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 In this chapter we will describe five applications which were developed in the context of the EVM. In 

Section 7.1 we will describe the managing of Color 2D-Animations through the EVM. We will see, in Section 7.1.1, 

how starting from this procedure we can develop analogous mechanisms for representing and controlling Color  

3D-Animations. In Section 7.2 we will describe our procedure for comparing color 2-Dimensional images through 

their extrusions to the 5-Dimensional colorspace. In Section 7.3 we will discuss some proposed extensions to the 

paradigm of Image Based Reasoning, originally proposed by Jurisica & Glasgow, by taking in account the 

application presented in Section 7.2 and the adding of an indexing scheme and a new similarity metric both based in 

the nD-EVM. In the Section 7.4 we will discuss some results related to the conversion from voxelizations to our 

specific implementation of nD-EVM when n = 3. Such voxelizations correspond to “real world” 3D datasets taken 

from the MoViBio Research Group [MoViBio06], and the University of Tübingen’s Project VolRen [VolRen06]. 

Finally, in Section 7.5 we will present the application of the nD-EVM and its algorithms in order to propose an 

implementation that provides a solution to the problem of the collision detection between 3D objects under  

Space-Time geometry.  

 

 

7.1. Application 1: Representing Color 2D-Animations through 4D-OPP's and the EVM 
 

 

The procedure described in [Aguilera98] for processing black & white 2D animations can be directly 

extended to control colored frames through a 4D-OPP represented through the EVM. In Section 5.5.3 are given 

some details about the processing of black & white 2D-animations through the EVM. In the Figure 7.1 an example 

of a simple color 2D-animation composed by four frames whose resolution is 9 × 9 pixels is shown. In each frame 

can be identified yellow, red, green and blue regions. We will use this simple animation to exemplify our procedure. 

We will label each colored frame in the animation as fk and m will be the number of such frames.  
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Figure 7.1. Example of a simple color 2D-animation. 

 

 

A color animation can be handled as a 4D-OPP in the following way [Pérez-Aguila03d]: 

a) The red-green-blue components of each pixel will be integrated into a single value. Such value represents the 

red-green-blue components as an integer with 32 bits. Bits 0-7 correspond to the blue value, bits 8-15 

correspond to the green value, bits 16-23 correspond to the red value and bits 24-31 to the alpha (transparency) 

value. Each pixel will now be extruded towards the third dimension where the value integrating its  

red-green-blue components will now be considered as its X3 coordinate (coordinates X1 and X2 correspond to 

the original pixels' coordinates). See Figure 7.2. 
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x  = color3

x1x2

 
Figure 7.2. The 3D space defined for the extrusion of color 2D-pixels. 

 

Let us call xfk to the set composed by the rectangular prisms (the extruded pixels) of each extruded frame fk. 

It is very important to avoid the zero value in the X3 coordinate because a pixel could not be extruded and therefore 

its associated prism (a 3D-OPP) won't be obtained. See in Figure 7.3 the sets of prisms xfk which are the result of the 

extrusion of the frames fk of the animation presented in Figure 7.1. 
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xf3 

 
xf4 

Figure 7.3. The sets of prisms which are the result of the extrusion of the frames of an animation (presented in Figure 7.1). 

 

b) Let prismi be a prism in xfk and npr the number of prisms in that set. Due to all the prisms in xfk are quasi disjoint 

3D-OPP's, we can easily obtain the final 3D-OPP and its respective 3D-EVM of the whole 3D frame by 

computing the regularized union of all the prisms in xfk. Then, according to Corollary 5.9, we have to apply (all 

the vertices in a prismi are extreme): 

3 3
1

( ) ( )
npr

k i k

i

EVM F EVM prism xf
=

= ∈⊗
 

where Fk is the 3D frame (a 3D-OPP) that represents the union of all the prisms in xfk.  

 

In the Figure 7.4 are shown the 3D frames Fk from the animation presented in Figure 7.1. 
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F1  F2  
 

F3  

 

F4  

Figure 7.4. The 3D frames that represent a 2D colored animation (presented in Figure 7.1. Some of their extreme vertices are shown). 

