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Abstract

Since the launching of the Kepler satellite in 2009, the discovery rate per year of exoplanets

(i.e. planets found outside the Solar System) has increased meaningfully with more than 5, 000

exoplanet confirmations up to now. Exoplanet discoveries are important to understand the

composition and evolution of the universe. Even more, searching for exoplanets also opens the

possibility to look for life in other planets. The amount of data that have to be processed in

order to perform such a discovery is immense. Nowadays, there exist several machine learning

approaches, although they are not yet unerring. The underlying aim of this thesis is to develop

a machine learning model based on multiresolution analysis capable of identifying if a signal

detected in time series of star flux, called light curves, corresponds to an exoplanet transit or

not.

First, we propose a pipeline that helps to understand the process of exoplanet discovery.

Such pipeline is divided in data acquisition, data preprocessing, exoplanet detection, and exo-

planet identification. Next, we compare some of the best performing machine learning models

that have been applied to exoplanet identification in the literature; such as convolutional neural

networks and random forests. Also, we tested preprocessing the light curves using multires-

olution analysis to improve the performance of the models. Three different techniques were

used, namely the discrete wavelet transform, empirical mode decomposition and its ensemble

alternative. We created two datasets of synthetic exoplanet transits for the experiments. Our

results show that the models classify better when using multiresolution analysis. For instance,

the convolutional neural network increases its accuracy from 91.46% and 97.68% to 97.13% and

99.32%. Furthermore, our experiments show that the discrete wavelet transform helps to de-

crease the execution time of the models because it reduces the length of the input vectors. For

example, the random forests classifier improved from 10.26 and 9.42 to 1.18 and 1.16 seconds,

and the convolutional neural network improved its testing time from 46.74 and 54.17 to 31.59

and 22.93 seconds.

Finally, we have proposed a new machine learning model that uses multiresolution analysis

as its core component; which we termed WAvelet-Based Broad LEarning System (WABBLES).

It was tested using one of the light curve datasets aforementioned and a benchmark dataset of

breast cancer, the latter to prove that the model can be used for any classification problem.

The proposed model obtains better identification results than the traditional models that were
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tested in this work. On the one hand, for exoplanet identification, our model attained an

accuracy of 99.01%, while the other models obtained an accuracy lower than 98.6%. On the

other hand, for breast cancer detection, our model obtained an F-Score of 96.23% while the

rest of the models did not obtain more than 94.8%.
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Resumen

Desde el lanzamiento del satélite Kepler en el año 2009, el número de descubrimientos de

exoplanetas (planetas encontrados fuera del Sistema Solar) ha incrementado notablemente con

más de 5, 000 exoplanetas confirmados hasta la fecha. Su estudio es importante para entender

la composición y evolución del universo. Además, estudiar exoplanetas provee la posibilidad de

buscar vida fuera de la Tierra. La cantidad de información a procesar para lograr tales descu-

brimientos es abrumadora. Hoy en d́ıa existen diversas propuestas de aprendizaje de máquina

para realizar estas tareas, aunque aún cuentan con sus limitaciones. El propósito de esta tesis

es desarrollar un modelo de aprendizaje de máquina basado en el análisis multiresolución, para

analizar las series de tiempo de luz estelar, llamadas curvas de luz, e identificar si las señales

detectadas corresponden a tránsitos de exoplanetas.

Primero, presentamos el método general a través del cual se descubren los exoplanetas. Dicho

método se divide en la adquisición de datos, su preprocesamiento, detección e identificación de

exoplanetas. Luego, comparamos varios algoritmos de aprendizaje de máquina reportados en

la literatura para la identificación de exoplanetas; tales como redes convolucinoales y árboles

aleatorios. También presentamos experimentos utilizando análisis multiresolución para prepro-

cesar las curvas de luz y aśı obtener mejores resultados de identificación. Se probaron tres

técnicas: la transformada discreta wavelet, la descompocisión emṕırica de modos y su variante

en conjunto. Hemos creado dos conjuntos de datos con tránsitos sintéticos de exoplanetas para

los experimentos. Los resultados muestran que el rendimiento de los modelos mejora gracias al

análisis multiresolución. Por ejemplo, la red convolucional incrementa su precisión de 91.46 % y

97.68 % a 97.13 % y 99.32 %. Además, hemos disminuido el tiempo de ejecución de los modelos

utilizando la transformada discreta wavelet, la cual reduce la longitud del vector de entrada.

Por ejemplo, el clasificador de bosques aleatorios mejoró de 10.26 y 9.42 a 1.16 y 1.18 segundos,

mientras que la red convolucional mejoró su tiempo de pruebas de 46,74 y 54,17 a 31,59 y 22,93

segundos.

Finalmente, proponemos un nuevo modelo de aprendizaje de máquina que utiliza análisis

multiresolución como componente principal; llamado Sistema de Aprendizaje Amplio Basa-

do en Wavelets (WABBLES). El modelo fue probado para la identificación de exoplanetas y

detección de cáncer de mama para probar que puede ser utilizado para cualquier problema

de clasificación. Nuestro modelo obtiene mejores resultados que los modelos tradicionales que
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fueron probados. Por una parte, para la identificación de exoplanetas, nuestro modelo obtuvo

99.01 % de precisión, mientras que los otros modelos obtuvieron porcentajes menores a 98.6 %.

Por el otro lado, para la detección de cáncer de mama, nuestro modelo obtuvo un F-Score de

96.23 %, mientras que el resto de los modelos no pudo superar el 94.8 %.
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The nitrogen in our DNA, the calcium in our teeth, the iron in

our blood, the carbon in our apple pies were made in the interiors

of collapsing stars. We are made of starstuff.

– Carl Sagan.

Cosmos
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Chapter 1

Introduction

1.1. Motivation

During the 1990’s, astronomers Aleksander Wolszczan and Dale Frail [Wolszczan and Frail,

1992] validated the discovery of a planet orbiting the pulsar PSR B1257+12 outside the Solar

System. This discovery was a definitive answer to the question: are there any planets outside

the Solar System? in a time when, as stated in [Yaqoob, 2011], there was too much skepticism

regarding this topic due to the lack of proofs. Later, in 1995, astronomers Michael Mayor

and Didier Queloz [Mayor and Queloz, 1995] detected the exoplanet 51 Pegasi b by using a

technique called radial velocity. The discovery of 51 Pegasi b was an important breakthrough

because it was the first time that an exoplanet was found orbiting a star in the main sequence.

The term exoplanet stands for extrasolar planet and it refers to any planet found outside the

Solar System. The study of exoplanets is important for several reasons, as stated in [Burke

et al., 2014]:

Obtaining statistical information about the universe.

Extending our knowledge of the creation of the Solar System.

Searching for habitable planets outside the Solar System.

1
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Searching for evidences of life outside the Solar System.

Exoplanet research developed rapidly after the discovery of 51 Pegasi b. Different sky survey

missions have been performed since with the aim of retrieving the observable light of stars on a

determined area of the sky. One of the goals of such missions is to find exoplanet transits (when

a host star is periodically hidden by a planet, which causes its stellar light to be dimmer), to

look for exoplanets. The information conveyed by such missions is then turned into a time

series that contains the changes of the light flux obtained from a given star; which is called a

Light Curve (LC). The brightness values obtained in the LC, such as the one shown in Figure

1.1, vary as the exoplanet orbits its host star. LC also allow one to extract certain parameters,

such as the beginning of ingress (t1), end of ingress (t2), beginning of egress (t3), end of egress

(t4), transit length, and transit depth. LCs are carefully examined in order to look for evidences

of events that could correspond to an exoplanet transit signal. Then, the detected signals are

vetted to ensure that they actually correspond to an exoplanet, avoiding spurious detections.

Figure 1.1: Example of a LC.

A successful example of the projects that have been dedicated to the search of exoplanets

was the Kepler satellite. It recollected data under two missions, the first one from 2009 to 2013,

where it only pointed at the Cygnus constellation until it presented a failure and it was adapted

as the K2 mission [Howell et al., 2014]. This second mission aimed at different regions but it

was limited by the failure in one of the reaction wheels, which resulted in less accurate pointing.
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Nevertheless, this second mission lasted from 2014 to 2018, when the satellite was definitely

decommissioned. The data obtained by Kepler has helped to detect more than 6, 000 plane-

tary candidates (unconfirmed signals that are likely related to exoplanets), from which, most

of the confirmed exoplanets have been discovered, with more than 2, 600 confirmations (from

the more than 5, 000 total discoveries up to may of 2022). Other space missions such as the

Hubble space telescope, and Convection, Rotation and Planetary Transits space observatory

mission (CoRoT), have provided useful information for the exoplanetary study. Furthermore,

the importance of the exoplanetary research continues to be on the scope of the National Aero-

nautics and Space Administration (NASA), and the European Space Agency (ESA) missions.

Some of the most recent space telescope missions are the Transiting Exoplanet Survey Satellite

(TESS) [Ricker et al., 2014] satellite launched in 2018 to discover exoplanets, the CHaracterising

ExOPlanets Satellite (CHEOPS) [Beck et al., 2017] satellite launched in 2019 to characterize

exoplanets that have been detected using the radial velocity technique, and the James Webb

Space Telescope (JWST) which was launched in the year 2021 with the aim of characterizing

the atmospheres of the confirmed exoplanets. There are several future missions to come, for

example the Wide-Field Infrared Survey Telescope (WFIRST) among others.

One of the main constraints of this research area is that the examination of LCs is time-

consuming and demands considerable effort. As pointed in [Shallue and Vanderburg, 2018], the

first lists of candidates were generated by manual vetting of planet candidates. Later, many

Machine Learning (ML) techniques were proposed in order to identify the transiting exoplanet

signals. The main reasons to develop ML algorithms for exoplanet identification are:

The automation of a task that requires astronomers to spend time and effort.

To allow scientists to identify exoplanets when the Signal-to-Noise Ratio (SNR) is too

low to easily identify them, thus enabling to find smaller exoplanets.

To reduce the false positive rates in the identification process.

To profit from the capability of computational solutions to deal with great quantities of

information without losing performance (for example, the Kepler mission has provided
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us with more than 3 million files).

In order to understand how to achieve these goals, the next Section discusses several ML

approaches that have been used in exoplanet research.

1.2. Related Work

Identifying transiting exoplanet signals in LCs poses several challenges. When using the tran-

sit technique (discussed in Section 2), false positive rates, and features with noise become a

serious problem. Also, the necessity of dealing with datasets that contain such quantities of

information, requires a robust and scalable approach. According to [Pearson et al., 2017], the

ideal planet detection algorithm should be fast, robust to noise and capable of learning and ab-

stracting highly non-linear systems. For this reason, ML approaches (which are derived from

the Artificial Intelligence (AI) perspective) have been proposed by many authors.

The Box-Fitting Least Squares (BFLS) algorithm presented in [Kovacs et al., 2002] is an

exact Least Squares (LS) solution that relies on detecting box-like events in stellar LCs. This

approach allows one to detect periodic transit events in noisy time series, though it requires

a good compromise between high resolution, and short execution time. Additionally, its opti-

mization function has multiple minima, which means that the best solution is not necessarily

guaranteed.

A decision tree partitions the space of attributes several times, until the attributes are

considered to be partitioned enough. The works in [Coughlin et al., 2016], [Catanzarite, 2015],

[Koch et al., 2010], [McCauliff et al., 2015], [Armstrong et al., 2018] and [Sturrock et al., 2019],

use decision trees, in order to obtain the most representative characteristics from LC time

series data. Once obtained, the decision tree is capable of determining if the source of the

signal belongs to a planetary candidate, or other sources; as well as determining which are the

most useful features.

A Convolutional Neural Network (CNN) is used in the works of [Shallue and Vanderburg,
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2018], [Pearson et al., 2017], [Ansdell et al., 2018], [Dattilo et al., 2019], [Chaushev et al.,

2019], [Yu et al., 2019], [Osborn, H. P. et al., 2020], [Pearson, 2019], [Priyadarshini and Puri,

2021] and [Schanche et al., 2018] (the last two combine CNNs with other models) to identify,

detect, or even predict the parameters of exoplanetary transit signals. CNNs allow one to

exploit the spatial correlation of the data. The aforementioned works are capable of detecting

Earth-like exoplanets in noisy time series data by extracting their own features. One of the

main limitations of these works is that their preprocessing steps often insert noise in the data;

which causes problems during the identification process such as spurious identifications. Also,

the nature of these algorithms makes the parameter optimization difficult because they require

to test large hyperparameter grids to achieve the ideal configuration.

The works presented in [Pearson et al., 2017], [Masciadri and Raga, 2004], [Bravo et al.,

2014], [Carter and Nathan Winn, 2009], [Grziwa and Pätzold, 2016], make use of Multiresolution

Analysis (MRA) for different purposes, namely, to preprocess the LC data and then use it as

input for an ML algorithm, to analyze the LC for automatic exoplanet identification or to

determine the properties of a transit or its host star. On the one hand, the main advantage of

these approaches is that, through the use of wavelets, they are capable of extracting the most

significant features from the LCs, enabling scientists to detect shallow transits. In contrast,

some instances only consider stationary noise problems whereas the actual noise is usually

non-stationary.

Finally, [Aigrain and Favata, 2002] and [Carpano, S. et al., 2003], present a Bayesian ap-

proach based on the Gregory-Loredo Bayesian method (GL) to detect planetary transits due

to terrestrial planets. It consists in computing the likelihood of the given data by using the

transit parameters. These works have the advantage that they can approximate LCs with arbi-

trary shapes; and they also have the capability to use the information to reconstruct the signal

(i.e., determine the characteristics of the exoplanet). In contrast, the main limitation of these

approaches is that computing time scales linearly with the number of points in the LCs, and

this implies that the more samples are fed, the more time consuming the algorithm will be.

Furthermore, the noise present in the transit signals is one of the most problematic causes of
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identification errors. In order to reduce instrumental and astrophysical noise from the transit

signals, some works present a preprocessing step, such as using unsupervised learning to discard

noise [Mislis et al., 2018], among other ML methods that are out of the scope of this work,

which are presented in [Jara-Maldonado et al., 2020b]. Even though these methods reduce the

quantity of missed detections, they are not yet unerring. Also, as mentioned in [Petigura et al.,

2013], small Earth-like planets, which are of great interest due to their potential capabilities

of being habitable, tend to be difficult to spot. The reason for this is that they are commonly

found on LC signals highly contaminated by noise. For these reasons, an MRA approach

is proposed in this thesis, which is capable of obtaining information of interest at different

frequency resolutions.

1.3. Aim of Thesis

The aim of this thesis is to improve the transiting exoplanet identification rates by using MRA

for a resolution-level-adapted inspection of LC time series data. MRA is advantageous to the

exoplanet research field because it allows one to analyze signals at different resolution levels.

This makes it possible to obtain characteristics of the signal that otherwise could be lost due to

the noise present in the LCs. Therefore, the underlying purpose of the work presented in this

thesis is to develop a MRA algorithm that is capable of identifying exoplanet transits in noisy

LC time series. This study is based on the hypothesis that: a machine learning model based

on multiresolution analysis is capable of overmatching the transiting exoplanet identification

accuracy performance of the state-of-the-art models applied to noisy light curve classification.

1.3.1. Specific Objectives

The specific objectives of the underlying work reported in this thesis are:

To select existing LC modeling tools publicly available that can be used to assess the

exoplanet identification performance of different ML models.
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To choose MRA techniques that can be applied to LCs.

To assess the accuracy and time performance obtained by different Machine Learning

(ML) models, using LCs preprocessed using the MRA techniques chosen. This is done

with the aim of identifying the best MRA technique for exoplanet identification.

To propose and implement a ML model based on MRA capable of sensitively identifying

exoplanet signals within noisy LCs.

To compare the accuracy performance of the proposed WAvelet-Based Broad LEarning

System (WABBLES) model against other models reported in the literature.

1.4. Contributions

The main contribution of this work relies on the proposed MRA approach for exoplanet iden-

tification. By using the different decomposition levels available in the transiting signal, it will

be possible to extract the most significative pieces of the LC, thus providing an advantageous

set of features in comparison to the works reported in the literature. Among the different

contributions that this model will provide are:

The design and implementation of a new ML model based on the Broad Learning System

(BLS) and MRA for exoplanet identification, which we termed WABBLES.

A comparative framework of different MRA and ML techniques that can be applied

to exoplanet identification. This comparison is based on performance metrics such as

identification accuracy and execution time.

A guideline to apply different MRA techniques to preprocess LCs. It is proven in this work

that these techniques enhance the identification performance of the state-of-the-art ML

models. The guideline is presented along with the results obtained by three different MRA

techniques that were applied to LCs, namely the Discrete Wavelet Transform (DWT),
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Empirical Mode Decomposition (EMD), and Ensemble Empirical Mode Decomposition

(EEMD) techniques.

A proposal to improve the robustness of the ML models to different sources of noise in

the input data through the use of MRA techniques.

The application of some ML models that had not been used yet for exoplanet identifica-

tion, such as the BLS algorithm.

A pipeline for synthetic LC dataset creation and how it can be used to train and compare

diverse ML models.

A pipeline to be considered in order to automate the complete exoplanet discovery process.

The proof of the potential of MRA techniques applied to exoplanet detection and identi-

fication.

1.4.1. Socio-economic Impact

Using an MRA-based ML model for discovering new exoplanets in data that otherwise is hard to

analyze (due to different phenomena such as noise, astrophysical false positives, feeble transits,

etc.) will enable to update the current exoplanet database with new information. This is

important because:

It will allow the creation of automated methods based on MRA for exoplanet identification

and other astronomical areas of study. As explained in [Thompson et al., 2015], as the

size and complexity of astronomical data increases, the analysis of these data sets will

need to become increasingly automated.

Having a wide variety of exoplanets on which astronomers may conduct further study

will enable scientists to better understand the formation of the universe, galaxies, and

the Solar system. [Yu et al., 2021].
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According to [Yaqoob, 2011], in nearly 5 billion years from now, our Sun will exhaust its

main fuel income, i.e. hydrogen. This will probably result in a great expansion of the

Sun in which the Earth would become engulfed. This situation along with some others

(such as population growth) that threaten the survival of the human race pose a new

motivation for finding exoplanets in the habitable zone. The first step to achieve such

a feat is generating a catalogue of exoplanets in the habitable zone and to characterize

those exoplanets. This knowledge could be used for future generations that may have the

required technology to travel to distant worlds.

Discovering terrestrial planets in the habitable zone (where liquid water may exist), in-

creases the probabilities of discovering life outside planet Earth. This would provide a

definitive answer to the question: Are we alone?

Finally, mining in space is a promising business for the future. As stated in [Vázquez,

1981], there already exist different international regulations for space exploration as well

as for freedom of space exploitation.

1.5. Thesis Outline

The work reported in this thesis is organized as follows.

In Chapter 2, an overview of exoplanet research is presented. The main techniques used

to identify exoplanets are reviewed, as well as some general properties of exoplanets. Also, a

background of MRA techniques and ML is provided.

