided into training and evaluation sets, ensuring they were statistically equiv-

alent. However, due to differences in the nature of the data, the percentage of galaxies allocated to each

evaluation set was different for each one.

The database containing 166,999 galaxies, corresponding to the W1 and W2 bands, was divided,

reserving 0.03% for the evaluation set. Meanwhile, the database with 21,302 galaxies, encompassing all

the WISE bands, was divided, reserving 0.1%.

These percentages were chosen to ensure that the evaluation sets, on which the metrics will be as-

sessed, contain a sufficient number of redshifts within the intervals of 0.8 to 1.5.

Experiments using W1 and W2 bands

ANNz2 and NNk were trained using the recommendations derived from section 5.1, with the only dif-

ference being the inclusion of two additional neurons in the input layer of the neural networks. The
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(a) (b)

Figure 5.5: Performance of the SDSS method as compared to the spectroscopic samples, the red solid
line shows the moving median while the slim lines shows the scatter (SMAD). (a) Direct specz − photoz
comparison. (b) Nnormalised bias as a function of photoz .

performance of NNk with respect to the spectroscopic data of the galaxy is shown in figure 5.6, while

the performance of ANNz2 is displayed in figure 5.8. In Table 5.5, the metrics of both methods are com-

pared against the metrics derived from the SDSS method. It can be observed that empirical models based

on neural networks do experience a decrease in precision as the redshift interval increases. However, the

decrease in precision is much more catastrophic when it comes to the SDSS method.

Table 5.6 provides a clearer view of the results by presenting the method with the best performance

for each metric within the bin interval. Similar to the SDSS experiments, the local linear model performs

better within the z < 0.6 range. When the redshift exceeds 0.6, NNk emerges as the method with the

most promising results. This suggests that the architecture of NNk tends to outperform ANNz2 for larger

redshifts.

Experiments using full WISE bands

The latest experiments involve a database containing 21,302 galaxies, each with information from both

the ugriz bands of SDSS and the W1, W2, W3, and W4 bands corresponding to WISE. figures 5.9 and
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photoz bin Method
δz nδz

st. dev of
nδz

SMAD of
nδz

Loss of
nδz

RMS of
nδz

0 < z < 0.2

ANNz2
SDSS method

NNk

0.007
0.004
0.018

0.006
0.004
0.017

0.045
0.038
0.059

0.015
0.015
0.024

0.026
0.022
0.047

0.046
0.039
0.061

0.2 < z < 0.4

ANNz2
SDSS method

NNk

0.019
0.011
0.047

0.014
0.008
0.037

0.055
0.041
0.066

0.021
0.017
0.025

0.052
0.040
0.093

0.057
0.042
0.076

0.4 < z < 0.6

ANNz2
SDSS method

NNk

0.002
-0.009
0.030

0.002
-0.006
0.020

0.040
0.037
0.041

0.025
0.024
0.025

0.046
0.045
0.058

0.040
0.038
0.046

0.6 < z < 0.8

ANNz2
SDSS method

NNk

0.013
-0.118
0.037

0.007
-0.068
0.022

0.048
0.081
0.045

0.047
0.057
0.047

0.082
0.209
0.088

0.049
0.106
0.050

0.8 < z < 1.0

ANNz2
SDSS method

NNk

-0.041
-0.256
-0.025

-0.021
-0.136
-0.013

0.041
0.095
0.034

0.035
0.095
0.032

0.063
0.408
0.046

0.046
0.166
0.037

1.0 < z < 1.2

ANNz2
SDSS method

NNk

-0.205
-0.480
-0.195

-0.098
-0.232
-0.094

0.027
0.094
0.025

0.026
0.091
0.024

0.298
0.650
0.280

0.102
0.250
0.097

1.2 < z < 1.4

ANNz2
SDSS method

NNk

-0.350
-0.797
-0.358

-0.142
-0.351
-0.159

0.012
0.067
0.018

0.010
0.034
0.004

0.528
0.837
0.526

0.159
0.356
0.160

1.4 < z < 1.5

ANNz2
SDSS method

NNk

-0.775
-0.954
-0.764

-0.312
-0.388
-0.308

0.119
0.008
0.101

0.124
0.008
0.106

0.786
0.870
0.789

0.323
0.388
0.316

Table 5.5: Metrics of photometric redshift performance for the database with W1 and W2 wise bands.
Results are presented per bin of NNK, ANNz2 and SDSS method photoz , respectively.