 

c) Let us extrude Fk into the fourth dimension, and thus obtain a 4D hyperprism hyperprismk whose bases are Fk 

and its length is proportional to the time fk is to be displayed. The new fourth dimension will measure and 

represent the time. See in Figure 7.5. 
 

 

x  =color 3 

x 1 x 2 

x  =time 4 

 
Figure 7.5. The process of extrusion of a 3D frame in order to obtain a hyperprism (some of its extreme vertices are shown). 
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d) Let 
1

m

k

k

p hyperprism
=

=∪ , then p is a 4D-OPP that represents the given color 2D-animation. Due to all the m 

hyperprisms are quasi disjoint 4D-OPP's, then the 4D-EVM for p can be obtained by applying: 

 

4 4

1
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k

k

EVM p EVM hyperprism
=

= ⊗
 

 

 

 

In the Figure 7.6 are shown the couplets perpendicular to the axis that represent the time, of the 4D-OPP p 

that represents the animation from Figure 7.1. 

 

 

 

 

 
4

1 ( )pΦ  

 

 
 

 

 

 
4

2 ( )pΦ  

 

 
4

3 ( )pΦ  

 

 
4

4 ( )pΦ  

 

 
4

5 ( )pΦ  

Figure 7.6. The 3D couplets of the 4D-OPP p that represents a color 2D-animation (from Figure 7.1. Their extreme vertices are shown). 

 

 

 

 The Algorithm 7.1 shows the procedure for converting a set of frames in an animation to a 4D-OPP that 

codifies it. Such 4D-OPP is represented through a 4D-EVM. 
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Input:  A sequence of frames associated to a color 2D animation. 

Output: The 4D-EVM corresponding to the polytope that codifies frames in the input animation. 

Procedure GenerateEVM-movie(Movie animation) 

 EVM evmMovie  // The EVM that will store and codify the input animation. 

 EVM Fcurr, Fprev   

 real t   // The amount of time that current processed frame is displayed. 

 Fprev = InitEVM( ) 

for each frame in animation do 

  Frame f = animation.nextFrame( ) 

  t = animation.getDisplayingTime( )   

  // Frame f is extruded towards 3rd dimension and its 3D-EVM is computed. 

  Fcurr = GetEVMfromExtrudedFrame(f) 

  // We perform the Xor between the current and previous 3D frames. 

hvl = MergeXor(Fcurr, Fprev) 
  // Amount of time t associated to frame Fcurr is attached to the current 3D couplet.  

SetCoord(hvl, t) 

// A new 3D couplet is attached to the polytope that codifies the input animation. 

  PutHvl(hvl, evmMovie) 

  Fprev = Fcurr 

 end-of-for 

 return evmMovie 

end-of-procedure 

 
Algorithm 7.1. Codifying a Color 2D-animation through a 4D-OPP and the EVM. 

 

 

 

 

By representing a given color 2D-animation using a 4D-OPP p and its 4D-EVM we have the following 

characteristics [Pérez-Aguila03d]: 

 

 

• The sequence of the projections of sections in p corresponds to the sequence of 3D frames, i.e., ( )4

4 ( )
k k

S p Fπ = . 

 

 

• Computation of 3D frames: From Theorem 5.17 we have that ( ) ( ) ( )4 4 4

4 4 1 4( ) ( ) * ( )
k k k

S p S p pπ π π−= ⊗ Φ . Because p 

is expressed through the EVM then by Corollary 5.8 the 3D-EVM of the frame Fk is computed by 

( ) ( ) ( )( )4

3 3 1 3 4 ( )k k kEVM F EVM F EVM pπ−= ⊗ Φ . 

 

 

• Displaying the 2D colored animation: Each couplet perpendicular to the X3 axis in each 3D frame Fk contains 

the polygons to display. The colors to apply to those polygons are referred through the X3 coordinate that 

contains the integrated red-green-blue components. 
  