Chapter 3 presents the implementation of different ML models applied to exoplanet identi-

fication. Also, a comparison of the performance of such models is reported here. This chapter

also includes the results of using MRA techniques to preprocess LCs before employing them as

inputs for different ML models, along with the comparison of those results.

The proposed WAvelet-Based Broad LEarning System (WABBLES) model is presented in

Chapter 4. This chapter describes the architecture of the algorithm. The advantages and
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limitations of this approach are also discussed in this section.

Chapter 5 presents the conclusions and future research directions of this work.

Finally, all the publications related to this work are listed in Appendix A.



Chapter 2

Theoretical Background

Discovering exoplanets is a complex task. First, there are several techniques that can be used

to detect and identify an exoplanet. Once an exoplanet is discovered, the characterization of

its properties is another challenge. It commonly involves making indirect measurements that

could require a prior knowledge of its host star properties. In this chapter, a general overview

of exoplanets is given, which presents the main properties of exoplanets. Then, the main

techniques used for exoplanet detection are discussed. Finally, this chapter introduces some of

the basic concepts of MRA and ML. It should be noticed that the ML approaches referenced

in Chapter 1, as well as the MRA approach proposed in this work are exclusively focused on

detecting and identifying exoplanets through the transit technique.

11
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2.1. Exoplanet Overview

Exoplanets are planets found outside the Solar System. Studies with the aim of discovering new

exoplanets have recently started to give satisfying results. One of the main goals of exoplanetary

missions such as Kepler, is determining which planets could host life. A habitable planet can

be defined as a planet capable of sustaining life [J. Lissauer, 2000]. Under the assumption that

organisms need water to survive, the habitable zone is defined by the Encyclopedia Britannica1

as the orbital region around a star in which an Earth-like planet can possess liquid water on its

surface and possibly support life. For this to be possible, an exoplanet has to be close enough

to the star for water not to be frozen, but far enough to ensure that the temperature allows

for liquid water. The Habitable zone is exemplified in Figure 2.1, where an exoplanet is found

at a suitable distance from its host star to sustain life. Even more, as mentioned in [Seager

and Bains, 2015], looking for life in the habitable zone is based on the premise that life in the

whole universe is similar to life as we know it; but life could exist in exoplanets found outside

the habitable zone. Nevertheless, up to now no proof of life has been found outside the planet

Earth.

Figure 2.1: The habitable zone is found not so far nor so close to the star to allow for liquid
water to be formed.

According to [Yaqoob, 2011], obtaining different measurements from exoplanets is a difficult

1https://www.britannica.com/science/habitable-zone by Jack J. Lissauer

https://www.britannica.com/science/habitable-zone
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process because it cannot be directly achieved. Estimating measurements of the properties of

an exoplanet first requires to calculate some parameters from its host star. On the one hand,

the most fundamental parameters from the host star to be measured are its mass (M∗), radius

(R∗), and distance to Earth. On the other hand, the most important exoplanet parameters are

mass (Mp), radius (Rp), and temperature (which is also important for determining its capacity

to support liquid water). Other exoplanet properties used to determine life sustainability are

the distance of the exoplanet to its host star and atmospheric data such as its chemical compo-

sition. Table 2.1 presents some of the properties of exoplanets along with their common metric

units according to [Yaqoob, 2011] and the NASA planetary fact sheet2. Notice that all these

properties are limited to estimates, and, thus, do not imply that exact measurements are ob-

tained. Also, different detection techniques allow astronomers to estimate different properties,

which means that some properties can only be observed by using a certain detection method.

2.2. Exoplanet Detection Methods

The breakthrough discovery of 51 Pegasi b in 1995 was performed by using the radial velocity

method, which consists in analyzing the Doppler shift effect that results from the mutual gravity

of the host star and the exoplanet. A stellar wobble is produced as the star moves around the

barycenter of the system. This can be measured by observing the differences in wavelength

from the star’s spectrum. This method has been previously used in binary star astronomy,

as mentioned in [Wright, 2017], where a binary system consists on two stars orbiting each

other. The main limitation of this approach is that stellar wobbles can be difficult detect due

to jittering and because they require very precise instruments. Table 2.2 shows the percentage

of exoplanets that have been confirmed using each of the different detection techniques. The

information of this table was retrieved from the NASA exoplanet website3.

Another method that has proved to be very effective for exoplanet detection is the transit

technique. As demonstrated in Figure 2.2 (generated using information from the NASA Ex-

2https://nssdc.gsfc.nasa.gov/planetary/factsheet/
3Source: https://exoplanets.nasa.gov/. Consulted in May 18, 2022.

https://nssdc.gsfc.nasa.gov/planetary/factsheet/
https://exoplanets.nasa.gov/
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Table 2.1: Indirectly Obtainable Exoplanet Properties.

Property Metric Unit

Mass. Kilograms (in some cases it is compared
to the mass of the Earth or another
planet).

Radius. In Jupiter radius RJ (for giants) and
Earth radius R⊕ (for small ones).

Temperature. K or ◦C.

Density. kg/m3.

Chemical composition and associated
atmosphere.

-

Distance of the exoplanet to its host
star.

Typically expressed in astronomical
units (au).

Surface gravity. m/s2.

Inclination angle of the orbit. Degrees.

Orbital eccentricity. There are no units for eccentricity. 0
means a perfect circle orbit and as the ec-
centricity comes close to 1 it means that
the elliptical orbit is more elongated.

Orbital period. Days.

Dimensions of the orbital ellipse. Major and minor axis typically expressed
in au.

oplanet Archive4), most of the known exoplanets have been discovered by using this method;

despite the statistically restricting conditions that have to be met for a transit to occur. Tran-

sits are similar events to solar eclipses. In a solar eclipse, when the moon is exactly between

the observer and the Sun, the light of the Sun that is received on Earth appears dimmer. A

transit in contrast, happens when an exoplanet (or a planet) passes between the observer and

the star the aforementioned planet orbits. Some of the parameters that may be estimated by

using the transit method are the planet radius Rp, star radius R∗, orbital period P , and some

characteristics of the planet. The main limitations of this method are that it can only find

planets with orbits passing between the observer and the star, as well as its vulnerability to

false positives caused by multiple noise factors.

4NASA Exoplanet Archive: https://exoplanetarchive.ipac.caltech.edu/index.html

https://exoplanetarchive.ipac.caltech.edu/index.html
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Table 2.2: Percentage of exoplanet confirmations according to the method used.

Method Detection percentage

Transit method. 76.6%.

Radial Velocity. 18.4%.

Microlensing. 2.6%.

Direct Imaging. 1.2%.

Others. 1.2%.

Figure 2.2: Distribution of exoplanets found up to 2020. The dark area corresponds to the
number of exoplanets found using the transit search method, while the orange area corresponds
to those exoplanets found using any other detection method. This figure was generated using
the data from the NASA Exoplanet Archive.

The transit method uses LCs, which are time series with the quantity of light in a certain

filter/band/wavelength range from each star. The light fluxes of the LCs are obtained by space-

borne and ground-based instruments. If a transit occurs, a drop in the level of brightness will

be shown in the LC. An example of a real LC is presented in Figure 2.3, where the x-axis

represents a measure of time called Barycentric Julian Date (BJD). The y-axis represents the

brightness of the star, where flux values are scaled from the minimum to the maximum value.

The LC from Figure 2.3 was generated by using the data from a planetary system around the

star HIP 41378, stored in the the MAST archive5, as explained in the Transiting Light Curve

Tutorial6.

5MAST Archive: http://archive.stsci.edu/kepler
6Transiting Light Curve Tutorial: https://www.cfa.harvard.edu/~avanderb/tutorial/tutorial4.html

http://archive.stsci.edu/kepler
https://www.cfa.harvard.edu/~avanderb/tutorial/tutorial4.html
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Figure 2.3: Light Curve (LC) showing a transit of the exoplanet HIP 41378 f. Source: MAST
archive.

The distortion in light trajectories caused by massive objects, such as stars or planets, can

change the direction of light, generating a gravitational lensing effect on the light of a star as

described in [Treu et al., 2012]. The microlensing method looks for short-time star brightness

rises caused by the gravity of an exoplanet, which works as a massive lens. The main limitations

of this method are that the required alignment of the star with the planet and the observer

is unlikely to happen, and astronomers cannot predict where or when the lensing events will

occur.

A further technique used for exoplanet identification is direct imaging, where the planet

and stars are well resolved. Direct imaging is a promising technique for the future generation

of giant telescopes. Finally, other techniques, such as astrometry, are also used; although

exoplanet identifications using these methods are scarce. Finally, Figures 2.4 and 2.5 shows a

relation between the confirmed exoplanets and the method that detected them. The detections

are shown according to the planet radius or mass (Mp or Rp) and orbital period (P ). The figure

was generated using the tools from the NASA Exoplanet Archive4 (May, 2022).
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Figure 2.4: Planet mass vs. orbital period of the confirmed exoplanets according to the
detection method used. Source: NASA Exoplanet Archive.

2.3. Multiresolution Signal Processing

According to [Graps, 1995], MRA allows one to divide signals into different frequency compo-

nents, and then analyze these components with a resolution that matches in scale. In order to

describe the MRA theory in more detail, a brief overview of the fundamentals of signal analysis

is provided next.

A period is the time taken to complete one full cycle, in the case of waves, it is the time

necessary for one complete vibration to be achieved [de Mayo, 2015]. As an example, the period

of a planet T of radius Rp, that travels around a completely round orbit at speed v, is the time

it takes to go all the way around its orbit, and it is calculated by using Eq. (2.1) [Newton and

Henry, 2000].

T =
2πRp

v
(2.1)

Furthermore, the frequency of a wave is the number of vibrations occurring per unit of time.
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Figure 2.5: Planet radius vs. orbital period of the confirmed exoplanets according to the
detection method used. Source: NASA Exoplanet Archive.

In the previous example, the frequency would be the number of times that the planet completes

its orbit, per unit of time. Frequency can be calculated through the use of Eq. (2.2) [de Mayo,

2015].

f =
1

T
(2.2)

where T is the period measured in seconds and the frequency f is often expressed as Hertz

(Hz ).

From a historical perspective, in the 19th century, Joseph Fourier contributed much to

frequency analysis. He introduced the Fourier series, whose aim is to express a periodic function

f(t) (i.e. a function whose values are repeated at regular intervals), with period T , as a linear

combination of sines and cosines as Eq. (2.3) [Graps, 1995] shows.

f(t) = a0 +
∞∑
k=1

{
akcos(kt) + bksin(kt)

}
(2.3)
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where t is time; and a0, ak, and bk are calculated using Eq. (2.4) [Graps, 1995].

a0 =
1

2π

∫ 2π

0

f(t)dt, ak =
1

π

∫ 2π

0

f(t)cos(kt)dt, bk =
1

π

∫ 2π

0

f(t)sin(kt)dt (2.4)

In summary, in Eq. (2.3), each term of the sum represents a harmonic of the function. The

Fourier Transform F (w) presented in Eq. (2.5) [Bravo et al., 2014], allows one to determine

how much influence has each frequency in the signal; nonetheless, it provides no information of

how the frequency is related to time.

F (ω) =

∫ ∞
−∞

f(t)e−2πiwtdt (2.5)

where ω is the frequency, and t represents time. Due to the fact that the Fourier transform

provides no information of how frequency is varied over time, Dennis Gabor [Gabor, 1947]

modified the Fourier transform to create the Short-Term Fourier Transform (STFT), or Gabor

transform. It consists in dividing the signal into segments of a fixed length, small enough to

obtain a stationary signal, to then apply the Fourier transform. The STFT is defined in Eq.

(2.6).

STFT (b, f) =

∫ +∞

−∞
x(t)g∗(t− b)e−i2πftdt (2.6)

where ∗ stands for the complex conjugate and g(t) is the analysis window. The window g(t− b)

is a localised function that is varied over time to compute the transform at several b positions.

Still there remained a limitation, the STFT does not provide which frequency components

exist at any given time, i.e., it is only possible to know which frequency band exists at a given

time interval. This resulted in a contradiction between the size of the window and the type

of resolution searched: A wide window provides better frequency resolution but poor time

resolution, whereas a narrow window furnishes a better time resolution and a poor frequency

resolution. This trade-off is known as the Heisenberg uncertainty principle, and it is applied to

time-frequency information [Bravo et al., 2014].
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2.3.1. Wavelets

Wavelets provide an useful tool for analyzing non-stationary and non-periodic signals. They

are oscillatory signals of short duration, whose energy is finite or concentrated in a determined

interval of time. According to [Daubechies, 1992], the wavelet transform depends on scale (i.e.

frequency) and time, thus it can be used for time-frequency localization. Also, using the wavelet

transform allows one to obtain the different frequency components of a signal, to then study

each component with a resolution that matches to each scale. At lower resolutions, the details

belong to larger structures, while at higher resolutions, more detailed information of the signal

is obtained. As an analogy, Amara Graps compares lower and larger resolutions to zooming

in and out in a forest [Graps, 1995]. By using a lower resolution (i.e. a large “window“), one

would be able to see a forest, but by using a higher resolution (i.e. a small “window“), it would

be possible to see each tree with more detail.

To be considered as a wavelet, a function has to comply with certain criteria. In the space of

all the square integrable functions L2(R), a function ψ(t) ∈ L2(R) is a wavelet if and only if it

complies with the admissibility condition, which establishes that ψ must take both positive and

negative values, and that its Fourier transform Ψ is zero at the zero frequency. The admissibility

condition implies that the Fourier transform Ψ(f) of the function satisfies the relation shown

in Eq. (2.7) [Daubechies, 1992].

∫ +∞

−∞

|Ψ(f)|2

|f |
df < +∞ (2.7)

The admissibility condition also implies that the wavelet is a pass-band because the Fourier

transform of Ψ(f) vanishes at the zero frequency, meaning that the average value of the wavelet

in the time domain must be zero; as shown in Eq.(2.8) [Chui, 1997].

∫ +∞

−∞
ψ(t)dt = 0⇔ Ψ(0) = 0 (2.8)

Another condition that the function must comply in order to be considered as a wavelet is



2.3. Multiresolution Signal Processing 21

that its total energy must always be equal to the unity. In certain cases, the function must also

comply with the orthogonality property. The number of vanishing moments in the function ψ(t)

is related to Eq. (2.8). Concretely, the number of vanishing moments v of a wavelet is given

by Eq. (2.9) [Mallat, 2008], which also establishes that a wavelet with v vanishing moments

is orthogonal to polynomials of degree v − 1, i.e. the smoothness (differentiability) of ψ(t) is

related to the number of vanishing moments.

δkΨ(f)

δfk

∣∣∣∣∣
f=0

=

∫ +∞

−∞
tkψ(t)dt = 0, for 0 ≤ k < v and k ∈ Z (2.9)

In the wavelet theory, a prototype function, which is called mother wavelet ψ(t), is used to

define the daughter wavelets ψa,b(t). These functions are dilated or translated versions of the

mother function built by applying the b translation and a dilation (scale) parameters to the

mother wavelet, as Eq. (2.10) shows.

ψa,b(t) =
1√
a
ψ

(
t− b
a

)
, a, b ∈ R, a 6= 0 (2.10)

where R is the set of all real numbers, a is the dilation parameter, b the translation parameter,

the constant number 1√
a

is an energy normalization factor so that the transformed signal will

have the same energy at every time scale, and t represents time. According to [Daubechies,

1992], small frequency ranges are covered with large values of the scaling parameter a, and

high frequency ranges are covered with small values of a. Changing the value of the translation

parameter b allows one to center the time localization.

2.3.2. Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT) operates at all possible scales and translations, i.e.

the dilation and translation parameters are varied continuously over R, with a different from



22 Chapter 2. Theoretical Background

0. The formula for the CWT is shown in Eq. (2.11) [Daubechies, 1992].

CWTf (a, b) =

∫ ∞
−∞

f(t)ψa,bdt =
1√
a

∫ ∞
−∞

f(t)ψ

(
t− b
a

)
dt (2.11)

where the a ∈ R+, a 6= 0 and b ∈ R are the dilation and translation parameters respectively.

Finally, an example of a continuous wavelet (called Morlet wavelet) is presented in Figure

2.6.

Figure 2.6: Morlet wavelet.

2.3.3. Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) uses a specific set of scales and translations, which

means that a and b take discrete values. For a, the positive and negative powers of one

fixed dilation parameter a0 > 1 are chosen and are denoted as am0 . The discretization of the

translation parameter b depends on m. For high frequency wavelets, the number of translations

will be greater because smaller steps are required to cover the entire range of time. Conversely,

for low frequencies, the translation steps will be greater. Since the width of the wavelet depends

on am0 , b is discretized by b = n b0 a
m
0 , where b0 > 0 is fixed, and n ∈ Z. The formula for the
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DWT is shown in Eq. (2.12).

DWTf (j, k) = a
−j
2
0

∫ ∞
−∞

f(t)ψ
(
a−j0 t− n b0

)
dt, j, k ∈ Z (2.12)

where Z is the set of all integer numbers, a = am0 , b = nb0a
m
0 , and a0 > 1 and b0 > 1 are fixed

[Foster, 1996].

The dilation and translation parameters are shown in Figure 2.7, which compares the time-

frequency grid between STFT and wavelets. In the left grid, all windows have the same size,

whereas in the right grid, there are different frequency and time resolutions. Also, under the

right grid, there are two wavelets that correspond to the highlighted areas in the wavelet grid,

these wavelets exemplify two dilation (a0 and a1) and two translation (b0 and b1) parameters

of the wavelet.

Figure 2.7: STFT vs wavelet time-frequency tiles.

2.3.4. Multiresolution Analysis

According to [Mallat, 1989], multiresolution approximations consist in sequences of embedded

vector spaces (Vj)j∈Z for approximating L2(R) functions. Even more, the wavelet function ψ(t)
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can be approximated from any multiresolution approximation when (
√

2jψ(2jt − k))(k,j)∈Z2 is

an orthonormal basis of L2(R). Specifically, the sequences of sub-spaces (Vj)j∈Z of L2(R) must

follow the properties enlisted next:

(i) Vj ⊂ Vj+1 ∀j ∈ R,

(ii)
∞⋃

j=−∞
Vj is dense in L2(R) and

+∞⋂
j=−∞

Vj = {0},

(iii) f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1 ∀j ∈ Z,

(iv) f(x) ∈ Vj ⇒ f(x− 2−jk) ∈ Vj ∀k ∈ Z,

(v) There exists a function φ(t) ∈ V0 such that {φj,n(t) = 2−j/2 φ(2−jt − n) : j, n ∈ Z} is an

orthonormal basis of V0.

The first property denotes the successive subspaces used to represent the different resolutions

or scales. The second property guarantees the completeness of the subspaces, and ensures that

when the resolution is incremented, the approximated function converges into the original

signal. The third property denotes that Vj−i is composed by all the rescaled versions of Vj.

The fourth property implies that translations over a function are part of the same space as the

original function. Finally, the fifth property establishes the φ(·) scaling function.

2.3.5. Stationary Wavelet Transform

One of the main disadvantages of the DWT is that is loses information during the decimation

step of each decomposition level. Even more, the reduced length of the data may limit the

number of decomposition levels to be applied to the signal. For instance, a CNN architecture

may require its inputs to have a minimum length due to the pooling layers of the network.