photoz bin
δz nδz

st. dev of
nδz

SMAD of
nδz

Loss of
nδz

RMS of
nδz

0 < z < 0.2 SDSS SDSS SDSS SDSS SDSS SDSS
0.2 < z < 0.4 SDSS SDSS SDSS SDSS SDSS SDSS
0.4 < z < 0.6 SDSS SDSS SDSS SDSS SDSS SDSS
0.6 < z < 0.8 ANNz2 ANNz2 NNK NNK ANNz2 ANNz2
0.8 < z < 1.0 NNK NNK NNK NNK NNK NNK
1.0 < z < 1.2 NNK NNK NNK NNK NNK NNK
1.2 < z < 1.4 ANNz2 ANNz2 NNK NNK NNK ANNz2
1.4 < z < 1.5 NNK NNK SDSS SDSS ANNz2 NNK

Table 5.6: Comparison of Redshift Determination Methods for Each Metric using the W1 and W2 WISE
database. The method with the best performance is presented by photoz bin.
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(a) (b)

Figure 5.6: Performance of NNk with W1 and W2 bands as compared to the spectroscopic samples,
the red solid line shows the moving median while the slim lines shows the scatter (SMAD). (a) Direct
specz − photoz comparison. (b) Normalised bias as a function of photoz .

5.10 illustrate the performance of ANNz2 and NNk against the spectroscopic data, respectively. Table

5.8 presents the performance of both methods compared to the SDSS method, which matches the results

obtained from experiments related to W1 and W2. This is because we are working with the same sample.

Similarly, Table 5.9 shows the method that demonstrated the best performance for each metric.

The objective of splitting the sample 2 obtained from SDSS according to the WISE bands was to

determine whether the additional spectral information provided by W3 and W4 had a greater impact on

the performance of a neural network, even if obtaining these values would result in a drastic reduction

in the number of observations with which the model would be trained.The comparison between the

performance of the neural networks based on the training bands, especially over the redshift interval

0 < z < 1.5, is shown in Table 5.7.

The Table 5.7 provides very interesting information about the differences between the neural net-

works. ANNz2 performed better across all metrics (except for the Oc percentage) using all four bands

provided by WISE, while NNk showed greater predictive capacity in the database that only included the

first two WISE bands.
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(a) (b)

Figure 5.7: Performance of ANNz2 with W1 and W2 bands as compared to the spectroscopic samples,
the red solid line shows the moving median while the slim lines shows the scatter (SMAD). (a) direct
specz − photoz comparison. (b) normalised bias as a function of photoz .

database method st.dev. of
nδz

SMAD of
nδz

loss of
nδz

RMS of
nδz

% of
O

% of
Oc

SDSS sample 2
with W1 and W2 bands

ANNz2
NNk

0.050
0.056

0.024
0.029

0.054
0.069

0.050
0.059

1.85
2.43

0.239
0.319

SDSS sample 2
with full WISE bands

ANNz2
NNk

0.046
0.059

0.022
0.037

0.047
0.079

0.046
0.061

1.70
2.53

0.281
0.375

Table 5.7: Comparison of the photometric redshift performance between the use of different WISE bands
and between the two neural networks. The metrics are calculated over the entire interval 0 < z < 1.5.

Another objective of including the WISE bands in our artificial intelligence-based models was to

increase the precision of the methods across the entire color range. Since we know that in redshifts

from 0 to 0.8 the ugriz bands are sufficient to obtain good results (see 5.1), the final analysis in this

research work was to determine if training a neural network with the ugriz bands as input can improve

its precision if is additionally trained with the WISE bands.

In Table 5.10, we are comparing the performance of our two artificial intelligence models over the

redshift range of 0 < z < 0.8. The presented results were trained and evaluated using the sample 1

discussed in Section 5.1. The outcomes are presented based on the photometric bands with which they

were trained.
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photoz bin Method
δz nδz