 
 

In the Figure 7.7 are presented the sequences of extended faces of the 3D frames Fk for the 2D animation 

presented in Figure 7.1. 
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F1’s 2D couplets 

 

 
F2’s 2D couplets 

 

 
F3’s 2D couplets 

 

 
F4’s 2D couplets 

Figure 7.7. The sequences of extended faces (the polygons to display) of the 3D frames that represent a color 2D-animation (from Figure 7.1). 

 

 The Algorithm 7.2 applies the above ideas in order to extract animation colored 2D frames from a 4D-OPP 

and display them. Basically it extracts the 3D couplets perpendicular to X4-axis and computes the sections that 

correspond to the extrusion to 3D space of the animation’s 2D frames. When the extrusion of a frame is obtained 

then its 2D couplets perpendicular to X3-axis are extracted. Such 2D couplets are the polygons to draw and their 

filling color is assigned according to their common X3 coordinate in the 3D frame. A 2D couplet and its color are 

processed through the procedure Display in the algorithm. 

 
Input: A 4D-EVM p that represents a color 2D-animation.  

Procedure playEVM-movie(EVM p) 

 EVM hvl   // Current 3D couplet in p. 

 EVM Fprev, Fcurr // Previous and current 3D frames in the animation. 

 EVM hvlF  // Current 2D couplet in Fcurr. It contains the polygons to display. 

int color  // The color to apply to the polygons to be displayed.  

Fprev = InitEVM( )  

 hvl = ReadHvl(p) 

 while(Not(EndEVM(p))) 

  Fcurr = GetSection(Fprev, hvl) // We get the next 3D frame. 

  // We proceed to display the current frame in the animation. 

  while(Not(EndEVM(Fcurr))) 

   /* Get the common coordinate of the vertices in the next 2D couplet to be  

extracted. */ 

Color = getCurrentCoord(Fcurr)  

hvlF = ReadHvl(Fcurr) 

   /* Polygons in the 2D couplet are displayed and filled according to  

variable color. */ 

   Display(hvlF, color) 

  end-of-while 

  Fprev = Fcurr 

  hvl = ReadHvl(p)   // Read next 3D couplet. 

 end-of-while 

end-of-procedure 
Algorithm 7.2. Displaying a color 2D-animation represented through a 4D-OPP and the EVM. 
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 The application we implemented (see Figure 7.8) performs the conversion taking from an input MPEG 

codified video some frames according to a time interval established by the user. The resolution of the frames 

corresponds to 320 × 240 pixels.  
 

 
Figure 7.8. The GUI of the application developed for converting color 2D-animations to the 4D-EVM. 

 

The Table 7.1 shows some specific frames of an animation represented through the 4D-EVM. We selected 

the frames in such table according to the distinct takes that the movie sequence contains. Its time length was 79 

seconds. We selected a frame at intervals of 0.15 seconds; therefore our animation had a total of 284 frames. The  

4D-OPP that represented such set of selected frames has 22,208,664 extreme vertices. 
 

 

 
Frame 1 

 
Frame 20 

 
Frame 30 

 
Frame 60 

 

 
Frame 90 

 
Frame 120 

 
Frame 150 

 
Frame 180 

 

 
Frame 210 

 

 

Frame 240 
 

Frame 270 
 

Frame 284 

Table 7.1. A sequence from “Star Wars” used for testing its conversion and codification through the 4D-EVM.  

A total of 22,208,664 extreme vertices were required to codify it. 
 

 The Table 7.2 shows another sequence of colored 2D frames. In this case we considered a movie sequence 

whose time length was 117 seconds. From its corresponding MPEG file we selected 430 frames. A frame was 

extracted from the original movie each 0.15 seconds. The size of the 4D-EVM corresponding to its codification as a 

4D-OPP required 17,175,392 extreme vertices. As can be noted, in the sequence shown in Table 7.1 we required 

22,208,664 extreme vertices for representing 284 animation frames. The reason behind this behavior was yet 

identified in [Aguilera98]: Since ( ) ( ) ( )4 4 4

4 4 1 4( ) ( ) * ( )k k kS p S p pπ π π−= ⊗ Φ  (see Theorem 5.17) then, 
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( ) ( ) ( )( )4