The number of decomposition levels to be allowed in DWT would be limited by the minimum

length of the inputs of the CNN. The Stationary Wavelet Transform (SWT), from [Nason

and Silverman, 1995], does not decimate the coefficient sequences at each decomposition level.

Instead, it pads each high-pass and low-pass filter with zeros. In this way, the gaps left by the
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decimation step are filled. For this reason, there is no information loss, and the length of the

data is not altered. The zero padding process is performed by recursively defining Eq. 2.13

[Nason and Silverman, 1995].

aj−1 = HJ−jaj and bj−1 = GJ−jaj (2.13)

where H and G are high-pass and low-pass filters respectively, which have been alternated

with sequences of zeroes defined by a Z operator, so that, for all integers j, (Zx)2j = xj and

(Zx)2j+1 = 0.

2.3.6. Empirical Mode Decomposition

According to [Zeiler et al., 2010], the Empirical Mode Decomposition (EMD) method allows

non-linear analysis for complex non-stationary time series. As stated in [Mandic et al., 2013],

EMD iteratively decomposes the signal as a sum of every Intrinsic Mode Function (IMF)

obtained. IMFs are created by considering the coexisting simple oscillatory modes locally

present and superimposed in a signal x(t). [Fontugne et al., 2017] state that IMFs are a finite

set of non-stationary and oscillatory components with decreasing frequencies. The process of

EMD is shown in Figure 2.8. The first step is to look for the IMFs by putting the signal through

an iterating process called sifting. In this process, the upper and lower envelopes of the original

signal are obtained, averaged, and subtracted from it. Then, if the result complies with two

conditions, it is stored as an IMF and the process is repeated again with the residual of the

IMF subtracted from the signal to look for the next IMF. The two conditions needed for an

IMF are that in the whole data set the number of extrema and the number of zero crossings

must be equal or differ at most by one, and, at any data point, the mean value of the local

maxima envelope and the local minima envelope must be zero. If the result is not an IMF, then

the process is repeated in the same way as if the IMF was found, but the IMF is not stored.

This process is repeated until the residue is a monotonic function (i.e. a function with only one

extremum).
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Figure 2.8: Flow chart of the EMD process (from [Jara-Maldonado et al., 2020a]).

The sifting process is illustrated in Figure 2.9, where the maxima and minima of a voltage

signal are identified to later calculate their mean value and subtract it from the original signal

to generate an IMF. Once the IMFs are obtained, further analysis may be performed by using

the Hilbert spectral analysis, which, according to [Huang and Wu, 2008], would result in the

Hilbert-Huang Transform (HHT). EMD avoids the trend removal step, which often causes low-

frequency terms injection in the resulting spectra that could generate unwanted false positives.
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(a) Original signal.

(b) Identified maxima and minima.

(c) Upper and lower envelopes.

(d) Mean of the upper and lower envelopes.

(e) Intrinsic Mode Function (IMF).

Figure 2.9: Empirical Mode Decomposition (EMD) sifting process applied to a voltage signal.
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2.3.7. Ensemble Empirical Mode Decomposition

One of the main limitations of EMD is that it has to consider the entire data. The algorithm

is inefficient for huge amounts of data and for online applications because of the high compu-

tational and memory cost. For this reason, the work in [Fontugne et al., 2017] proposes the

Online EMD method, which uses a sliding window to compute the local IMFs. According to

[Huang and Wu, 2008], another limitation that the EMD method presents is mode mixing.

This occurs when a single IMF is composed by signals of widely disparate scales, or when a

signal of a similar scale resides in different IMF components. As a solution to this problem, a

method that relies on noise-assisted data analysis called Ensemble Empirical Mode Decompo-

sition (EEMD) was proposed. In EEMD, the true IMF components are defined as the mean of

an ensemble of trials that convey the signal with added white noise of finite amplitude. The

process of EEMD is shown in Figure 2.10. In this figure, it is shown that this technique requires

one to generate several signals by adding white Gaussian noise to the original x signal. Then,

the IMFs are looked for as with the EMD technique. Finally, all the IMFs of each mode are

averaged to obtain the definitive IMFs of the signal. Each IMF will represent a different mode,

starting from mode one to the last mode found. The stopping criterion is the same as in the

EMD process, namely when the residuum between the last IMF and the signal is a monotonic

function.

The main differences between wavelets and the EMD based techniques are that EMD does

not use a predefined basis, which allows the algorithm to deal with nonlinear data. Another

difference is that the lack of theoretical base for EMD represents a need for a mathematical

foundation that can allow researchers to make an unified general conclusion on the validity

of the empirical results obtained so far by the EMD and EEMD methods; whilst the wavelet

theory mathematical foundation has been deeply studied (e.g. in [Daubechies, 1992]).



2.4. Machine Learning Models 29

Figure 2.10: Flow chart of the Ensemble Empirical Mode Decomposition (EEMD) process
(from [Jara-Maldonado et al., 2020a]).

2.4. Machine Learning Models

One of the main purposes of ML is to reduce the effort and time required to perform a certain

task. By doing so, it is also possible to process the immense quantities of data that some prob-

lems, such as exoplanet identification, require. Automation leads to less resources consumption

and allows humans to focus on more difficult tasks that have not yet been automated. Through-

out the history of ML, many models have been proposed, each with its own advantages and

limitations. Different problems may require different algorithms, though there are certain pro-

posals that have good performance in a wide range of situations. The ML models that have

been used in this work are briefly explained in this section.

The RFs algorithm perform different predictions using decision trees. These trees classify

a signal by using the data points of such signal as input features. Each decision tree divides

the input feature space into binary branches. The branches are created until no more divisions

are possible or a threshold value has been reached. For further detail refer to [Statistics and
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Breiman, 2001].

One of the most common Deep Learning (DL) algorithms is the CNN. CNNs convolve the

input vector with a series of kernels to learn the local features of the input signal. In general,

CNNs are composed by three mechanisms, namely the local receptive fields that organize the

inputs into feature maps, kernel weight sharing among neurons, and subsampling, which is used

by the CNNs to reduce the size of the features. In most cases, the final layer of a CNN is a fully-

connected layer which is responsible of generating the classification result. More information

about CNNs can be found in [Bishop, 2006].

The SVM algorithm maps the classes in a feature space and then searches for an optimal

margin to draw a decision boundary that best separates the classes in the feature space. The

margin is optimized using the hyper-parameters of the SVM, which are the soft margin constant

C and the parameters of the kernel function chosen. Another algorithm that uses a decision

boundary to separate the classes is the LS model. The purpose of LS is to minimize the Mean

Squared Error (MSE) between the inputs and the function that traces the decision boundary.

Once calculated, the decision boundary can be used to classify a new input because each side of

the decision boundary corresponds to a different class. Multilayer Perceptrons or Feed Forward

Neural Network (FFNN)s are based on the functioning of the human brain. It uses layers of

neurons that are interconnected by synaptic links. Those links are enhanced or inhibited by an

activation function (e.g. the sigmoid function) and the weights of the link. In this way, the MLP

is capable of adapting its knowledge base to non-linear problems by automatically adjusting such

weights. Furthermore, each layer of neurons may not have the same activation functions and

weight values as the others, guaranteeing that the inputs undergo a series of transformations.

The last layer of the network determines the class of the input vector. More information

about SVMs, MLPs and LS can be found in [Bishop, 2006, Pearson et al., 2017, Verma et al.,

2014, Haykin, 2009].

The Wavelet MLP used in [Pearson et al., 2017] applies the DWT to the inputs in order to

preprocess them. The cAs and cDs obtained from the first level of decomposition of the second

order Daubechies wavelet are obtained and concatenated to conform the new input vector,



2.5. Discussion 31

which is classified by an MLP.

The Ridge classifier works in a similar way to the LS classifier. It is useful for the classification

of binary problems. The Ridge classifier introduces a regularization term used by the cost

function of the LS algorithm. Another ML model used in this work is the KNN classifier. It

clusters similar input features to determine the class to which they belong to. To classify a

new input, it calculates the distance between the input and the features that have already been

clustered. Once all the distances are known, the inputs are assigned to the cluster to which

they were closer to. Finally, the Näıve Bayes (NB) model estimates the Probability Density

Function (PDF) of each class and then calculates the probability of membership of the new

inputs. For further details about the Ridge classifier, KNN and NB refer to [Theodoridis and

Koutroumbas, 2008].

2.5. Discussion

Exoplanetary research has rapidly developed over the last few years. In Chapter 2, several

exoplanet detection techniques have been discussed as well as the properties that each of these

techniques allow one to describe. Despite the statistically low number of exoplanets that can be

discovered using the transit technique (because of the geometric conditions required to observe

the transits, see [Jara-Maldonado et al., 2020b]), the undeniable success of this method suggests

that it has the potential to detect a wider number of exoplanets. Computational solutions are an

appropriate approach to enhance this technique because they are capable of analyzing enormous

quantities of data with less effort and time consumption. As it has been shown in this chapter,

astronomy is not a new domain for signal processing and MRA. In [Bravo et al., 2014], for

example, Wavelet Map (WVM)s are used to determine which frequencies are predominant in

the signal and at which instant they exist or not. This allows one to identify several physical

phenomena in stars (e.g., rotation period, changes of active regions on the star due to growth

or decay of spots, etc.) from their LCs. For this reason, an ML model that takes advantage of

MRA is proposed for the transit technique, which depends on analyzing signals presented as a
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time series of brightness values.



Chapter 3

Proposed Multiresolution Analysis

Pipeline for Light Curve Preprocessing

We have created two datasets of simulated LCs containing exoplanet transits. These datasets

have been used to measure the level of improvement of several ML models using MRA techniques

to preprocess the LCs before using them as inputs for the ML models. The creation of the

datasets is explained in this chapter, as well as the configuration of the ML models tested.

Finally, we present a comparison of the results obtained with each of the MRA techniques

tested. Such techniques are the DWT, EMD, and EEMD.

33
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3.1. Datasets Creation

We created two datasets that consist of 10,000 simulated LC samples each. Half of the LCs on

these datasets have simulated transits, and they have been labeled as such; while the other half

does not contain transits. The LCs contain 15,000 datapoints each. Both datasets contain four

types of transit models, namely the linear, uniform, quadratic, and non linear models. This

allows one to diversify the geometry of the transits for a better representation of real data.

To simulate the transits, we used the BAsic Transit Model cAlculatioN (BATMAN) model

proposed by [Kreidberg, 2015]. This model consists of a python package that can be configured

to simulate planetary transits with different parameters. An example of a simulated transit is

shown in Fig. 3.1, as it can be seen in this figure, the LC produced by the BATMAN model is

centered on the transit event. The ranges of the parameter values used to simulate the transits

are presented in Table 3.1, which was extracted from [Jara-Maldonado et al., 2020b]. The

parameters used to simulate the transits were extracted from the data of 140 real exoplanet

features that were discovered with the transit method. In total, we created 560 exoplanets

because we simulated each of the 140 exoplanets using the four different limb darkening models.

These values were retrieved from the NASA Exoplanet Archive1, and correspond to parameters

of exoplanets reported in the Q1-Q17 Kepler Data Release 24 (DR24 ) [Coughlin et al., 2016].

Finally, Fig. 3.2 shows a histogram that represents the different durations of the simulated

transits, and Fig. 3.4 shows the distribution of the simulated radii and periods.

Figure 3.1: Transit simulated with the BATMAN model from [Kreidberg, 2015].

1NASA Exoplanet Archive: https://exoplanetarchive.ipac.caltech.edu/

https://exoplanetarchive.ipac.caltech.edu/
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Table 3.1: Transit simulation parameters from [Jara-Maldonado et al., 2020b].

Parameter Name Range of values

Orbital period (P ). 0.0253− 46.69 days.

Orbit semi-major axis (a/R∗). 0.0058− 0.2535 au.

Orbit inclination (i). 78.3− 96.5 deg.

Planet radius (Rp). 0.063− 1.98 Jupiter radius.

Orbit eccentricity (e). 0− 0.53.

Stellar radius (R∗). 0.12− 2.59 Sun radius.

Transit depth (R2
p/R

2
∗). 0.0085− 3.23%.

Transit duration. 0.0253− 0.4113 days.

Argument of periastron (ω). 90 deg.

Mid transit time (t0). 75 days.

Transit resolution. 150 datapoints.

Limb darkening model. Uniform, linear, quadratic and
nonlinear.

Limb darkening coefficients (u1, u2, u3, u4). [empty], [0.5], [0.5, 0.1], [0.5, 0.1, 0.1,
-0.1].

The first dataset is called the Real-LC dataset. Its LCs are based in real LCs from the

Mikulski Archive for Space Telescopes (MAST) that contained periodic events marked as non-

transiting planets. Then, we de-trended the LCs by using the spline method from [Shallue and

Vanderburg, 2018]. We added the simulated transits to half of the LCs. To ensure that the

transits were periodic signals, we copied the transit over the LCs so that they were repeated

in the same period as the one of the exoplanet that they were based on. Thus, the resulting

dataset is balanced between the positive and negative labels. The method followed to create

the Real-LC dataset is depicted in Figure 3.4.

The second dataset is called the 3-median dataset, and it consists of a dataset where all the

data is synthetic. It was created using the LC simulation equation shown in Eq. (3.1) [Pearson

et al., 2017]. This equation allows one to generate noisy LCs with quasi-periodic systematic
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Figure 3.2: Histogram of the different transit durations used for the simulations.

trends, as it is the case of the LCs from certain space telescopes such as the Kepler satellite.

t′ = t− tmin

A(t′) = A+ A sin
(2π t′

PA

)

ω(t′) = ω + ω sin
(2π t′

Pω

)

Ftr(t) ∗ N

(
R2
p

R2
∗
/σtol

)
∗

(
1 + A(t′) sin

(
2 π t′

ω(t′)
+ φ

))

(3.1)

where Ftr(t) is the transit signal simulated using the BATMAN model from [Kreidberg, 2015], t

are the time instances from the time series, tmin is the first time instance of the time series, σtol

is the noise parameter, A is the amplitude of the simulated stellar variability, ω is the period

of oscillation, φ is the phase shift, N is a Gaussian distribution with a mean of 1 and standard

deviation of (R2
p/R

2
∗)/σtol, PA and Pω allow one to configure the frequency and amplitude of

the simulated variability, and R2
p/R

2
∗ is the normalized radius ratio between the planet and the
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Figure 3.3: Distribution of the periods and radii of the simulated exoplanets.

Figure 3.4: Real-LC dataset creation pipeline.

star. Once that the LCs were created, we added the simulated transits to half of those LCs.

The other half consists of LCs without the added simulated transits. In this case, we used Eq.

(3.1) without the transit signal Ftr(t), as reported by [Pearson et al., 2017]. The parameter grid

used to create the 10, 000 LCs is presented in Table 3.2 from [Jara-Maldonado et al., 2020b],

which shows the parameter values used with Eq. (3.1).

Once the LCs were generated, we applied a 3 median filter to them, so the trends could

be reduced, and we used the result of the filter as the final LC. The methodology followed to

create the 3-median dataset is presented in Figure 3.5

Afterwards, as it can be seen in Figures 3.4 and 3.5, we folded and binned both datasets. An

example of an LC before being folded and binned is shown in Figure 3.6.a. Before undergoing
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Table 3.2: Noisy light curve simulation parameters from [Jara-Maldonado et al., 2020b].

Parameter Name Range of values

Noise parameter (σtol). 0.25, 0.75, 1.25, 1.75, 2.25, 2.75, 3, 10.

Wave amplitude (A). 0.025, 0.05, 0.1, 0.2.

Wave period (ω). 6./24, 12./24, 24./24.

Phase offset (φ). 0.

Amplitude variability period (PA). −1, 1, 100.

Wave variability period (Pω). −3, 1, 100.

Cadence (dt). 1 minute.

Figure 3.5: 3-median dataset creation pipeline.

those two steps, all the LCs have very different shapes and lengths which complicates the

exoplanet identification. The phase folding step consists in overlapping all the datapoints of

the LC using the transit event as the center. This enhances the possible transit signal and

centers it for a better identification. An example of a folded LC is presented in Fig. 3.6.b.

In some cases, the examined event can be very evident and it can be seen as a major dim in

the light flux in the middle of the LC. Notice that aside from exoplanet transit events being

analyzed, there could also be other sources present in the LC that could belong to another

transit within the same LC. Nevertheless these other sources are not centered because they do

not correspond to the event that is being analyzed in this example.

Finally, the binning step is used to reduce the dimensionality of the dataset by grouping the

values in a limited number of bins. Fig. 3.7 explains the construction of one bin: the bins are

created by calculating the mean of all the n points found inside a bin. We used 2, 048 bins; in

other words, the final length of the LCs is 2, 048 datapoints, and each bin is then represented

by the mean of all the values inside that bin. An example of a binned LC is shown in Fig.

3.6.c, which contains the same LC as the one presented in Fig. 3.6.b with the difference that
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(a) Original simulated Light Curve (LC).

(b) Folded LC.

(c) Binned LC.

Figure 3.6: Example of a simulated LC.
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Figure 3.7: Light Curve (LC) binning process. Every datapoint contained within a bin is
averaged to represent that bin.

it is now binned. As it can be observed, the number of datapoints has been reduced to 2, 048.

Having the same number of datapoints in all the LCs is important because the LCs will be

used as inputs for the ML models and the number of inputs to be introduced to the models has

to be specified as part of the setting of the models.

3.2. Experimental Setup

We performed experiments using different MRA techniques to preprocess the LCs. The prepro-

cessed LCs were then used as inputs for ML models and their performance was measured and

compared with the results obtained without preprocessing the LCs. In total, we tested three

different MRA preprocessing techniques, namely the DWT, EMD, and EEMD techniques. In

this subsection we describe the configuration of the tests and the setting of the ML models

used. Furthermore, all the experiments were performed using a computer with an Intel Core

i7-7700 HQ CPU, 16.0 GB of RAM, Windows 10 operative system of 64 bits, and a NVIDIA

GeForce GTX 1060 graphics card.

The first set of experiments consisted in using the DWT to preprocess the LCs. For these

tests, we compared the performance of a CNN, LS, RF, NB, and SVM architectures and different

MLP settings. The configurations of the models are presented in Tables 3.3 and 3.4, where all

the parameters of each of the aforementioned models are shown respectively. In the case of the

CNN and DWT, the configuration of the model depends on the number of decomposition levels

because of the down-sampling process. This is because the CNN requires to have a minimum
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Table 3.3: Machine learning models setup.

Machine Learning Model Parameters

CNN. Batch size: 64.

Number of epochs: 50.

We used the Adam optimization algorithm.

Step size (α): 10−5.

Exponential decay rates: β1 = 0.9, β2 = 0.999.

ε = 10−8 (this is used to avoid dividing by zero during the pa-
rameters update).

Loss function: categorical cross-entropy.

MLP. Learning rate: 0.001.

L2 penalty parameter: α = 0.0001.

Maximum iterations: 200.

Tolerance: 0.0001.

Number of iterations without change: 10 (the training stops be-
fore the 200 iterations if the score is not improved by at least the
tolerance value for 10 epochs).