st. dev of
nδz

SMAD of
nδz

Loss of
nδz

RMS of
nδz

0 < z < 0.2

ANNz2
SDSS method

NNk

0.004
0.004
0.024

0.004
0.004
0.022

0.031
0.038
0.048

0.016
0.015
0.028

0.020
0.022
0.056

0.032
0.039
0.054

0.2 < z < 0.4

ANNz2
SDSS method

NNk

0.023
0.011
0.031

0.018
0.008
0.024

0.070
0.041
0.089

0.032
0.017
0.066

0.102
0.040
0.161

0.072
0.042
0.092

0.4 < z < 0.6

ANNz2
SDSS method

NNk

0.020
-0.009
0.051

0.013
-0.006
0.034

0.051
0.037
0.050

0.040
0.024
0.041

0.086
0.045
0.112

0.053
0.038
0.061

0.6 < z < 0.8

ANNz2
SDSS method

NNk

-0.006
-0.118
-0.014

-0.003
-0.068
-0.008

0.046
0.081
0.045

0.034
0.057
0.035

0.065
0.209
0.068

0.046
0.106
0.046

0.8 < z < 1.0

ANNz2
SDSS method

NNk

-0.070
-0.256
-0.090

-0.037
-0.136
-0.047

0.075
0.095
0.074

0.037
0.095
0.047

0.101
0.408
0.128

0.084
0.166
0.088

1.0 < z < 1.2

ANNz2
SDSS method

NNk

-0.174
-0.480
-0.198

-0.084
-0.232
-0.095

0.036
0.094
0.026

0.040
0.091
0.019

0.240
0.650
0.286

0.091
0.250
0.099

1.2 < z < 1.4

ANNz2
SDSS method

NNk

-0.365
-0.797
-0.431

-0.160
-0.351
-0.189

0.022
0.067
0.027

0.011
0.034
0.024

0.529
0.837
0.609

0.161
0.356
0.190

1.4 < z < 1.5

ANNz2
SDSS method

NNk

-0.552
-0.954
-0.576

-0.227
-0.388
-0.236

0.010
0.008

9.3×10−4

0.010
0.008

9.8×10−4

0.695
0.870
0.713

0.227
0.388
0.236

Table 5.8: Metrics of photometric redshift performance for the database with full WISE bands. Results
are presented per bin of NNK, ANNz2 and SDSS method photoz , respectively.

photoz bin
δz nδz

st. dev of
nδz

SMAD of
nδz

Loss of
nδz

RMS of
nδz

0 < z < 0.2 ANNz2 ANNz2 ANNz2 SDSS ANNz2 ANNz2
0.2 < z < 0.4 SDSS SDSS SDSS SDSS SDSS SDSS
0.4 < z < 0.6 SDSS SDSS SDSS SDSS SDSS SDSS
0.6 < z < 0.8 ANNz2 ANNz2 NNK ANNz2 ANNz2 ANNz2
0.8 < z < 1.0 ANNz2 ANNz2 NNK ANNz2 ANNz2 ANNz2
1.0 < z < 1.2 ANNz2 ANNz2 NNK NNK ANNz2 ANNz2
1.2 < z < 1.4 ANNz2 ANNz2 ANNz2 ANNz2 ANNz2 ANNz2
1.4 < z < 1.5 ANNz2 ANNz2 NNK NNK ANNz2 ANNz2

Table 5.9: Comparison of Redshift Determination Methods for Each Metric using the full WISE bands.
The method with the best performance is presented by photoz bin.
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(a) (b)

Figure 5.8: Performance of the SDSS method with W1 and W2 bands as compared to the spectroscopic
samples, the red solid line shows the moving median while the slim lines shows the scatter (SMAD). (a)
direct specz − photoz comparison. (b) normalised bias as a function of photoz .

From table 5.10, it is deduced that ANNz2 exhibits the most outstanding performance when trained

with the four WISE bands. This finding suggests the importance of including this additional information

in the training process. Additionally, it can be observed that the SDSS method shows the most modest

performance in terms of redshift estimation, presenting inferior results compared to the other evaluated

methods.

bands method st.dev. of
nδz

SMAD of
nδz

loss of
nδz

RMS of
nδz

% of
O

ugriz ANNz2
NNk

0.053
0.054

0.025
0.039

0.047
0.075

0.053
0.054

2.12
2.12

ugriz
W1 and W2

ANNz2
NNk

0.048
0.047

0.022
0.028

0.048
0.070

0.048
0.060

1.80
2.10

ugriz
W1,W2,W3,W4

ANNz2
NNk

0.042
0.056

0.021
0.035

0.043
0.076

0.043
0.059

1.70
1.95

SDSS 0.063 0.026 0.083 0.064 4.93

Table 5.10: Performance of photometric redshift determination methods using NN for various training
variables in the 0 < z < 0.8 range. The results are presented alongside the performance of the SDSS
method.
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(a) (b)

Figure 5.9: Performance of ANNz2 with the full WISE bands as compared to the spectroscopic samples,
the red solid line shows the moving median while the slim lines shows the scatter (SMAD). (a) Direct
specz − photoz comparison. (b) Normalised bias as a function of photoz .

(a) (b)

Figure 5.10: Performance of NNk with the full WISE bands as compared to the spectroscopic samples,
the red solid line shows the moving median while the slim lines shows the scatter (SMAD). (a) Direct
specz − photoz comparison. (b) Normalised bias as a function of photoz .
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Chapter 6

Conclusions

Redshifts have proven to be a fundamental tool in the exploration and understanding of the universe.

Their study has allowed us to investigate the evolution of galaxies, the expansion of the universe, and

the nature of dark energy, as well as gather information about the composition, structure, and age of the

cosmos. The determination of redshifts through photometric data has revolutionized our ability to map

and comprehend the distribution of galaxies, but it has introduced a new challenge to the scientific com-

munity, related to handling large databases and obtaining models that can accurately predict photometric

redshifts.