3 3 1 3 4 ( )k k kEVM F EVM F EVM pπ−= ⊗ Φ , i.e., the regions at couplets 4 ( )
k

pΦ  represent the regions of a previous 

frame Fk-1 that need to be modified in order to update it to the following frame Fk. In other words, a couplet 

perpendicular to X4-axis 4 ( )
k

pΦ  only stores the differences between consecutives 3D frames Fk-1 and Fk. The way the 

frames change through time has impact over the number of extreme vertices in the couplets associated to the  

4D-OPP that represents the animation. The exemplified animation from Table 7.1 contains at least seven takes, or 

cuts, in its sequence. The frames between cuts contain slight differences, while frames before and after a cut have 

more considerable visual changes. On the other hand, the animation in Table 7.2 is a sequence where there are no 

cuts. That is, the whole sequence is performed in only one take. Visual differences between frames along time are 

slight; hence, the transition between frames in the second animation is more uniform than transitions between frames 

in the first animation. Another point of impact is the number of colors in the scene. The second animation contains in 

all frames a black background, that is, a constant black region that does not change between frames is always 

present. These situations obviously have impact in the number of extreme vertices. See in Appendix I the 

cardinalities of the sets of extreme vertices in the couplets perpendicular to X4-axis in the referred animations. The 

mean cardinality in the first animation indicates that there are 77,839 extreme vertices per frame; while the mean 

cardinality in the second animation established 39,939 extreme vertices per frame. 
 

 

 
Frame 1 

 
Frame 30 

 
Frame 60 

 
Frame 90 

 

 
Frame 120 

 
Frame 150 

 
Frame 180 

 
Frame 210 

 

 
Frame 240 

 
Frame 270 

 
Frame 300 

 
Frame 330 

 

 
Frame 360 

 
Frame 390 

 
Frame 420 

 
Frame 430 

Table 7.2. A sequence from “Star Wars”. The movie’s well known opening titles sequence was used for testing its conversion and codification 

through the 4D-EVM. A total of 17,175,392 extreme vertices were required to codify it. 
 

7.1.1. Representing Color 3D-Animations through 5D-OPP's and the EVM 
 

The managing of a color 3D-animation’s m frames can be performed in analogous way to the procedure 

described in the above section (we assume that each 3D frame is defined through a voxelization): 

• The red-green-blue components of each voxel are integrated into a single value. Each voxel is extruded towards 

the fourth dimension where the value integrating its red-green-blue components will now be considered as its X4 

coordinate (coordinates X1, X2 and X3 correspond to the original voxels' coordinates). Let us call xfk to the set 

composed by the 4D hyperprisms (the extruded voxels) of each extruded frame fk. 
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• Let pri be a 4D hyperprism in xfk and npr the number of prisms in that set. Since all the hyperprisms in xfk are 

quasi disjoint 4D-OPP's, we can easily obtain the 4D-OPP and its respective extreme vertices of the whole 4D 

frame by computing the regularized union of all the hyperprisms in xfk. Then we have to apply Corollary 5.9: 

4 4
1

( ) ( )
npr

k i k

i

EVM F EVM pr xf
=

= ∈⊗
 

Where Fk is the 4D frame (a 4D-OPP) that represents the union of all the hyperprisms in xfk. 

• Let us extrude Fk into the fifth dimension, and thus obtain a 5D hyperprism hyperprismk whose bases are Fk and 

its length is proportional to the time fk is to be displayed. The new fifth dimension will measure and represent the 

time. 

• Let 
1

m

k

k

p hyperprism
=

=∪ , then p is a 5D-OPP that represents the given color 3D-animation. Since all the m 

hyperprisms are quasi disjoint 5D-OPP's, then the 5D-EVM for p can be obtained by applying: 

5 5

1

( ) ( )
m

k

k

EVM p EVM hyperprism
=

= ⊗
 

• The sequence of sections of p corresponds to the sequence of 4D frames, i.e., ( )5

5 ( )
k k

S p Fπ = . 