Solver function: lbfgs.

The Sigmoid/Relu MLP(5, 2) have two hidden layers with five
and two neural units. One uses the sigmoid function as activation
(Sigmoid MLP(5, 2)), while the other uses the relu function for
activation (Relu MLP(5, 2)).

The Sigmoid/Relu MLP(1024) only have one hidden layer of 1024
neural units. We did this accordingly with the description of
[Alarcon-Aquino and Barria, 2006], which says that the number
of hidden units should be approximately equal to half the sum of
the number of input and output units (i.e. the half of 2048 inputs
and one output).

The Sigmoid/Relu MLP(64, 32, 8, 1) consisted of four hidden
layers with 64, 32, 8, and 1 neural units accordingly. These last
two MLPs are based on the description of [Pearson et al., 2017],
although the model reported in that work used a different learning
rate.

LS. Linear regression classifier without fitting the intercept.

number of inputs due to the max-pooling downsampling process. The architectures of the CNN

model with DWT are shown in Figure 3.8, where it can be observed that the settings depend

on the number of decomposition levels chosen. Moreover, the DWT experiments are reported

in [Jara-Maldonado et al., 2020b] and are briefly described next.
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Table 3.4: Machine learning models setup.

Machine Learning Model Parameters

RF. Number of trees in the forest: 10 without limit of expansion (the
branches could expand until becoming leaves).

Split quality criteria: the Gini impurity criteria.

Minimum number of samples to split a node: 2.

Minimum samples on a leaf: 1.

We built the trees by bootstrapping.

.

NB. Gaussian NB with no specified prior probabilities of the classes.

SVM. Regularization parameter: 1.0.

Kernel: Radial base function.

Scale kernel coefficient.

Tolerance: 0.001.

No limit of iterations.

KNN. Number of neighbors (k): 3, 5, 7, and 9. We chose these values to
evaluate the performance of the model given different k values.

Nearest neighbors algorithm: brute-force search. This search was
used since the length of the inputs was not too large.

Ridge classifier. Regularization strength (α): 1.0. We chose this value to avoid
a strong regularization, while still reducing the variance of the
estimates.

The intercept was computed to add flexibility to the model.

No normalization was applied because the LCs were already nor-
malized during the folding and binning steps.

Both classes had the same weights to avoid prioritizing one class.

The LS solver was used to compare our results with the LS results
presented in [Jara-Maldonado et al., 2020b].

The DWT experiments consisted in testing the performance of the models using different

wavelets, decomposition levels, and coefficients to preprocess the LCs. We compared those

results with the ones obtained using the LCs without any modification of the inputs. In

the case of the DWT, we used the cDs alone or the cAs alone in six different decomposition

levels as inputs (from the first to the sixth level of decomposition). The wavelet selection

was based in looking for a wavelet that could better represent the transit signal because, as

mentioned in [Alarcon-Aquino and Barria, 2009], the wavelet should be selected based on how
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Figure 3.8: Architecture of the Convolutional Neural Network (CNN) according to each decom-
position level of the Discrete Wavelet Transform (DWT). Convolutional layers are described
as Conv[kernel size]-[filters], max pooling layers as Maxpool[pool size]-[strides], and Fully Con-
nected (FC ) layers as FC-[number of units]. The number of DWT decomposition levels is found
beneath its related architecture. Figure from [Jara-Maldonado et al., 2020b].

well it adapts to the event to be analyzed. For this reason we chose wavelets with different

vanishing moments. Moreover, we chose orthogonal and bi-orthogonal wavelets for comparison

purposes. The wavelets used were the daubechies 1 (db1), daubechies 5 (db5), symlet 5 (sym5),

coiflet 5 (coif5) and bi-orthogonal 2.4 (bior2.4) wavelets. Furthermore, we chose six different

decomposition levels to evaluate if different transit signals could be present at different scales,

i.e. to assess if the transits display different features at each scale. Because of the nature of the

DWT, each different level of decomposition reduced the size of the time series by a half, which

means that the deeper the level of decomposition the faster that the model is, but this also

means that some information could be lost during the down-sampling process. The LC DWT

process is shown in Figure 3.9, which indicates that the original LC signal is decomposed in

cAs and cDs at each level of decomposition.
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Figure 3.9: Wavelet or Detail Coefficient (cD) and scaling or Approximation Coefficient (cA)
are obtained by applying a series of high-pass filters (h(·)) and low-pass filters (g(·)) to the
original Light Curve (LC) signal x[n]. Also, j denotes the cDs, while J denotes the cAs; and
they indicate the number of decomposition levels.

The next set of experiments consisted in using the EMD and EEMD techniques to preprocess

the LCs. As in the case of the DWT, the results obtained by the preprocessed EMD and EEMD

inputs and the LCs without preprocessing were compared to understand if MRA is useful for

exoplanet identification. In this case, the models tested were a CNN, RF, KNN, and a Ridge

classifier. The configurations of these models are also presented in Tables 3.3 and 3.4. The EMD

and EEMD experiments are reported in [Jara-Maldonado et al., 2020a]. Each model presented

was tested using the different IMFs obtained by applying EMD or EEMD to preprocess the

LCs to use them as inputs, and those results were also compared to the results obtained by the

models without applying MRA to the LCs.

For the EMD technique, we extracted all the IMFs of each LC using the PyEMD Python

package. We tested up to 10 different modes of EMD. To test each mode, we used the nth

IMF obtained from each LC (similar to what was done with the different decomposition levels

of the DWT). The resulting inputs for the ML models consisted on time series of IMFs with

2048 samples. For those cases where EMD did not provide enough IMFs to correspond with

the mode being tested we used the deepest IMF retrieved. For those cases we used the last

IMF available. The EMD-based processing of the LCs took approximately 105 minutes for

the 3-median dataset and approximately 65 minutes to preprocess the whole Real-LC dataset.

An example an LC preprocessed using EMD is shown in Figure 3.10, where the plot has been
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centered in the transit of the simulated exoplanet.

Figure 3.10: Normalized Intrinsic Mode Function (IMF) of the first eight modes of the Em-
pirical Mode Decomposition (EMD) technique applied to a simulated exoplanet transit. The
Light Curve (LC) has been centered on the transit for a better visualization.

In the case of the EEMD technique, we used the EEMD Matlab implementation presented in

[Torres et al., 2011]2 to obtain the EEMD IMFs of the LCs. In the same way as it was done with

EMD, we decomposed each LC with 1,000 iterations. Also, we set the number of realizations

to 500 (which is the number of realizations of Gaussian white noise added to the data. This

number of realizations is based on the configuration used in [Torres et al., 2011]). We used the

IMFs to test the performance of the models with the Python programming language. Similar

2EEMD Matlab function https://github.com/ron1818/PhD_code/tree/master/EMD_EEMD

https://github.com/ron1818/PhD_code/tree/master/EMD_EEMD
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to what happened with the EMD, not every LC produced enough IMFs to correspond with the

mode being analyzed. For those cases we also used the last IMF available. Preprocessing the

LCs with EEMD took approximately 238 minutes with the 3-median dataset and approximately

139 minutes with the Real-LC dataset. An example an LC preprocessed using EEMD is shown

in Figure 3.11.

Figure 3.11: Intrinsic Mode Function (IMF) of the first 10 modes of the Ensemble Empirical
Mode Decomposition (EEMD) technique applied to a simulated exoplanet transit.

Finally, the pipeline followed to perform the sets of experiments described in this section is

presented in Figure 3.12. As it can be observed, the LCs were subjected to one of the different

options of preprocessing or none of them. Then, the resulting time series were used as inputs

for the ML models which output an identification answer. Such outputs were evaluated and
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compared to determine if the MRA technique was useful and which setting provides the best

results.

Figure 3.12: Pipeline of the experiments performed with the Machine Learning (ML) models
and Multiresolution Analysis (MRA) for preprocessing the inputs.

3.3. Experimental Results

In order to measure the performance of each tested model, we compared the models in terms

of their accuracy, precision, recall, specificity and execution time. This metrics are based on

the number of correctly classified exoplanets (True Positives (TP)), correctly classified non-

exoplanets (True Negatives (TN)), misclassified exoplanets (False Positives (FP)), and mis-

classified non-exoplanets (False Negatives (FN)). The accuracy measures how many times the

model was correct, the precision measures how often a positive answer was correct, the recall

measures the percentage of real positive answers that were classified as such, and the specificity

measures the percentage of real negative answers that were classified as such (see Equations

(3.2), (3.3), (3.4), (3.5) from [Japkowicz and Shah, 2011]).

Accuracy =
TP + TN

TP + TN + FP + FN
(3.2)

Precision =
TP

TP + FP
(3.3)

Recall =
TP

TP + FN
(3.4)
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Specificity =
TN

TN + FP
(3.5)

The results of the Real-LC dataset using the DWT to preprocess the LCs from the Real-LC

dataset are presented in Table 3.5, while the results from the 3-median dataset are presented in

Table 3.6, which was extracted from [Jara-Maldonado et al., 2020b]. Then, the results of using

the EMD and EEMD techniques to preprocess the LCs from the Real-LC dataset are shown

in Table 3.7, while the results of these two techniques applied to the 3-median dataset are

presented in Table 3.8. For every table, the models are ordered from top to bottom according

to the accuracy percentages that they obtained. Also, the best values of the tables have been

highlighted using bold characters. In the case of the CNN, the model was trained only once

and then tested 100 times. This was done so because of the long training times of the model.

The rest of the models were trained 100 times and tested after each train and that is the time

that is reported in the tables. The results presented in the tables correspond to the settings

that obtained the best values for each ML model and the complete lists of results (e.g. all

the decomposition levels and coefficients for each wavelet tested using DWT) are presented in

Appendices B and C.

A visual comparison of the accuracy obtained by the models with and without using the

DWT is presented in Figures 3.13 and 3.14. The blue bars show the results obtained without

using the DWT, and the orange one show the results obtained using it. It is noticeable that

in most cases the accuracy is increased, or at least it does not decrease. Then, in Figures 3.15

and 3.16, the execution time results are presented. As it can be seen, the execution times are

always reduced, and this is due to the down-sampling property of the DWT. In each level of

decomposition, the signal length is halved.

The visual comparison of the accuracy results using the EMD technique and its ensemble

variant are presented in Figures 3.17 and 3.18. The blue bars show the signal without MRA

preprocessing. The orange bars show the results obtained using EMD, and the gray bars show

the results obtained using EEMD. Finally, Figures 3.19 and 3.20 show the execution times for

these techniques. These figures demonstrate that in most cases, using EMD or EEMD increases



3.3. Experimental Results 49

the performance of the identification models, both in time and accuracy. The only model where

the execution time is significantly affected by these techniques is the CNN. We attribute this to

the fact that the data obtained several decimal positions after the sifting processes introduce

calculation errors.
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Table 3.5: Real-LC dataset experimental results, averaged from 100 executions of the training
and testing processes for each ML model. The ML model inputs are based on using the DWT
coefficients with several wavelets and decomposition levels, and without applying DWT to the
binned light curves from [Jara-Maldonado et al., 2020b].

ML model Accuracy
(%)

Precision
(%)

Specificity
(%)

Recall (%) Time
(seconds)

Random Forests.
Inputs without DWT. 97.91 98.35 98.37 97.45 10.26

Inputs using db1 cAs (J = 4). 98.50 98.59 98.59 98.41 1.18

CNN.
Inputs without DWT. 91.46 97.55 91.46 85.21 46.74
Inputs using coif5 cAs

(J = 2).
94.28 98.15 94.28 90.16 31.59

SVM.
Inputs without DWT. 88.67 99.34 99.49 77.81 60.87

Inputs using db1 cDs (j = 6). 93.06 98.56 98.72 87.4 0.78

Sigmoid MLP(5, 2).
Inputs without DWT. 49.65 28.83 52.0 48.39 4.82

Inputs using db5 cDs (j = 6). 92.0 94.76 94.92 89.08 0.67

Relu MLP(1024).
Inputs without DWT. 81.63 93.19 87.02 76.23 84.44

Inputs using sym5 cDs
(j = 6).

89.12 97.63 97.93 80.36 30.06

Sigmoid MLP(1024).
Inputs without DWT. 88.73 98.85 98.48 79.0 49.57
Inputs using coif5 cAs

(J = 2).
88.79 99.18 98.33 78.27 24.14

Relu MLP(5, 2).
Inputs without DWT. 49.54 21.26 57.0 43.0 5.75

Inputs using db5 cDs (j = 6). 83.87 98.84 99.16 68.55 0.31

Relu MLP(64, 32, 8, 1).
Inputs without DWT. 76.98 86.71 88.56 65.48 15.42

Inputs using db5 cAs (J = 2). 77.88 93.54 87.81 67.87 6.81

Naive Bayes.
Inputs without DWT. 53.78 70.28 86.11 21.76 6.17

Inputs using db1 cDs (j = 6). 77.09 94.16 92.53 61.64 0.16

LS.
Inputs without DWT. 65.16 94.26 98.04 32.23 8.51

Inputs using bior2.4 cAs
(J = 2).

62.32 98.08 99.50 25.21 1.8

Sigmoid MLP(64, 32, 8, 1).
Inputs without DWT. 49.49 30.2 41.0 59.0 5.05

Inputs using db5 cDs (j = 2). 49.5 27.7 44.0 56.0 1.41
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Table 3.6: 3-median dataset experimental results, averaged from 100 executions of the training
and testing processes for each ML model. The ML model inputs are based on using the DWT
coefficients with several wavelets and decomposition levels, and without applying DWT to the
binned light curves from [Jara-Maldonado et al., 2020b].

ML model Accuracy
(%)

Precision
(%)

Specificity
(%)

Recall (%) Time
(seconds)

CNN.
Inputs without DWT. 97.68 99.94 97.68 95.48 54.17

Inputs using sym5 cDs
(j = 1).

99.13 99.16 99.13 99.09 22.93

Random Forests.
Inputs without DWT. 97.82 97.25 97.17 98.45 9.42

Inputs using db1 cAs (J = 4). 98.08 97.49 97.41 98.73 1.16

Relu MLP(64, 32, 8, 1).
Inputs without DWT. 79.92 72.81 59.48 99.96 16.7

Inputs using sym5 cDs
(j = 4).

97.48 96.66 96.57 98.38 7.16

Relu MLP(1024).
Inputs without DWT. 93.31 88.95 87.39 99.14 241.85

Inputs using sym5 cDs
(j = 4).

97.47 96.32 96.17 98.75 72.93

Naive Bayes.
Inputs without DWT. 94.75 90.81 92.42 99.67 8.8

Inputs using bior2.4 cDs
(j = 6).

95.95 93.37 92.85 98.99 0.35

SVM.
Inputs without DWT. 93.76 88.99 87.41 100 36.31

Inputs using sym5 cDs
(j = 5).

94.96 90.93 89.84 99.99 1.52

Relu MLP(5, 2).
Inputs without DWT. 49.98 42.67 15.0 85.0 7.65

Inputs using bior2.4 cDs
(j = 3).

95.12 92.94 92.27 97.93 2.54

Sigmoid MLP(5, 2).
Inputs without DWT. 84.64 77.43 76.31 92.79 12.42
Inputs using coif5 cDs

(j = 4).
94.23 92.38 91.69 96.72 1.76

Sigmoid MLP(1024).
Inputs without DWT. 86.04 79.85 72.87 98.93 166.42

Inputs using bior2.4 cAs
(J = 6).

92.65 89.72 88.13 97.1 46.94

Sigmoid MLP(64, 32, 8, 1).
Inputs without DWT. 50.01 41.24 18.06 82.0 7.86
Inputs using coif5 cAs

(J = 6).
50.68 39.66 23.51 77.98 0.43

LS.
Inputs without DWT. 37.99 13.65 72.22 4.34 10.57

Inputs using sym5 cDs
(j = 6).

49.62 0 99.89 0 0.35
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Table 3.7: Experimental results from the Real-LC dataset. Each value corresponds to the
average of the 100 test iterations for each model from [Jara-Maldonado et al., 2020a].

Model Accuracy
(%)

Precision
(%)

Specificity
(%)

Recall
(%)

Time
(secs.)

KNN (k = 3).
Without MRA. 97.92 98.92 98.94 96.90 8.29
Using EMD and 7 IMFs. 97.74 98.07 98.09 97.38 11.79
Using EEMD and 6 IMFs. 98.04 98.81 98.83 97.25 5.88

KNN (k = 5).
Without MRA. 97.59 98.64 98.67 96.51 6.72
Using EMD and 7 IMFs. 97.26 97.45 97.45 97.08 11.96
Using EEMD and 6 IMFs. 97.87 98.60 98.63 97.10 5.93

KNN (k = 7).
Without MRA. 97.29 98.38 98.41 96.18 7.53
Using EMD and 7 IMFs. 97.10 97.33 97.33 96.86 11.87
Using EEMD and 6 IMFs. 97.82 98.48 98.50 97.14 5.91

KNN (k = 9).
Without MRA. 97.01 98.25 98.29 95.72 10.80
Using EMD and 7 IMFs. 97.00 97.34 97.39 96.60 11.95
Using EEMD and 6 IMFs. 97.71 98.31 98.34 97.08 5.94

Ridge Classifier.
Without MRA. 85.19 99.79 99.85 70.60 6.21
Using EMD and 6 IMFs. 88.32 92.07 92.79 83.84 10.18
Using EEMD and 9 IMFs. 88.05 85.86 84.95 91.14 5.13

CNN.
Without MRA. 91.46 97.55 91.46 85.21 46.74
Using EMD and 5 IMFs. 91.67 99.16 91.67 83.98 135.89
Using EEMD and 6 IMFs. 97.13 98.9 97.15 95.32 44.32

RF.
Without MRA. 97.91 98.35 98.37 97.45 10.26
Using EMD and 7 IMFs. 98.43 98.8 98.81 98.04 13.41
Using EEMD and 6 IMFs. 98.17 98.48 98.49 97.84 6.19

Note: The best values for each dataset have been highlighted using bold characters.
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Table 3.8: Experimental results from the 3-median dataset. Each value corresponds to the
average of the 100 test iterations for each model from [Jara-Maldonado et al., 2020a].

Model Accuracy
(%)

Precision
(%)

Specificity
(%)

Recall
(%)

Time
(secs.)