This research presented the analysis of two different techniques for determining photometric redshifts

using machine learning methods, with a specific focus on the use of neural networks. The performance

of both neural networks was compared with a standard procedure for redshift determination obtained

from the Sloan Digital Survey.

In the first part of the results, it was demostrated that the photometric bands ugriz are sufficient

for determining redshifts in the range of 0 < z < 0.8. It was found that the optimal configuration for

ANNz2 is to train 100 < machine learning methods based on neural networks. Additionally, the color

space that serves best as input for a neural network is composed of the following combination of colors
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and bands: (U), (U −G), (G−R), (R− I), (z). It can be concluded that neural networks are a superior

model for redshifts above z = 0.4.

In the second section of the results, the impact of adding some WISE bands in the training of a

neural network was determined. The findings indicated that the bands ugriz + WISE are not sufficient

to achieve a high level of precision for redshifts greater than 0.8. However, the precision of the neural

networks in this interval proved to be significantly superior to the local linear model.

In conclusion, ANNz2 emerged as the best method for determining redshifts, followed by NNk,

especially when these algorithms were trained using the ugriz+WISE bands. It was demonstrated that

this combination of bands yields superior results when applied over a redshift range of 0 < z < 0.8.

It should be emphasized that despite obtaining promising results within this redshift range, these ex-

periments are contingent on the quantity of galaxies found in the surveys of SDSS and WISE. Therefore,

future lines of research may unfold as more spectral information becomes available for a greater number

of galaxies.

Future prospects for these types of experiments include expanding the training set, not only in terms

of the quantity of observations but also in the number of photometric bands near the infrared range.

Experiments with ugriz+WISE could benefit from also having information from the five near-IR bands

of the Kilo-degree Infrared Galaxy survey (VIKING) (Edge et al., 2013)

In conclusion, the determination of redshifts through neural networks based on photometric data has

proven to yield accurate redshift values and can be confidently used to investigate other properties of the

cosmos. While the redshift estimation may vary depending on the nature of the survey used and the type

of parameters employed, they remain the most convenient way to estimate redshifts today.
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Walcher, J., Groves, B., Budavári, T., and Dale, D. (2011). Fitting the integrated spectral energy distri-

butions of galaxies. , 331:1–52.

Weaver, W. B. (2000). Automatic Spectral Classification of Unresolved Binary Stars. In American Astro-

59



nomical Society Meeting Abstracts, volume 197 of American Astronomical Society Meeting Abstracts,

page 15.17.

Weiss, A. and Schlattl, H. (2008). GARSTEC—the Garching Stellar Evolution Code. The direct descen-

dant of the legendary Kippenhahn code. , 316(1-4):99–106.

Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., Ressler, M. E., Cutri, R. M., Jarrett, T., Kirkpatrick,

J. D., Padgett, D., McMillan, R. S., Skrutskie, M., Stanford, S. A., Cohen, M., Walker, R. G., Mather,

J. C., Leisawitz, D., Gautier, Thomas N., I., McLean, I., Benford, D., Lonsdale, C. J., Blain, A.,

Mendez, B., Irace, W. R., Duval, V., Liu, F., Royer, D., Heinrichsen, I., Howard, J., Shannon, M.,

Kendall, M., Walsh, A. L., Larsen, M., Cardon, J. G., Schick, S., Schwalm, M., Abid, M., Fabinsky,

B., Naes, L., and Tsai, C.-W. (2010). The Wide-field Infrared Survey Explorer (WISE): Mission

Description and Initial On-orbit Performance. , 140(6):1868–1881.

York, D. G., Adelman, J., Anderson, John E., J., Anderson, S. F., Annis, J., Bahcall, N. A., Bakken,

J. A., Barkhouser, R., Bastian, S., Berman, E., Boroski, W. N., Bracker, S., Briegel, C., Briggs, J. W.,

Brinkmann, J., Brunner, R., Burles, S., Carey, L., Carr, M. A., Castander, F. J., Chen, B., Colestock,

P. L., Connolly, A. J., Crocker, J. H., Csabai, I., Czarapata, P. C., Davis, J. E., Doi, M., Dombeck, T.,

Eisenstein, D., Ellman, N., Elms, B. R., Evans, M. L., Fan, X., Federwitz, G. R., Fiscelli, L., Friedman,

S., Frieman, J. A., Fukugita, M., Gillespie, B., Gunn, J. E., Gurbani, V. K., de Haas, E., Haldeman,

M., Harris, F. H., Hayes, J., Heckman, T. M., Hennessy, G. S., Hindsley, R. B., Holm, S., Holmgren,

D. J., Huang, C.-h., Hull, C., Husby, D., Ichikawa, S.-I., Ichikawa, T., Ivezić, Ž., Kent, S., Kim, R.
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