KNN (k = 3).
Without MRA. 64.91 58.99 29.15 100 11.02
Using EMD and 9 IMFs. 93.74 90.80 89.97 97.45 11.71
Using EEMD and 7 IMFs. 93.82 89.70 88.43 99.12 10.48

KNN (k = 5).
Without MRA. 63.74 58.09 27.09 100 11.30
Using EMD and 9 IMFs. 93.75 90.27 89.27 98.17 11.96
Using EEMD and 7 IMFs. 93.21 88.72 87.18 99.14 10.50

KNN (k = 7).
Without MRA. 63.13 57.72 25.74 100 11.43
Using EMD and 9 IMFs. 93.61 89.84 88.66 98.47 11.94
Using EEMD and 7 IMFs. 92.97 88.35 86.72 99.13 8.87

KNN (k = 9).
Without MRA. 62.51 57.29 24.62 100 9.44
Using EMD and 9 IMFs. 93.60 89.69 88.45 98.65 11.90
Using EEMD and 7 IMFs. 92.63 87.80 85.98 99.16 8.62

Ridge Classifier.
Without MRA. 76.02 67.79 51.81 99.87 8.3
Using EMD and 6 IMFs. 76.33 68.34 53.46 98.86 10.47
Using EEMD and 9 IMFs. 79.26 91.81 94.12 64.68 5.27

CNN.
Without MRA. 97.68 99.94 97.68 95.48 54.17
Using EMD and 1 IMFs. 99.32 99.67 99.32 98.99 100.34
Using EEMD and 5 IMFs. 95.39 94.43 95.39 96.6 161.93

RF.
Without MRA. 97.82 97.25 97.17 98.45 9.42
Using EMD and 1 IMFs. 97.57 96.84 96.73 98.40 13.97
Using EEMD and 6 IMFs. 97.35 96.42 96.28 98.40 6.11

Note: The best values for each dataset have been highlighted using bold characters.
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Figure 3.13: Accuracy obtained preprocessing every Light Curve (LC) from the 3-median
dataset using the Discrete Wavelet Transform (DWT) technique. Figure published in [Hernndez
and Meneses, 2022].

Figure 3.14: Accuracy obtained preprocessing every Light Curve (LC) from the Real-LC
dataset using the Discrete Wavelet Transform (DWT) technique. Figure published in [Hernndez
and Meneses, 2022].
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Figure 3.15: Execution time obtained preprocessing every Light Curve (LC) from the 3-median
dataset using the Discrete Wavelet Transform (DWT) technique. Figure published in [Hernndez
and Meneses, 2022].

Figure 3.16: Execution time obtained preprocessing every Light Curve (LC) from the Real-LC
dataset using the Discrete Wavelet Transform (DWT) technique. Figure published in [Hernndez
and Meneses, 2022].
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Figure 3.17: Accuracy obtained preprocessing every Light Curve (LC) from the 3-median
dataset using the Empirical Mode Decomposition (EMD) and Ensemble Empirical Mode De-
composition (EEMD) techniques. Figure published in [Hernndez and Meneses, 2022].

Figure 3.18: Accuracy obtained preprocessing every Light Curve (LC) from the Real-LC
dataset using the Empirical Mode Decomposition (EMD) and Ensemble Empirical Mode De-
composition (EEMD) techniques. Figure published in [Hernndez and Meneses, 2022].
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Figure 3.19: Execution time obtained preprocessing every Light Curve (LC) from the 3-
median dataset using the Empirical Mode Decomposition (EMD) and Ensemble Empirical
Mode Decomposition (EEMD) techniques. Figure published in [Hernndez and Meneses, 2022].

Figure 3.20: Execution time obtained preprocessing every Light Curve (LC) from the Real-
LC dataset using the Empirical Mode Decomposition (EMD) and Ensemble Empirical Mode
Decomposition (EEMD) techniques. Figure published in [Hernndez and Meneses, 2022].
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3.4. Discussion

Several ML models used for exoplanet identification have been tested in this chapter. The

experiments were performed using the 3-median and Real-LC datasets of simulated LCs. The

sets of experiments consisted in using the LCs as inputs for the models or preprocessing the

LCs before inputting them to the models using an MRA technique, namely the DWT, EMD

or EEMD techniques.

In the case of the results of the 3-median dataset, shown in Tables 3.6 and 3.8, the best

performing models are two configurations of the CNN model (using MRA preprocessing). In

the case of the 3-median dataset, the best accuracy result was obtained with the CNN-EMD

model, which is 99.32%. In fact, using EMD helped the CNN to improve in almost every

metric. Another setting that considerably improved the results attained by the CNN is the

DWT preprocessing technique. Using this configuration, the CNN obtained and accuracy of

99.13%, but the most remarkable improvement is that the execution time was reduced by more

than a half. This was expected because of the decimation process. Nevertheless, only one level

of decomposition was used, so the architecture is the same as the one presented by [Shallue and

Vanderburg, 2018].

It is observed that in most of the cases, the RF classifier is one of the most robust models

because it obtained some of the best results with both datasets. For instance, the results in the

Real-LC dataset, which are depicted in Tables 3.5 and 3.7, show that the best performing model

is the RF classifier. In fact, the top three results of the Real-LC dataset are obtained with the

RF classifier in combination with each of the three MRA techniques tested. The execution time

of the RF model considerably decreases by using the DWT, making it the fastest model tested

in this work. Moreover, in some cases the DWT was capable of reducing the execution time

of the models to a 10th of their original values. This is because the DWT down-samples the

signal, which means that for each decomposition level that the signal undergoes, the length of

the signal is reduced by half. Such reduction does not affect much the accuracy results because

the DWT extracts the most relevant features of the signal. In general, most models benefited

from the DWT, for example, the sigmoid MLP(5,2) with the Real-LC obtained an accuracy
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improvement of +42.35%. That is the same reason to which we attribute the good results of

the RF-DWT classifier, because the performance of such model depends on the significance of

the inputs to represent the signal.

The KNN model obtained very good accuracy results with the Real-LC dataset, specially

with the k = 3 setting. Having a greater number of neighbors may cause the model to average

important data from the transit, decreasing its accuracy. Also, it is noticeable that the execution

time of the KNN is not particularly affected by the MRA technique used. Nevertheless, the

KNN model obtained poor results without LC preprocessing in the 3-median dataset. For this

dataset, the obtained accuracy was lower than 70%. This was caused by the low specificity of

the model, meaning that it obtained many FNs. This could be caused by the noise of the signal.

In the 3-median dataset, the transit shape could be modified by noise, causing irregularities

in its geometry which are then averaged by the KNN model. The use of MRA does improve

the performance of this model with the 3-median dataset (it gave the model an improvement

of almost +30% in all cases), but the results are not as good as the ones obtained with the

Real-LC dataset. This means that MRA improved the performance of the model, making it

more robust independently of the dataset that it was used with.

Regarding the experiments with the EMD and EEMD techniques to preprocess the LCs, it

can be observed that the execution time of the models is barely improved or worsen. Also, even

though the LCs only have to be preprocessed once, adding the EMD or EEMD preprocessing

steps involves consuming more execution time. As mentioned earlier, preprocessing the LCs

with the EMD technique took 105 minutes with the 3-median dataset and 65 minutes with

the Real-LC dataset, and the EEMD technique took 238 minutes with the 3-median dataset

and 139 minutes with the Real-LC dataset.

Finally, we performed hypothesis tests to statistically validate that the results obtained

using MRA to preprocess the LCs are different from those obtained by the models without

preprocessing the LCs. For this purpose, we have used the Welch’s t-test to compare the

results. This test is used to determine if there is a significative difference between the means of

the results. A p-value lower than a threshold which typically is 0.05 (e.g. [Committee, 2011])
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is enough to statistically guarantee that the results are meaningfully different. The results of

such tests are presented in Table 3.9, where only those cases where both results were equal are

presented, along with the metric in which they are equal and the p-value obtained.

Table 3.9: p-values obtained from the Welch’s t-tests where the p-value is greater than 0.05.

MRA technique Dataset Model Metric p-value

DWT 3-median Sigmoid MLP(5, 2). Recall 0.069
DWT 3-median Sigmoid MLP(64, 32, 8, 1). Accuracy 0.0504
DWT 3-median Sigmoid MLP(64, 32, 8, 1). Precision 0.58
DWT 3-median Sigmoid MLP(64, 32, 8, 1). Specificity 0.33
DWT 3-median Sigmoid MLP(64, 32, 8, 1). Recall 0.48
DWT Real-LC Sigmoid MLP(1024). Accuracy 0.9391
DWT Real-LC Sigmoid MLP(1024). Precision 0.4999
DWT Real-LC Sigmoid MLP(1024). Specificity 0.3855
DWT Real-LC Sigmoid MLP(1024). Recall 0.5743
DWT Real-LC Sigmoid MLP(64, 32, 8, 1). Accuracy 0.8794
DWT Real-LC Sigmoid MLP(64, 32, 8, 1). Precision 0.4801
DWT Real-LC Sigmoid MLP(64, 32, 8, 1). Specificity 0.6697
DWT Real-LC Sigmoid MLP(64, 32, 8, 1). Recall 0.6696
DWT Real-LC Relu MLP(64, 32, 8, 1). Accuracy 0.6357
DWT Real-LC Relu MLP(64, 32, 8, 1). Specificity 0.8663
DWT Real-LC Relu MLP(64, 32, 8, 1). Recall 0.4457
DWT Real-LC NB. Recall 0.0975

EMD 3-median KNN (k = 9). Accuracy 0.78
EMD Real-LC RF. Recall 0.27

EEMD 3-median RF. Recall 0.28
EEMD Real-LC KNN (k = 5). Precision 0.39
EEMD Real-LC KNN (k = 5). Specificity 0.36
EEMD Real-LC KNN (k = 7). Specificity 0.7
EEMD Real-LC KNN (k = 9). Precision 0.21
EEMD Real-LC KNN (k = 9). Specificity 0.34

Note: When p-value > 0.05 there was no difference between preprocessing the LCs and not.



Chapter 4

Proposed WAvelet-Based Broad

LEarning System (WABBLES)

The effectiveness of MRA for time series classification has been proven in the previous chapters.

In this chapter, we propose an ML model based on the Broad Learning System (BLS) algo-

rithm, which uses MRA as a critical component of the network. First, an introduction to BLS is

presented. Next, the proposed model, termed WAvelet-Based Broad LEarning System (WAB-

BLES), is defined. Later, the methodology followed to identify exoplanets using the proposed

model is presented, along with the results obtained using simulated data and a comparison of

its performance against the one attained by the other models presented in this work. Finally,

the performance results obtained by the proposed model are also evaluated using a benchmark

dataset of cancer detection.

61
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4.1. Broad Learning System

Deep Learning (DL) architectures suffer from high resource consumption because of the large

number of parameters required and the filter operations performed in their intermediate layers.

The BLS algorithm offers an alternative to deep structures because it is based on the idea of

expanding the nodes in wide instead of depending on hidden layers. BLS has the form of a

flat network that uses two different sets of nodes called mapping and enhancement nodes. The

original inputs are transformed into mapping features by the mapping nodes, which are then

used to create the enhancement nodes.

The BLS model is shown in Fig. 4.1 [Chen and Liu, 2018], where it can be observed that

BLS applies the mapping function to the kth sample vector from the input matrix XM
N , where

M is the number of samples and N is the number of features. The matrix that contains the

mapping nodes is denoted as Zn = [Z1, ...,Zn] and it has all the groups of mapped features.

The mapping function is described in Eq. (4.1) from [Chen and Liu, 2018].

Zi = φ(WeiXk + βei), i = 1, ..., n (4.1)

where φ is the mapping function of the ith mapping node, Wei and βei are the mapping weight

and mapping bias of the ith mapping node, and both are randomly generated.

Figure 4.1: The Broad Learning System (BLS) architecture [Chen and Liu, 2018].

A layer of enhancement nodes is created by using the mapping nodes as inputs. The en-
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hancement function is applied to the mapping nodes and the resulting matrix is denoted as

Hm = [H1, ...,Hm]. This matrix contains the concatenation of all the enhancement nodes.

The enhancement function is described in Eq. (4.2) from [Chen and Liu, 2018].

Hj = ξ(WhjZ + βhj), j = 1, ...,m (4.2)

where ξ is the enhancement function of the jth enhancement node, Whj and βhj are the

enhancement weight and enhancement bias of the jth enhancement node, and they are also

generated randomly.

Finally, the original BLS architecture reduces the training time by using pseudo-inverse

matrices to estimate the optimal parameter values of the network. This parameters are used

to calculate the Y matrix that contains the responses of all the samples in X [Chen and Liu,

2018]. Nevertheless, as explained in [Gao et al., 2019], the pseudo-inverse matrices can be

replaced by the gradient descent approach.

4.2. WAvelet-Based Broad LEarning System (WABBLES)

As it has been proven in Chapter 3, the use of MRA to preprocess time series data enhances the

classification performance of the ML models. For this reason, we propose a new ML model based

on the concepts of the BLS architecture and MRA. We termed such algorithm the WAvelet-

Based Broad LEarning System (WABBLES) model ([Jara-Maldonado et al., 2022]) and it is

presented in Figure 4.2.

The first step of the WABBLES model is to normalize the original inputs by using the z-

score function. This function prevents having inputs with different normal distributions. The

resulting matrix, denoted as XM
N with M samples and N features, contains the normalized

inputs with a mean 0 and a standard deviation 1. Then, an operator called Multidimensional

Radial Wavelon (MRW) ([Zhang and Benveniste, 1992] and [Zhang, 1992]) is used to process the

kth sample of X. The MRW that we based our model on is presented in [Juárez-Guerra et al.,
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Figure 4.2: Proposed WAvelet-Based Broad LEarning System (WABBLES) architecture [Jara-
Maldonado et al., 2022].

2020] and it is shown in Figure 4.3. The MRW transforms the inputs into a one dimensional

value denoted by ci, i = 1, ..., n (where n is the number of mapping nodes). This transformation

is performed by the radial function R shown in Eq. (4.3). The value obtained by R is used

by the one dimensional wavelet function ψ and the resulting output of the MRW is given by

ψ(ci).

ci = ||di(Xk − ti)|| (4.3)

where ci is the output of the R function for the ith mapping node and Xk is the kth sample

from the input matrix. Finally, di and ti are the dilation and translation parameters of the

wavelet used by the ith mapping node.

Figure 4.3: The Multidimensional Radial Wavelon (MRW) [Juárez-Guerra et al., 2020].
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The output of ψ(ci) is used to calculate each mapping node and the network learns the

values of the translation and dilation parameters of the wavelet function by itself. The proposed

mapping function is shown in Eq. (4.4).

Zi = Weiψ(ci) + βei, i = 1, ..., n (4.4)

The enhancement nodes are calculated by obtaining the linear combination of all the map-

ping nodes processed by the enhancement function ξ. We have used the logistic sigmoid and

the hyperbolic tangent functions to test the model with different enhancement functions, but

any nonlinear function may be used as well. These functions are presented in Eqs. (4.5) and

(4.6).

sigmoid(x) =
1

1 + e−x
(4.5)

tanh(x) =
ex − e−x

ex + e−x
(4.6)

The enhancement function of the WABBLES model is presented in Eq. (4.7).

Hj = ξ
(
Whj(Σ

n
i=1Zi) + βhj

)
, j = 1, ...,m (4.7)

The output of the network is denoted by Y M = [y1, ..., yM ] and it contains the expected

labels. Finally, the response of the kth input is given by the linear combination of the mapping

and enhancement nodes, as shown in Eq. (4.8). Additionally, it is possible to adjust the

priority that the model gives to a certain class by adjusting the classification threshold value.

Finally, the complete pseudocode of the WABBLES algorithm is presented in Algorithm 1 from
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[Jara-Maldonado et al., 2022], which breaks down the process explained earlier.

yk = Σn
i=1Zi + Σm

j=1Hj (4.8)

Algorithm 1 Wavelet-Based Broad LEarning System (WABBLES)

Input: Training samples X, training true labels y, learning rate α;
Output: ye response;
X ← zscore(X)
for i← 0, n do

Random Wei;
βei ← 0;
Initialize the translation and dilation parameters (t and d);

end for
for j ← 0,m do

Random Whj ;
βhj ← 0;

end for
while The error threshold is not satisfied within the limit of epochs do

for each x ∈X do
sumZ, sumH ← 0;
for i← 0, n do
ci ← ||di(x− ti)||;
Calculate ψ(ci);
Zi ←Wei ∗ ψ(ci) + βei;
sumZ ← sumZ +Zi;

end for
for j ← 0,m do

Calculate Hj ← ξ(Whj ∗ sumZ + βhj);
sumH ← sumH +Hj ;

end for
ye ← sumZ + sumH;
error ← ye − y;
Save parameters (We,βe, t,d,Wh,βh);
Calculate the parameter derivatives (We

′, β′
e, t

′, d′, W ′
h, β′

h);
Update parameters (We, βe, t, d, Wh, βh);

end for
end while

4.2.1. Learning Algorithm of the WABBLES Model

The WABBLES model is trained using the backpropagation algorithm in contrast to the pseudo-

inverse matrices used by the original BLS model. The backpropagation was required to train the
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mapping nodes presented in this work because it is necessary to train the dilation and translation

parameters of the wavelet functions. The backpropagation algorithm uses the derivatives of

the parameters to reduce the gradient of an error function E(w) by adjusting the parameters.

For this reason, the activation functions, ψ() and ξ(), must be differentiable and nonlinear

functions. We chose to use the quadratic cost function, shown in Eq. (4.9), to calculate the

error of the network.

E(t) =
1

2
[ye(t)− y(t)]2 (4.9)

where ye(t) is the estimated output, and y(t) is the expected output at time t.

The cost function is used to update the parameters W = [We,βe,Wh,βh, t,d] as it is done

in [Juárez-Guerra et al., 2020]. Eq. (4.10) depicts the operations necessary to update the

parameters.

W (t+ 1) = W (t) + ∆W (t) = W (t) + α

(
− δE

δW (t)

)
(4.10)

where α is the learning rate.

The partial derivative of the cost function w.r.t the parameters is calculated by using Eq.

(4.11).

δE

δW (t)
= Σk=0ek

δy(t)

δW (t)
(4.11)

where k denotes the current epoch of the gradient descent algorithm, and ek is the calculated

error on that epoch.

The value δy(t)
δW (t)

is obtained by calculating the partial derivatives of each parameter in the

vector W = [We,βe,Wh,βh, t,d]. The full description of the calculation of the derivatives is

presented in Appendix D, and the resulting partial derivatives are presented in Table 4.1.
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Table 4.1: Partial Derivatives of the Parameters of the Proposed WABBLES Model.

Parameter Partial derivative of the output δy w.r.t. the parameter

βei
δy
δβei

= 1 + ξ′
(
WhjZ + βhj

)
·Whj

βhj
δy
δβhj

= ξ′
(
WhjZ + βhj

)

Wei
δy

δWei
= ψ(ci)

(
1 + ξ′

(
WhjZ + βhj

)
·Whj

)

Whj
δy

δWhj
= ξ′

(
WhjZ + βhj

)
·Z

ti
δy
δti

=
(
δψ(ci)
δti

·Wei

)
·
(

1 + ξ′
(
WhjZ + βhj

)
·Whj

)

di
δy
δdi

=
(
δψ(ci)
δdi

·Wei

)
·
(

1 + ξ′
(
WhjZ + βhj

)
·Whj

)

ξ′ option 1:
Sigmoid function deriv.

ξ′ = e−x

(1+e−x)2

ξ′ option 2:
Tanh function deriv.

ξ′ = 1− tanh(x)2

4.2.2. Mapping Functions

The WABBLES model uses a wavelet function ψ to map the original inputs of the network to

create the mapping nodes. To select the best wavelet function for ours tests, we experimented

using three different mother wavelet functions. The wavelet chosen is the one that obtained the

best results for the problems at hand, which are exoplanet identification and cancer detection.

It is possible that each classification problem will obtain better results with different wavelets

because the results will depend on the resemblance between the wavelet and the input signal.

The functions that we tested are the Gaussian Derivative function defined in Eq. (4.12), the

Morlet function defined in Eq. (4.13), and Mexican Hat function defined in Eq. (4.14). Other

functions could be used as the mapping function with the only condition that they must be
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(a) (b) (c)

Figure 4.4: Mother wavelet functions used in the present work. a) Gaussian Derivative wavelet,
b) Morlet wavelet, and c) Mexican Hat wavelet.

continuous functions, to calculate their derivatives so they can be used by the training algorithm.

This is why the wavelets used in this work are continuous functions and their graphs are shown

in Fig. 4.4.

Gaussian Derivative: ψ(ci) = −cie−
1
2
ci

2

(4.12)

Morlet: ψ(ci) = e−
1
2
ci

2

cos(5ci) (4.13)

Mexican Hat: ψ(ci) =
2

π
1
4

√
3

(1− ci2)e−
1
2
ci

2

(4.14)

where e is the exponential function, ci is the output of the radial function R, and ψ() is the

wavelet function.

The initialization of the dilation and translation parameters of the wavelet function requires

special attention (see [Abdala, 2008]), thus it is unadvised to use a random initialization strat-

egy. Instead, [Zhang and Benveniste, 1992] propose an iterative procedure that is explained

next and it is the one used for the initialization of the dilation and translation parameters of the

proposed model. The translation (t) and dilation (d) parameters are initialized by selecting a p

point between a and b, such that a < p < b. Then, p is calculated subsequently by dividing all

the sub-intervals [a, b] obtained using a recursive function. The next values of the parameters
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are set as t1 = p, and d1 = c(b − a), where c is a constant equal to 0.5. The interval [a, b] is

recursively subdivided into two parts by using the new values of the point p, and the process is

repeated until all the wavelet parameters have been initialized. There are some cases in which

not all the wavelons were initialized by the recursive function. This occurs when the number

of wavelons used is not a power of 2. For those cases, the parameters are initialized randomly.

The aforementioned process is described in Algorithm 2 from [Jara-Maldonado et al., 2022].

Algorithm 2 Wavelet parameters initialization

Input: Number of mapping nodes n, number of features N ;
Output: Wavelet translation and dilation parameter matrices in list representation t, d;
a← 0;
b← 1;
levels←floor(log(n)/log(2));
t,d←InitializeTD(t,d, a, b, levels,N);
while The size of t is smaller than the number of mapping nodes n do
t.add(a+ (b− a) ∗ random);
d.add(0.5 + (b− a) ∗ −levels2);

end while
procedure InitializeTD(t,d, a, b, levels,N)

p = 0.5 ∗ (a+ b);
for j ← 0, N do
tij = p;

end for
di = 0.5 ∗ (b− a);
t.add(ti);
d.add(di);
if level ≤ 1 then

return t,d;
else

InitializeTD(t,d, a, p, levels− 1, N);
InitializeTD(t,d, p, b, levels− 1, N);

end if
end procedure

Finally, the derivative of the ψ(ci) function w.r.t the ti and di parameters is required for the

training algorithm. We calculated the derivatives of the parameters of each wavelet function

used in this work and the partial derivatives are presented in in Table 4.2. This table presents

each of the three wavelet functions along with the derivatives used to update the translation

and dilation parameters of the wavelet functions. Such derivatives are a complement for Table

4.1, where the derivatives of the other parameters were shown. The calculations of the dilation
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and translation derivatives are presented in Appendix E.

Table 4.2: Partial Derivatives of the Wavelet Parameters for the Proposed WABBLES Model.

Wavelet Param. Partial derivatives of the output δy w.r.t. the
wavelet parameters

Gaussian
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4.2.3. Discussion

We have proposed a new ML model that is based on the BLS architecture. The fact that

there are no hidden layers makes it possible to reduce the number of parameters to be trained,

which results in less computational complexity. Moreover, the proposed model takes advantage

of the mapping capacities of the wavelet functions to process the LC data. We have proven in

Chapter 3 that MRA helps to enhance the transit signals, thus adding a wavelet function for

the mapping nodes was expected to improve the performance of the proposed network. The

main advantage of using wavelets is that they can adapt to the signal by carefully adjusting

the dilation and translation parameters. Due to the self-learning nature of neural networks, the

WABBLES model is capable of automatically adjusting the wavelet dilation and translation

parameters, resulting on a perfect match between MRA and ML.
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4.3. WABBLES Experiments

4.3.1. Experiment Settings for Exoplanet Identification

We have used the 3-median dataset reported in Chapter 3 to test the performance of the RF,

CNN, NB, SVM, MLP (specifically the Relu MLP (1024)), Ridge classifier, KNN, and LS

models described in Chapter 3. We have also added the Wavelet MLP, BLS and WABBLES

models to increase the reach of the experiments. We based on the Wavelet MLP presented

in [Pearson et al., 2017], which is an MLP that uses the DWT to preprocess the inputs. As

mentioned before, the Wavelet MLP model uses a concatenation of the cAs and cDs obtained

from the first level of decomposition of the second order Daubechies wavelet as inputs for the

network. The configuration of the MLP network used by the Wavelet MLP is the same as the

Sigmoid and Relu MLP(64, 32, 8, 1) presented in Chapter 3 but it uses the preprocessed inputs.

The setting of the WABBLES model was defined by testing and comparing the results

obtained by the model with the different options of hyperparameters, which are presented in

Table 4.3. This table shows the different numbers of mapping and enhancement nodes, wavelets

and activation functions tested. Additionally, we tested using amplitude inversion, where the

LCs were multiplied by −1 to give them a similar geometry to some of the wavelets used. The

learning rate of the network was set to 0.001 after testing with the values 0.0005, 0.001, and

0.005. We chose these values because we noticed that the performance of the model dramatically

dropped out of this range. Each test was executed 10 times to obtain a statistical validation

of the results. In total, we tested 218 settings of the WABBLES. The best setting obtained

from these tests was trained with a limit of 500 training epochs, from which it required 473

epochs to reach its optimal performance. Such setting consists of the Mexican Hat wavelet, 20

mapping and enhancement nodes, the tanh activation function and amplitude inverted LCs.

Finally, the WABBLES model was implemented in Python1.

Similar to the WABBLES model, the configuration of the BLS model was determined using

different settings from the hyperparameter grid presented in Table 4.4. The parameters that

1WABBLES model code: https://github.com/MiguelJM/WABBLES.git

https://github.com/MiguelJM/WABBLES.git
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Table 4.3: Hyperparameter grid for the selection of the WABBLES configuration [Jara-
Maldonado et al., 2022].

Wavelet Gaussian Deriv. Morlet Mexican Hat

Mapping nodes (n) 10 20 50

Enhancement nodes (m) 10 20 50

Activation function (φ) Tanh Sigmoid

LC display Inverted Normal

Note: The best combination of parameters for exoplanets is highlighted with bold characters.

were varied are the shrinkage parameter, the number of mapping nodes, mapping groups, and

enhancement nodes. The sparse regularization parameter (C) was set to 2.00E−25 in all cases

because we found that there is not much difference when setting a value in the range between

2.00E−10 and 2.00E−100, so we used the default value. Each instance of the model was tested

10 times to statistically validate the results. In total, we tested 250 different settings, where

the best performing setting consisted of the shrinkage parameter, s set to 0.8, the number of

mapping nodes N1 to 10, and the number of groups of mapping nodes N2, as well as the number

of enhancement nodes N3 were set to 100. We used the Python implementation of the BLS

from [Li et al., 2019]2.

Table 4.4: Hyperparameter grid for the selection of the BLS configuration [Jara-Maldonado
et al., 2022].

Shrinkage (s) 0.1 0.8

Mapping nodes (N1) 10 20 30 70 100

Groups of mapping nodes
(N2)

10 20 30 70 100

Enhancement nodes (N3) 10 20 30 70 100

Note: The best combination of parameters for exoplanets is highlighted with bold characters.

4.3.2. Experiment Settings for Breast Cancer Detection

We performed tests with a benchmark dataset called Wisconsin Breast Cancer Dataset

(Original) [Wolberg and Mangasarian, 1990]. This was done to test the performance of the

proposed model with a real world application. This dataset has been retrieved from the UCI

2BLS Python code: http://www.sfu.ca/~ljilja/cnl/projects/BLS_intrusion_detection/index.html

http://www.sfu.ca/~ljilja/cnl/projects/BLS_intrusion_detection/index.html
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machine learning repository3. It contains breast cancer clinical cases that have been labeled

as malignant or benign. There is a total of 699 samples and each contain 10 attributes. The

attributes are sample code number, clump thickness, uniformity of cell size and shape, marginal

adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses.

Finally, the dataset is unbalanced, meaning that there are more samples corresponding to one

class than the other. In this case the 65.5% of the samples belong to the benign class and the

other 34.5% cases belong to the malignant class. Some of the samples have missing values. In

those cases we replaced the values with 0’s. Also, we changed the classification labels to 0 for

malignant (which appear as 4’s in the original dataset), and 1 for the benign cases (originally

2’s). Finally, we split the dataset into 60% to be used as training set, and the resting 40% as

testing set.

The ML classifiers tested with this dataset are the proposed WABBLES model, BLS, RF, and

two MLP (both with one hidden layer and 5 neural units in accordance to what is proposed in

[Alarcon-Aquino and Barria, 2006]). The Sidmoid MLP(5) uses the sigmoid activation function

and the Relu MLP(5) uses the Relu activation function. In the case of the WABBLES model,

we used the same hyperparameter grid shown in Table 4.3 with the exception that we did

not test amplitude inversion. This resulted in 54 different tests with 5 training epochs. The

best configuration found is composed by the Gaussian derivative wavelet, 20 mapping and

enhancement nodes, and the sigmoid enhancement function. This model was trained with a

maximum of 500 training epochs, from which it only used 332 to attain its best value. Then,

we varied the threshold value from 0 to 1 with advancements of 0.1. These other 10 tests

allowed us to configure the best threshold value, which was found to be 0.5. We performed

the same threshold tests with the rest of the models and determined that the best values were

obtained with a threshold value of 0.6 for the RF, 0.9 with the two MLPs (Relu MLP(5)

and Sigmoid MLP(5)), and 0.5 for the BLS model. The threshold tests were performed 100

times for statistical validation. The configuration of the BLS model was defined by using the

hyperparameter grid presented in Table 4.4. From the 250 BLS configurations tested, we found

that the best performing one was composed of a shrinkage parameter set to 0.8, 100 mapping

3Breast Cancer Wisconsin Dataset (Original): https://archive.ics.uci.edu/ml/datasets/breast+

cancer+wisconsin+%28original%29

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28original%29
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+%28original%29
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nodes and groups of mapping nodes (N1 and N2), and 20 enhancement nodes (N3).

4.3.3. Exoplanet Identification Experimental Results

First, the ML models were implemented and tested using the 3-median dataset presented in

Chapter 3. The metrics used to assess the performance of the models compared are accuracy,

precision, specificity and recall, which are described in Chapter 3. In addition, we also included

the F-score metric, which is calculated as (2 ∗ (precision ∗ recall )/( precision + recall)) and

is useful for unbalanced datasets, such as the breast cancer dataset that was also used. All

the experiments were performed using a computer with an Intel Core i7-7700 HQ CPU, 16.0

GB of RAM, Windows 10 operative system of 64 bits, and a NVIDIA GeForce GTX 1060

graphics card. The results of the exoplanet experiments are presented in Table 4.5. The only

two models that were trained once were the CNN and WABBLES models. This was done

in this way because of the long training times of both models. In contrast, the rest of the

models were trained 100 times and then tested after each train. We present the average of all

the training and testing epochs on Table 4.5. As it can be observed in this table, the model

that obtained the best accuracy and specificity percentages is the proposed WABBLES model,

while it obtained descent values in the other metrics, although lower than the other models

presented. In the case of the RF and CNN models, which obtained the best results in Chapter

3, the proposed model has a better accuracy and F-score by more than one percent, which is

a descent result for a new ML model. Also, Table 4.6 shows the testing and training times

taken by the best performing models from Table 4.5. As it can be seen, the WABBLES model

requires more training time than the rest of the models, but once it has been trained it classifies

almost three times faster than the BLS model.

We also conducted an experiment to evaluate how the number of training epochs affects

the performance of the WABBLES model. The best results were obtained using a total of 473

epochs from a limit of 500. The other training epochs tested were 2, 5, and 30 epochs. In that

order, the accuracy values obtained were 93.36%, 95.51%, and 95.91%; while the execution

times were 324.29, 604.88, and 1, 905.68 seconds. Thus, we found that using more training
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Table 4.5: Experimental results with the 3-median exoplanet dataset. Each value corresponds
to the average of the 100 executions of each model with the testing set [Jara-Maldonado et al.,
2022].

Model Accuracy
(%)

F-Score
(%)

Precision
(%)

Specificity
(%)

Recall
(%)

WABBLES. 99.01 99.01 99.24 99.23 98.79

BLS. 98.57 98.56 97.28 97.25 99.89

RF. 97.82 97.84 97.25 97.17 98.45

CNN. 97.68 97.65 99.94 97.68 95.48

NB. 94.75 95.03 90.81 92.42 99.67

SVM. 93.76 94.17 88.99 87.41 100

Relu MLP (1024). 93.31 93.77 88.95 87.39 99.14

Ridge Classifier. 76.02 80.76 67.79 51.81 99.87

KNN. 64.91 74.20 58.99 29.15 100

LS. 37.99 6.58 13.65 72.22 4.34

Note: The best values are highlighted with bold characters.

Table 4.6: Execution time against training time of the best performing models with the 3-
median exoplanet dataset [Jara-Maldonado et al., 2022].

Model Testing time
(secs.)

Training time
(secs.)

RF. 0.04 8.64

CNN. 16.34 3,727.62

WABBLES. 47.67 73,210.30

BLS. 136.78 1.28

Note: The best values are highlighted with bold characters.

epochs results in a better accuracy with the disadvantage of consuming more time to train

the model. Furthermore, a comparison of the performance of the WABBLES model with the

wavelet functions used is shown in Table 4.7. The best results were obtained using the Mexican

Hat wavelet transform. We attribute this to the similarity between the exoplanet transit and

the inverted Mexican Hat wavelet.

Furthermore, we performed tests to evaluate the variance of the results using different num-

bers of runs. As it is mentioned before, we performed 100 runs, from which we extracted the

mean values. Those are the results reported in this section. Nevertheless, Figures 4.5 and 4.6

show the mean and standard deviation of the accuracy and F-score results obtained by the four
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Table 4.7: WABBLES results using different wavelets as mapping function with the 3-median
exoplanet dataset [Jara-Maldonado et al., 2022].

Wavelet Test Accuracy
(%)

Train Accuracy
(%)

No. of training
epochs

Mexican Hat. 99.01 98.8 473

Morlet. 97.95 96.88 460

Gaussian Deriv. 97.52 97.24 40

Note: The best values are highlighted with bold characters.

best performing models with 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 runs. In this figures, the

lines represent the mean of the results in the corresponding number of runs, while the shaded

areas show the standard deviation of the results. As it can be seen, the model that obtains

broader ranges of result values is the BLS model, which probably means that it is not being

optimized, but rather it is stuck in a local minimum.

Figure 4.5: Mean and standard deviation of the accuracy from the best four models used with
the 3-median dataset using different numbers of test runs.
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Figure 4.6: Mean and standard deviation of the F-score from the best four models used with
the 3-median dataset using different numbers of test runs.

4.3.4. Cancer Detection Experimental Results

The results of the experiments performed with the cancer detection dataset are presented

in Tables 4.8 and 4.9. The former table presents the performance metrics. As it can be seen,

the WABBLES model is almost more than 1% better than any of the other models presented

in every metric. Furthermore, the difference in F-score between the proposed model and the

former BLS model is greater than 6%. Recall that the F-score is one of the most useful metrics

for unbalanced datasets because it establishes a relation between the precision and recalls,

which means that both classes are taken into account. In the case of time, it is noticeable from

Table 4.9 that WABBLES is still one of the most time consuming models, although it needed

less testing time than BLS. Nevertheless, the training time of WABBLES is the main caveat

of this model. For this reason, we will perform experiments with the aim of parallelizing the

model in the future.

More over, as in the case of the 3-median dataset tests, we evaluated the variance of the

results using different numbers of runs. Figures 4.7 and 4.8 show the mean and standard
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Table 4.8: Experimental results with the Wisconsin Breast Cancer Dataset (Original). Each
value corresponds to the average of the 100 executions of each model with the testing set
[Jara-Maldonado et al., 2022].

Model Accuracy
(%)

F-Score
(%)

Precision
(%)

Specificity
(%)

Recall
(%)

WABBLES. 97.36 96.23 95.17 97.41 97.4

RF. 96.37 94.76 93.17 96.35 96.42

Sigmoid MLP(5). 95.87 94.09 92.46 95.94 95.77

Relu MLP(5). 95.43 93.38 92.41 95.99 94.37

BLS. 87.83 90.41 92.84 88.35 87.02

Note: The best values are highlighted with bold characters.

Table 4.9: Testing time against training time of the models with the Wisconsin Breast Cancer
Dataset (Original) dataset [Jara-Maldonado et al., 2022].

Model Testing time (secs.) Training time (secs.)

Sigmoid MLP(5). Close to 0. 0.0006

Relu MLP(5). Close to 0. 0.001

RF. 0.0002 0.0011

WABBLES. 0.83 2,509.59

BLS. 1.2 679.48

Note: The best values are highlighted with bold characters.

deviation of the accuracy and F-score results obtained by the three best performing models

and the BLS model with 10 to 100 runs. As before, the lines represent the mean of the results

in the corresponding number of runs, while the shaded areas show the standard deviation of

the results. Once again, the model with the greater standard deviation is the BLS, while

WABBLES still obtains the best results of all, even considering the standard deviations.

4.3.5. Discussion

We proposed a new ML model, which we called WABBLES. Then, we compared its per-

formance with the results obtained by other exoplanet identification models that were tested

in this work. Such tests were performed using the 3-median dataset, which consists of simu-

lated LCs that were injected with simulated exoplanet transits and the breast cancer detection

dataset. In the case of the exoplanet experiments presented in this chapter, we compared the
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Figure 4.7: Mean and standard deviation of the accuracy from the best three models and the
BLS model used with the breast cancer dataset; using different numbers of test runs.

results of the models with inputs that were not preprocessed using MRA techniques (contrarily

to what was done in Chapter 3). In this regard, the best performing models are the proposed

WABBLES model and the BLS model that it is based on. Nevertheless, for comparison pur-

poses Table 4.10 shows the top five results obtained with the 3-median dataset. Those results

include every experiment performed in this work. It can be observed that the WABBLES model

obtained very similar results to those attained by the best settings of the CNN.

Table 4.10: Top 5 results from all the models tested with the 3-median exoplanet dataset. Each
value corresponds to the average of the 100 executions of each model.

Model Accuracy
(%)

Precision
(%)

Specificity
(%)

Recall
(%)

CNN+EMD (1 IMF). 99.32 99.67 99.32 98.99

CNN+DWT (sym5, cDs, j = 1). 99.13 99.16 99.13 99.09

Proposed WABBLES. 99.01 99.24 99.23 98.79

BLS. 98.57 97.28 97.25 99.89

RF+DWT (db1, cAs, J = 4). 98.08 97.49 97.41 98.73

Note: The best values are highlighted with bold characters.

It is worth highlighting that the accuracy percentage of the WABBLES model is 99.01%
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Figure 4.8: Mean and standard deviation of the F-score from the best three models and the
BLS model used with the breast cancer dataset; using different numbers of test runs.

without the need of applying any MRA technique to preprocess the LCs before using them as

inputs. Under these conditions, the CNN model obtained an accuracy of 97.68%, while the

RF classifier obtained 97.82%, as it is shown in Table 4.5. These two values are considerably

lower than that which was attained by the proposed model. We attribute the positive results

of the proposed model to the fact that MRA is part of its core design, and it is used to map the

inputs, thus highlighting subtle yet important features of the transit signal within the LCs. The

fact that WABBLES is capable of autonomously training the wavelet dilation and translation

parameters using the advantages of the neural network architecture and the backpropagation

algorithm guarantees a better configuration of the wavelet transform. WABBLES also obtains

the best results of the models tested with the Wisconsin Breast Cancer Dataset (Original)

dataset.

Finally, the main limitation of the proposed model is its training time. It requires many

training epochs to adjust its parameters because of the backpropagation algorithm. We have

experimentally demonstrated in this chapter that the more training epochs the better accuracy,

but also the more execution time consumed.
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Conclusions and Future Work

5.1. Conclusions

In this thesis, we have investigated how MRA can help to improve the identification accuracy of

ML models. The hypothesis plotted is that A machine learning model based on multiresolution

analysis is capable of overmatching the transiting exoplanet identification accuracy performance

of the state-of-the-art models for noisy light curves classification. For this purpose, we have

proposed a novel ML algorithm that can be adapted to any identification problem, such as

cancer detection, which is another application of the model tested in this work. Since exoplanet

research requires the analysis of big amounts of noisy data, the experiments performed with

simulated LCs provide a proof of concept of the reach of combining MRA and ML for the

identification of non-linear signals.

In the particular case of exoplanet discovery, we have studied how ML can be used for

speeding up and reducing the effort needed to preprocess LCs, detect possible exoplanetary

signals, and finally analyze the detected signals to evaluate if they actually correspond to an

exoplanet transit (see [Jara-Maldonado et al., 2020b]). For the last step, the identification

process, we have gone beyond by proposing different automation solutions. First, in Chapter 3,

we designed a system that allowed us to create simulated LCs based on real exoplanet and LCs

data. Using these time series we performed different experiments to improve the identification

82
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performance of the state-of-the-art ML models such as CNNs and RFs. We compared the

performance of the ML models tested using the LCs without any preprocessing as inputs against

those performances obtained with LCs preprocessed with different MRA techniques; namely

the DWT, EMD, and EEMD techniques. From these sets of experiments we concluded that

MRA does improve the performance of the models. For example, the use of the DWT reduces

the execution time of the models because the signal is down-sampled. The DWT also increases

the accuracy performance of the models because, even though some information is lost during

the down-sampling process, it recovers the most significant features from the signal. The EMD

and EEMD techniques do not down-sample the signal. Even though this increases the execution

time of the models, it makes them robust against different noise sources. The main limitation

found with the EMD and EEMD models is that they lack theoretical properties, which is not

the case of the DWT. This is important because one of the most problematic issues in exoplanet

discovery is the noise present in the LCs. An example of this is that looking for weak transit

signals is important to find Earth-like exoplanets (see for example [Petigura et al., 2013]).

In this sense, a more refined identification has to be performed; which is another reason for

choosing MRA as an useful tool for exoplanetary science.

After proving the effectiveness of MRA for exoplanet identification, and basing on the idea

that to automate the identification process it is necessary to overcome the noise issues, we

proposed and implemented a new ML model called WABBLES in Chapter 4. The WABBLES

model is based on the BLS architecture, which is a flattened network that maps the inputs and

then enhances the mapped features to obtain the outputs. WABBLES is capable of extracting

the most representative features from the signal of interest (in this case we looked for exoplanet

transits and breast cancer) by analyzing the input signal at different resolution levels. This

is done by using wavelets (i.e. mapping the inputs with wavelets). Furthermore, since neural

networks are capable of automatically optimizing their parameters, the wavelet parameters are

trained for a better identification performance. The proposed model can be thus adapted to

any non-linear signal (not only LCs as it was proven in Chapter 4), with the only requirement

that the most suitable wavelet and enhancement function must be used.

Finally, we tested the performance of the WABBLES model and then compared it against
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other ML models using one of the synthetic datasets that we created and the Wisconsin Breast

Cancer Detection Dataset (Original). From these tests we concluded that the identification

performance of the WABBLES model is superior in terms of accuracy and F-score percentage

to that of the compared models, including the original BLS model.

5.2. Future Work

Even though the WABBLES model attained the best accuracy and F-score metrics, it still suf-

fers from long training times, which could be mitigated by developing an adaptive learning rate

strategy. The current model uses a fixed learning rate. Adapting it during the training process

would accelerate its training times because the model could adjust the parameters with more

freedom at the first training epochs and then, as the gradient approaches to the optimal value,

the updating values could be smaller. Another improvement would be parallelizing the model.

This would be possible because the model is trained by using the gradient descent algorithm,

and because the mapping and enhancement nodes work individually in their respective layers.

By parallelizing the model, it would have a significant acceleration of the training and testing

processes. Furthermore, we only tested the proposed model with simulated data, for which we

will also test the performance of the WABBLES model with real data.

Moreover, it is possible that the proposed model could be adapted to perform incremental

learning, which means adding new nodes to an already trained network based on new knowledge.

In the case of astronomic data, this can be useful to keep the pace of new space missions that

continue to acquire LCs. Even more, we will study the possibility of the model to perform

transfer learning, which would allow the user to use a previously trained architecture as starting

point to train the model for a different problem. In this way, we expect that it will be possible

to transfer the knowledge obtained by WABBLES from one telescope dataset to another.

In addition, in this work we have investigated the benefits of different MRA techniques,

but we have not tested them all. One technique that could obtain good results is the SWT.

This technique works similarly to the DWT with the difference that it does not decimate the
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information. For this reason this technique does not suffer from loss of information and it could

be used to improve the performance of certain models such as the CNN which was constrained

by the length of the input feature vector. Even more, we have not tested using the DWT to

preprocess the inputs of the proposed model. This technique could reduce the execution time

of the proposed model because the downsampling process limits the length of the inputs.

Furthermore, the proposed WABBLES model could also be used for exoplanet detection

(i.e. spotting signals that possibly belong to exoplanet transits in the LCs) after applying the

correct modifications. This would require adapting the model to skim over the LCs to detect

periodic signals that could belong to exoplanet transits. By doing so, the model could be used

for a completely automated pipeline, capable of extracting exoplanet candidates from the LCs

for their future study by astronomers.

Finally, we have found that there is probably a relation between the LCs that contain

exoplanet transits and the maximum number of IMFs that can be obtained by applying the

EMD technique to the LCs. It would be of great interest to delve into this finding because a

new exoplanet identification model could be proposed if there is actually a relation between

the exoplanets and the IMFs obtained.
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Nacional Autónoma de México, Instituto de Investigaciones Juŕıdicas.
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Appendix A

Publications

The different publications that were produced during the elaboration of this work are pre-

sented in this appendix.

A.1. Journal Citation Reports Articles

An article that describes the design and implementation of the WABBLES model:

Miguel Jara-Maldonado, Vicente Alarcon-Aquino, Roberto Rosas-Romero, A new ma-

chine learning model based on the broad learning system and wavelets, Engineering Ap-

plications of Artificial Intelligence, Volume 112, 2022, 104886, ISSN 0952-1976. https:

//doi.org/10.1016/j.engappai.2022.104886

An article that gathers three contributions: the synthesis of the related work of ML ap-

plied to exoplanet discovery; a pipeline for synthetic LC dataset creation; and a compar-

ative framework of the different ML models that can be used for exoplanet identification,

along with the use of the DWT to enhance their performance:

Jara-Maldonado, M., Alarcon-Aquino, V., Rosas-Romero, R., Starostenko, O., & Ramirez-

Cortes, J. M. (2020). Transiting Exoplanet Discovery Using Machine Learning Tech-

niques: A Survey. Earth Science Informatics. https://doi.org/10.1007/s12145-020-00464-7
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A.2. Conference Articles and Posters 95

A.2. Conference Articles and Posters

An article that proves the usefulness of the EMD and EEMD techniques to improve the

robustness of the ML models of exoplanet identification:

Jara-Maldonado M., Alarcon-Aquino V., Rosas-Romero R. (2020) A Multiresolution Ma-

chine Learning Technique to Identify Exoplanets. In: Martnez-Villaseor L., Herrera-

Alcntara O., Ponce H., Castro-Espinoza F.A. (eds) Advances in Soft Computing. MI-

CAI 2020. Lecture Notes in Computer Science, vol 12468. Springer, Cham. https:

//doi.org/10.1007/978-3-030-60884-2_4

A summary of the work done in [Jara-Maldonado et al., 2020b]:

Jara-Maldonado, M., Alarcon-Aquino, V., & Rosas-Romero, R. (2020). A Multiresolution

Analysis Technique to Improve Exoplanet Identification, poster presented at: Exoplanets

III; Heidelberg (Online).

https://doi.org/10.1007/978-3-030-60884-2_4
https://doi.org/10.1007/978-3-030-60884-2_4


Appendix B

Discrete Wavelet Transform Results

This appendix presents the plots that correspond to all the accuracy results obtained using

the DWT technique to preprocess the LCs. The resulting coefficients were then used as inputs

for the ML models. The figures include both the cDs and cAs of the DWT, along with the

different decomposition levels tested. The wavelets used were the bior2.4, coif5, db1, db5, and

sym5 wavelets. These figures allow one to observe that there are several models that have a

better performance with cDs, as is the case of the CNN (see Fig. B.1); while others, such as

the RF classifier with cAs (see Fig. B.13). Even more, this is sometimes switched depending

on the dataset that was used, see the case of the CNN in Figs. B.1 and B.12. We attribute

this differences to the nature of the different coefficients used. For instance, the cAs are always

positive, while the cDs can be both positive and negative. Also, since the cDs represent the high

frequencies of the signal, this could mean that the classifiers that obtained better results using

the cDs are basing on the transit location; while those that obtain better results with the cAs are

basing on the frequency that better represents the transit, because cAs have a good frequency

representation. These figures also allow the observer to locate the best decomposition level for

each different ML approach. Notice how the CNN works better with lower decomposition levels.

Recall that the architecture of the CNN presented depends on the number of decomposition

levels because it needs a minimum length of inputs to still work. Finally, the figures presented

on this section can be used as a reference to future experiments with different wavelets because
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it demonstrates that there are several decomposition levels and coefficients with which each

model works better.

Figure B.1: Accuracy results obtained by the Convolutional Neural Network (CNN) model with
the 3-median dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.
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Figure B.2: Accuracy results obtained by the Random Forests (RF) model with the 3-median
dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.

Figure B.3: Accuracy results obtained by the Support Vector Machine (SVM) model with the
3-median dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.
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Figure B.4: Accuracy results obtained by the Näıve Bayes (NB) model with the 3-median
dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.

Figure B.5: Accuracy results obtained by the Sigmoid MLP(1024) model with the 3-median
dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.
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Figure B.6: Accuracy results obtained by the Relu MLP(1024) model with the 3-median dataset
preprocessed using the Discrete Wavelet Transform (DWT) technique.

Figure B.7: Accuracy results obtained by the Sigmoid MLP(64, 32, 8, 1) model with the
3-median dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.
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Figure B.8: Accuracy results obtained by the Relu MLP(64, 32, 8, 1) model with the 3-median
dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.

Figure B.9: Accuracy results obtained by the Sigmoid MLP(5, 2) model with the 3-median
dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.
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Figure B.10: Accuracy results obtained by the Relu MLP(5, 2) model with the 3-median dataset
preprocessed using the Discrete Wavelet Transform (DWT) technique.

Figure B.11: Accuracy results obtained by the Least Squares (LS) model with the 3-median
dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.
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Figure B.12: Accuracy results obtained by the Convolutional Neural Network (CNN) model
with the Real-LC dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.

Figure B.13: Accuracy results obtained by the Random Forests (RF) model with the Real-LC
dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.
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Figure B.14: Accuracy results obtained by the Support Vector Machine (SVM) model with the
Real-LC dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.

Figure B.15: Accuracy results obtained by the Näıve Bayes (NB) model with the Real-LC
dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.
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Figure B.16: Accuracy results obtained by the Sigmoid MLP(1024) model with the Real-LC
dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.

Figure B.17: Accuracy results obtained by the Relu MLP(1024) model with the Real-LC dataset
preprocessed using the Discrete Wavelet Transform (DWT) technique.
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Figure B.18: Accuracy results obtained by the Sigmoid MLP(64, 32, 8, 1) model with the
Real-LC dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.

Figure B.19: Accuracy results obtained by the Relu MLP(64, 32, 8, 1) model with the Real-LC
dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.



107

Figure B.20: Accuracy results obtained by the Sigmoid MLP(5, 2) model with the Real-LC
dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.

Figure B.21: Accuracy results obtained by the Relu MLP(5, 2) model with the Real-LC dataset
preprocessed using the Discrete Wavelet Transform (DWT) technique.
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Figure B.22: Accuracy results obtained by the Least Squares (LS) model with the Real-LC
dataset preprocessed using the Discrete Wavelet Transform (DWT) technique.



Appendix C

Empirical Mode Decomposition and

Ensemble Empirical Mode

Decomposition Results

This appendix presents the plots that correspond to all the results obtained using the EMD

and EEMD techniques to preprocess the LCs. The IMFs obtained were then used as inputs

for the ML models, where up to 10 modes were tested. As it can be seen in Figs. C.2, C.3,

and C.4, in most cases the best results are obtained between the mode 5 and 7. This is an

important finding because for future experiments the other IMFs could be ignored, saving thus

execution time. This also means that the exoplanet transits are better represented within these

modes of the signal.
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Figure C.1: Accuracy results obtained using light curves from the 3-median dataset which
were preprocessed with the Empirical Mode Decomposition (EMD) technique.

Figure C.2: Accuracy results obtained using light curves from the Real-LC dataset which were
preprocessed with the Empirical Mode Decomposition (EMD) technique.
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Figure C.3: Accuracy results obtained using light curves from the 3-median dataset which
were preprocessed with the Ensemble Empirical Mode Decomposition (EEMD) technique.

Figure C.4: Accuracy results obtained using light curves from the Real-LC dataset which were
preprocessed with the Ensemble Empirical Mode Decomposition (EEMD) technique.



Appendix D

Partial Derivatives Used by the

Proposed WABBLES Model

In this appendix, we present the calculation of the derivatives of the WABBLES parameters.

Such derivatives are used by the model for backpropagation during the training process. These

parameters are the mapping and enhancement biases (βei and βhj), the mapping and enhance-

ment weights (Wei and Whj), the wavelet translation parameter (ti), and the wavelet dilation

parameter (di). The derivatives are calculated from Eq. (4.8), which can be broken down to

Eq. (D.1).

n∑
i=1

(
Weiψ(ci) + βei

)
+

m∑
j=1

ξ
(
WhjZ + βhj

)
(D.1)

D.1. Mapping Bias Parameter Derivative

The derivative of the mapping bias parameter δy
δβei

(i.e. βei
′) is defined by:

δy

δβei
=
δ
∑n

i=1

(
Weiψ(ci) + βei

)
+
∑m

j=1 ξ
(
WhjZ + βhj

)
δβei

(D.2)
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The term Weiψ(ci) does not depend on βei, so it can be deleted.

δy

δβei
= 1 +

δξ
(
WhjZ + βhj

)
δβei

= 1 + ξ′
(
WhjZ + βhj

)
·
(
WhjZ + βhj

)
δβei

(D.3)

where ξ′ is the derivative of the enhancement function. Next, applying the chain rule on the

last term, and removing βhj , which does not depend on βei gives:

δy

δβei
= 1 + ξ′

(
WhjZ + βhj

)
·Whj (D.4)

Equation (D.4) corresponds to the partial derivative of the output w.r.t. βei.

D.2. Enhancement Bias Parameter Derivative

The derivative of the enhancement bias parameter δy
δβhj

(i.e. βhj
′) is defined by:

δy

δβhj
=
δ
∑n

i=1

(
Weiψ(ci) + βei

)
+
∑m

j=1 ξ
(
WhjZ + βhj

)
δβhj

(D.5)

The first term does not depend on βhj , so it can be eliminated as follows,

δy

δβhj
=
δξ
(
WhjZ + βhj

)
δβhj

= ξ′
(
WhjZ + βhj

)
·
(
WhjZ + βhj

)
δβhj

(D.6)

Since WhjZ does not depend on βhj , this can be converted into:

δy

δβhj
= ξ′

(
WhjZ + βhj

)
(D.7)
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Equation (D.7) corresponds to the partial derivative of the output w.r.t. βhj .

D.3. Mapping Weight Parameter Derivative

The derivative of the mapping weight parameter δy
δWei

(i.e. Wei
′) is defined by:

δy

δWei

=
δ
∑n

i=1

(
Weiψ(ci) + βei

)
+
∑m

j=1 ξ
(
WhjZ + βhj

)
δWei

(D.8)

Since βei does not depend on Wei, it can be eliminated giving the next expression,

δy

δWei

=
δ
(
Weiψ(ci)) +

∑m
j=1 ξ

(
WhjZ + βhj

)
δWei

(D.9)

Then, the following is obtained after applying the chain rule on the first term.

δy

δWei

= ψ(ci) +
δξ
(
WhjZ + βhj

)
δWei

= ψ(ci) + ξ′
(
WhjZ + βhj

)
·
(
WhjZ + βhj

)
δWei

= ψ(ci) + ξ′
(
WhjZ + βhj

)
·
(
Whj(Weiψ(ci) + βei) + βhj

)
δWei

(D.10)

After applying the chain rule on the last term, and removing those terms that do not depend

on Wei, the following is obtained:

δy

δWei

= ψ(ci)
(

1 + ξ′
(
WhjZ + βhj

)
·Whj

)
(D.11)

Equation (D.11) corresponds to the partial derivative of the output w.r.t. Wei.
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D.4. Enhancement Weight Parameter Derivative

The derivative of the enhancement weight parameter δy
δWhj

(i.e. Whj
′) is defined by:

δy

δWhj

=
δ
∑n

i=1

(
Weiψ(ci) + βei

)
+
∑m

j=1 ξ
(
WhjZ + βhj

)
δWhj

(D.12)

Since the first term does not depend on Whj it can be eliminated as follows,

δy

δWhj

=
δξ
(
WhjZ + βhj

)
δWhj

= ξ′
(
WhjZ + βhj

)
·
(
WhjZ + βhj

)
δWhj

(D.13)

The following is obtained after applying the chain rule on the last term, and removing βhj ,

which does not depend on Whj .

δy

δWhj

= ξ′
(
WhjZ + βhj

)
·Z (D.14)

Equation (D.14) corresponds to the partial derivative of the output w.r.t. Whj .

D.5. Wavelet Translation Parameter Derivative

The derivative of the wavelet translation parameter δy
δti

(i.e. ti
′) is defined by:

δy

δti
=
δ
∑n

i=1

(
Weiψ(ci) + βei

)
+
∑m

j=1 ξ
(
WhjZ + βhj

)
δti

(D.15)

where the ti parameter is used to calculate ψ(ci) (see Eq. (4.3)). The βei and βhj parameters
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do not depend on ti, so they can be removed, leaving the following:

δy

δti
=
δ
(
Weiψ(ci)

)
+ ξ
(
WhjZ + βhj

)
δti

δy

δti
=
δ
(
Weiψ(ci)

)
δti

+ ξ′
(
WhjZ + βhj

)
·
(
WhjZ

)
δti

(D.16)

The following is obtained after applying the chain rule to the first and last terms.

δy

δti
=
(δψ(ci)

δti
·Wei

)
·
(

1 + ξ′
(
WhjZ + βhj

)
·Whj

)
(D.17)

Equation (D.17) corresponds to the partial derivative of the output w.r.t. ti.

D.6. Wavelet Dilation Parameter Derivative

The derivative of the di parameter is the same than the derivative of the ti parameter. They

differ when calculating the term δψ(ci)
δdi

, which depends on the wavelet that has been chosen. δy
δdi

(i.e. di
′) is defined by:

δy

δdi
=
δ
∑n

i=1

(
Weiψ(ci) + βei

)
+
∑m

j=1 ξ
(
WhjZ + βhj

)
δdi

(D.18)

where the di parameter is used to calculate ψ(ci) (see Eq. (4.3)). In the same way as with

the ti parameter, the βei and βhj parameters can be eliminated because they do not depend

on di. Also, after applying the chain rule to the resulting first and last terms, the following is

obtained:

δy

δdi
=
(δψ(ci)

δdi
·Wei

)
·
(

1 + ξ′
(
WhjZ + βhj

)
·Whj

)
(D.19)

Equation (D.19) corresponds to the partial derivative of the output w.r.t. di.



Appendix E

Partial Derivatives of the Translation

and Dilation Parameters Used by the

Proposed WABBLES Model

In this appendix, the calculation of the derivatives of the wavelet parameters used by the

proposed model (i.e. ti
′ and di

′) are presented. The derivatives of the translation and dilation

parameters are used to calculate the derivative of the wavelet function ψ(ci)
′. The calculation

of such derivatives is different for each wavelet.

E.1. Derivative of the Radial Function Output

Recall from Eq. (4.3) that the output of the radial function ci = ||di(Xk− ti)||. This function

remains the same regardless of the wavelet chosen. For this reason, the derivative of ci will be

the same for all wavelets. Nevertheless, it is necessary to calculate its derivative w.r.t. to the

translation and the dilation parameters to use it for the calculation of the derivatives of such

parameters for each wavelet function. The derivatives of the radial function output (i.e. ci)

are presented next.

117



118Appendix E. Partial Derivatives of the Translation and Dilation Parameters Used by the Proposed WABBLES Model

E.1.1. Derivative of the Radial Function Output w.r.t. the Wavelet

Translation Parameter

The derivative of the radial function output w.r.t. the wavelet translation parameter δci
δti

(i.e.

ti
′) is defined by:

δci
δti

=
δ
((
di

2(Xk − ti)2
) 1

2

)
δti

(E.1)

The following is obtained after applying the chain rule.

δci
δti

=
1

2
(di

2(Xk − ti)2)−
1
2
δ
(
di

2(Xk − ti)2
)

δti
(E.2)

The term di
2(Xk − ti)2

) 1
2 can be substituted by ci as follows:

δci
δti

=
1

2
ci
−1 δ
(
di

2(Xk − ti)2
)

δti
(E.3)

Eq. E.4 is obtained by using the chain rule:

δci
δti

=
1

2
ci
−1(

δdi
2

δti
(Xk − ti)2 + di

2 δ(Xk − ti)2

δti
) (E.4)

Since di does not depend on ti the term that is multiplied by its derivative can be cancelled.

δci
δti

=
1

2
ci
−1(di

2 δ(Xk − ti)2

δti
) (E.5)

The following is obtained after deriving the term (Xk − ti)2.

δci
δti

=
1

2
ci
−1
(
di

2
(
− 2(Xk − ti)

))
(E.6)
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Finally, the following is obtained after clearing the equation:

δci
δti

= −di
2(Xk − ti)
ci

(E.7)

E.1.2. Derivative of the Radial Function Output w.r.t. the Wavelet

Dilation Parameter

The derivative of the radial function output w.r.t. the wavelet dilation parameter δci
δdi

(i.e. di
′)

is defined by:

δci
δdi

=
δ(di

2(Xk − ti)2)
1
2

δdi
(E.8)

The following is obtained after applying the chain rule.

δci
δdi

=
1

2

(
(di

2(Xk − ti)2)−
1
2

)
· δdi

2(Xk − ti)2

δdi
(E.9)

The term di
2(Xk − ti)2

) 1
2 can be substituted by ci as follows:

δci
δdi

=
1

2
(ci
−1) · δdi

2(Xk − ti)2

δdi
(E.10)

Eqs. E.11 - E.13 are obtained by using the chain rule:

δci
δdi

=
1

2ci

(δdi2
δdi

(Xk − ti)2 + di
2 δ(Xk − ti)2

δdi

)
(E.11)

δci
δdi

=
1

2ci

(
(2di)(Xk − ti)2 + di

2(2(Xk − ti))
δ(Xk − ti)

δdi

)
(E.12)
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δci
δdi

=
1

2ci

(
(2di)(Xk − ti)2 + di

2(2(Xk − ti))
δ(Xk − ti)

δdi

)
(E.13)

The term Xk − ti does not depend on di so the equation turns into the following:

δci
δdi

=
1

2ci

(
(2di)(Xk − ti)2

)
(E.14)

Finally, the following is obtained after clearing the equation:

δci
δdi

=
di(Xk − ti)2

ci
(E.15)

E.2. Derivatives of the Parameters of the Gaussian Deriva-

tive Wavelet

Recall from Eq. 4.12 that the Gaussian Derivative wavelet function is defined by the following

equation ψ(ci) = −cie−
1
2
ci

2
.

E.2.1. Gaussian Derivative Translation Parameter Derivative

The derivative of the translation parameter δψ(ci)
δti

for the Gaussian Derivative wavelet (i.e. ti
′)

is defined by:

δψ(ci)

δti
=
−δcie−

1
2
ci

2

δti
(E.16)

Eqs. E.17 - E.20 are obtained by using the chain rule.

δψ(ci)

δti
= −(

δci
δti

e−
1
2
ci

2

+ ci
δe−

1
2
ci

2

δti
) (E.17)



E.2. Derivatives of the Parameters of the Gaussian Derivative Wavelet 121

δψ(ci)

δti
= −(

δci
δti

e−
1
2
ci

2

+ cie
− 1

2
ci

2−δ 12ci
2

δti
) (E.18)

δψ(ci)

δti
= −(

δci
δti

e−
1
2
ci

2

+ cie
− 1

2
ci

2 · −ci ·
δci
δti

) (E.19)

δψ(ci)

δti
= −(

−di2(Xk − ti)
ci

e−
1
2
ci

2

+ cie
− 1

2
ci

2 · (−ci) ·
−di2(Xk − ti)

ci
) (E.20)

The following is obtained after solving the sign multiplications.

δψ(ci)

δti
=
di

2(Xk − ti)
ci

e−
1
2
ci

2 − cie−
1
2
ci

2

(di
2(Xk − ti)) (E.21)

Finally, the following is obtained after clearing the equation:

δψ(ci)

δti
= e−

1
2
ci

2 · di2(Xk − ti) ·
( 1

ci
− ci

)
(E.22)

E.2.2. Gaussian Derivative Dilation Parameter Derivative

The derivative of the dilation parameter δψ(ci)
δdi

for the Gaussian Derivative wavelet (i.e. di
′) is

defined by:

δψ(ci)

δdi
=
−δcie−

1
2
ci

2

δdi
(E.23)

This equation has already been solved in Eq. E.19, leaving the following:

δψ(ci)

δdi
= −(

δci
δdi

e−
1
2
ci

2

+ cie
− 1

2
ci

2 · −ci
δci
δdi

) (E.24)
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The derivative of δci
δdi

was already calculated in Eq. E.15, so Eq. E.24 can be rewritten as

follows:

δψ(ci)

δdi
= −

(di(Xk − ti)2

ci
e−

1
2
ci

2

+ cie
− 1

2
ci

2

(−ci)
di(Xk − ti)2

ci

)
(E.25)

The next is obtained after solving the divisions of the last term.

δψ(ci)

δdi
= −

(di(Xk − ti)2

ci
e−

1
2
ci

2 − cie−
1
2
ci

2

di(Xk − ti)2
)

(E.26)

The following is obtained after solving the sign multiplications.

δψ(ci)

δdi
= −di(Xk − ti)2

ci
e−

1
2
ci

2

+ cie
− 1

2
ci

2

di(Xk − ti)2 (E.27)

The next can be obtained by substituting the term cie
− 1

2
ci

2
by −ψ(ci)

δψ(ci)

δdi
= −di(Xk − ti)2

ci
e−

1
2
ci

2 − ψ(ci) · di(Xk − ti)2 (E.28)

Finally, the following is obtained after clearing the equation:

δψ(ci)

δdi
= −di(Xk − ti)2 ·

( 1

ci
e−

1
2
ci

2

+ ψ(ci)
)

(E.29)

E.3. Derivatives of the Parameters of the Morlet Wavelet

Recall from Eq. 4.13 that the Morlet wavelet function is defined by the following equation

ψ(ci) = e−
1
2
ci

2
cos(5ci).
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E.3.1. Morlet Translation Parameter Derivative

The derivative of the translation parameter δψ(ci)
δti

for the Morlet wavelet (i.e. ti
′) is defined by:

δψ(ci)

δti
=
δ
(
e−

1
2
ci

2 · cos(5ci)
)

δti
(E.30)

Eqs. E.31 - E.33 are obtained by using the chain rule.

δψ(ci)

δti
=
δe−

1
2
ci

2

δti
· cos(5ci) + e−

1
2
ci

2 ·
δ
(
cos(5ci)

)
δti

(E.31)

δψ(ci)

δti
= (e−

1
2
ci

2

) ·
−δ 1

2
ci

2

δti
· cos(5ci) + e−

1
2
ci

2 ·
(
− sen(5ci)

)
· δ5ci
δti

(E.32)

δψ(ci)

δti
= (e−

1
2
ci

2

) · (−ci) ·
δci
δti
· cos(5ci) + e−

1
2
ci

2 ·
(
− sen(5ci)

)
· δ5ci
δti

(E.33)

The derivative of δci
δti

was already calculated in Eq. E.7, so Eq. E.33 can be rewritten as:

δψ(ci)

δti
= (−cie−

1
2
ci

2

) · cos(5ci) · (−
di

2(Xk − ti)
ci

) + e−
1
2
ci

2 ·
(
− sen(5ci)

)
· 5(−di

2(Xk − ti)
ci

)

(E.34)

The next can be obtained after clearing the equation and applying the sign multiplications

that correspond.

δψ(ci)

δti
= (e−

1
2
ci

2

) · cos(5ci) ·
(
di

2(Xk − ti)
)

+ e−
1
2
ci

2 ·
(
sen(5ci)

)
· 5(
di

2(Xk − ti)
ci

) (E.35)
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The term (e−
1
2
ci

2
) · cos(5ci) can be substituted by ψ(ci) as follows:

δψ(ci)

δti
= ψ(ci) ·

(
di

2(Xk − ti)
)

+ e−
1
2
ci

2 ·
(
sen(5ci)

)
· 5(
di

2(Xk − ti)
ci

) (E.36)

Finally, the following is obtained after clearing the equation:

δψ(ci)

δti
= di

2(Xk − ti) ·
(
ψ(ci) +

5

ci
e−

1
2
ci

2 · sen(5ci)
)

(E.37)

E.3.2. Morlet Dilation Parameter Derivative

The derivative of the dilation parameter δψ(ci)
δdi

for the Morlet wavelet (i.e. di
′) is defined by:

δψ(ci)

δdi
=
δ
(
e−

1
2
ci

2 · cos(5ci)
)

δdi
(E.38)

This has already been solved in Eq. E.33, so Eq. E.38 can be rewritten as follows:

δψ(ci)

δdi
= (e−

1
2
ci

2

) · (−ci) ·
δci
δdi
· cos(5ci) + e−

1
2
ci

2 ·
(
− sen(5ci)

)
· δ5ci
δdi

(E.39)

The derivative of δci
δdi

was already calculated in Eq. E.15.

δψ(ci)

δdi
= (e−

1
2
ci

2

)·(−ci)·
di(Xk − ti)2

ci
·cos(5ci)+e−

1
2
ci

2 ·
(
−sen(5ci)

)
·5(
di(Xk − ti)2

ci
)
)

(E.40)

The next can be obtained after clearing the equation.

δψ(ci)

δdi
= −di(Xk− ti)2) · (e−

1
2
ci

2

) · cos(5ci) + e−
1
2
ci

2 ·
(
− sen(5ci)

)
· 5(
di(Xk − ti)2

ci
)
)

(E.41)
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The term (e−
1
2
ci

2
) · cos(5ci) can be substituted by ψ(ci) as follows:

δψ(ci)

δdi
= −di(Xk − ti)2 · ψ(ci) +

5

ci
e−

1
2
ci

2 ·
(
sen(5ci)

)
·
(
− di(Xk − ti)2

)
(E.42)

Finally, the following is obtained after clearing the equation:

δψ(ci)

δdi
= −di(Xk − ti)2 ·

(
ψ(ci) +

5

ci
e−

1
2
ci

2 · sen(5ci)
)

(E.43)

E.4. Derivatives of the Parameters of the Mexican Hat

Wavelet

Recall from Eq. 4.14 that the Mexican Hat wavelet function is defined by the following equation

ψ(ci) = 2

π
1
4
√
3
(1− ci2)e−

1
2
ci

2
.

E.4.1. Translation Parameter Derivative

The derivative of the translation parameter δψ(ci)
δti

for the Mexican Hat wavelet (i.e. ti
′) is

defined by:

δψ(ci)

δti
=
δ
(

2

π
1
4
√
3
(1− ci2)e−

1
2
ci

2)
δti

(E.44)

Eqs. E.45 - E.47 are obtained by using the chain rule.

δψ(ci)

δti
=

2

π
1
4

√
3

(δ(1− ci2)
δti

· e−
1
2
ci

2

+ (1− ci2) ·
δ(e−

1
2
ci

2
)

δti

)
(E.45)
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δψ(ci)

δti
=

2

π
1
4

√
3

(
− 2ci ·

δci
δti
· e−

1
2
ci

2

+ (1− ci2) · (e−
1
2
ci

2

) ·
δ(−1

2
ci

2)

δti

)
(E.46)

δψ(ci)

δti
=

2

π
1
4

√
3

(
− 2ci ·

δci
δti
· e−

1
2
ci

2

+ (1− ci2) · (e−
1
2
ci

2

) · (−ci) ·
δci
δti

)
(E.47)

The derivative of δci
δti

was already calculated in Eq. E.7, so Eq. E.47 can be rewritten as:

δψ(ci)

δti
=

2

π
1
4

√
3

(
−2ci ·

(
−di

2(Xk − ti)
ci

)
·e−

1
2
ci

2

+(1−ci2)·(e−
1
2
ci

2

)·(−ci)·
(
−di

2(Xk − ti)
ci

))
(E.48)

Clearing the equation results in the following:

δψ(ci)

δti
=

2

π
1
4

√
3

(
2(di

2(Xk − ti)) · e−
1
2
ci

2

+ (1− ci2) · (e−
1
2
ci

2

) · (di2(Xk − ti))
)

(E.49)

Relocating some terms gives the following expression:

δψ(ci)

δti
= (di

2(Xk − ti))

(
4

π
1
4

√
3
· e−

1
2
ci

2

+ (
2

π
1
4

√
3

) · (1− ci2) · (e−
1
2
ci

2

)

)
(E.50)

Finally, the following is obtained after clearing the equation and substituting ( 2

π
1
4
√
3
) · (1 −

ci
2) · (e− 1

2
ci

2
) by ψ(ci).

δψ(ci)

δti
= (di

2(Xk − ti))

(
4

π
1
4

√
3
· e−

1
2
ci

2

+ ψ(ci)

)
(E.51)
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E.4.2. Dilation Parameter Derivative

The derivative of the dilation parameter δψ(ci)
δdi

for the Mexican Hat wavelet (i.e. di
′) is defined

by:

δψ(ci)

δdi
=
δ
(

2

π
1
4
√
3
(1− ci2)e−

1
2
ci

2)
δdi

(E.52)

This has already been solved in Eq. E.47, so Eq. E.52 can be rewritten as follows:

δψ(ci)

δdi
=

2

π
1
4

√
3

(
− 2ci ·

δci
δdi
· e−

1
2
ci

2

+ (1− ci2) · (e−
1
2
ci

2

) · (−ci) ·
δci
δdi

)
(E.53)

The derivative of δci
δdi

was already calculated in Eq. E.15, so Eq. E.53 can be expressed as

follows:

δψ(ci)

δdi
=

2

π
1
4

√
3

(
− 2ci ·

(di(Xk − ti)2

ci

)
· e−

1
2
ci

2

+ (1− ci2) · (e−
1
2
ci

2

) · (−ci) ·
(di(Xk − ti)2

ci

))
(E.54)

The equation can be cleared as it is done in the next two equations.

δψ(ci)

δdi
=

2

π
1
4

√
3

(
− 2
(
di(Xk − ti)2

)
· e−

1
2
ci

2

+ (1− ci2) · (−e−
1
2
ci

2

) ·
(
di(Xk − ti)2

))
(E.55)

δψ(ci)

δdi
=
(
di(Xk − ti)2

)(
− 4

π
1
4

√
3
· (e−

1
2
ci

2

)− (
2

π
1
4

√
3

) · (1− ci2) · (e−
1
2
ci

2

)
)

(E.56)

The following equation is obtained after substituting the term ( 2

π
1
4
√
3
) · (1− ci2) · (e−

1
2
ci

2
) by
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ψ(ci).

δψ(ci)

δdi
=
(
di(Xk − ti)2

)(
− 4

π
1
4

√
3
· (e−

1
2
ci

2

)− ψ(ci)
)

(E.57)

Finally, the following is obtained after clearing the equation:

δψ(ci)

δdi
= −

(
di(Xk − ti)2

)( 4

π
1
4

√
3
· (e−

1
2
ci

2

) + ψ(ci)
)

(E.58)
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