• Computation of 4D frames: From Theorem 5.17 we have that ( ) ( ) ( )5 5 5

5 5 1 5
( ) ( ) * ( )

k k k
S p S p pπ π π−= ⊗ Φ  then by 

Corollary 5.8 ( )( )5

4 4 1 4 5( ) ( ) ( )k k kEVM F EVM F EVM pπ−= ⊗ Φ . 

• Displaying the 3D colored animation: Each 3D couplet perpendicular to the X4 axis of each 4D frame Fk 

contains the volumes to display. The colors to apply to those volumes are referred through the X4 coordinate that 

contains the integrated red-green-blue components. 

 

7.2. Application 2: A Procedure for Comparing Color 2-Dimensional Images Through their 
Extrusions to the 5-Dimensional Colorspace 

 

This section presents a procedure for comparing color 2-Dimensional images through their extrusions to the 

5-Dimensional colorspace ([Aguilera05], [Aguilera05b] & [Pérez-Aguila05b]). Some key operations to perform our 

comparison process include the computation of 5D hypervolumes and 5D Boolean operations (intersection and 

union). Finally, it describes an application of the proposed procedure under the context of the comparison and 

classification of a volcano's fumaroles. 

 

The topic related to comparing color 2D-images has been widely considered in several works by proposing 

specific methods to achieve this process, see for example [Huttenlocher93], [Jurisica00] or [Pass96]. In the next 

sections we will describe our proposed method for comparing color 2D-images which can be resumed in the 

following way ([Aguilera05], [Aguilera05b] & [Pérez-Aguila05b]): 

a) Extruding color 2D-images towards the 5D colorspace (Section 7.2.1). 

b) Computing the 5D hypervolumes of the extruded images (Section 7.2.2). 

c) Determining if two color 2D-images are “initially similar” (Section 7.2.3). 

d) Computing the intersection between two extruded images (Section 7.2.4). 

e) Determining if two color 2D-images are similar (Section 7.2.5). 

Section 7.2.6 presents the algorithm to perform the proposed comparison method. And finally Section 7.2.7 

describes a specific application under the context of the classification of a volcano’s fumaroles and some 

considerations to be taken in account for this specific topic. 

 

 Our methodology for comparing images will be described under the context of the EVM in order to show 

the applicability of the model in this type of procedures. 

 

7.2.1. A New Metric Over +
�

 

 

Before going any further we will define a function that has a paramount role in our comparison method. In 

the Theorem 7.1 we will show that such function is in fact a metric over +
� . 

 

 

 



Chapter 7 - Applications 

  

Definition 7.1 [Pérez-Aguila05c]: Let x, y ∈ +
� . Let ρ be the function described as 















=

<−

<−

=

yxif

xyif
x

y

yxif
y

x

yx

0

1

1

),(ρ

 

 

Theorem 7.1 [Pérez-Aguila05c]: Let x, y ∈ +
� . Therefore ρ(x, y) is a metric over +

� . 

Proof:  

Let x, y, z ∈ +
� . See Appendix J for the referred Lemmas and Properties. 

• We will show that ρ(x, y) = ρ(y, x). 

o If x = y ⇒ ρ(x, y) = 0 = ρ(y, x). 

o If x < y ⇒ ρ(x, y) = 1 – x/y = ρ(y, x). 

o If y < x ⇒ ρ(x, y) = 1 – y/x = ρ(y, x). 

∴(∀x, y ∈ +
� )(ρ(x, y) = ρ(y, x)) 

• By Definition 7.1: (∀x ∈ +
� )(ρ(x, x) = 0). 

• By Definition 7.1 if ρ(x, y) = 0 ⇒ x = y. 

• By Property J.1, (∀x, y ∈ +
� )(ρ(x, y) ≥ 0). 

• We will show that ρ(x, z) ≤ ρ(x, y) + ρ(y, z) (Triangle’s inequality): 

o If x = y = z ⇒ ρ(x, z) = 0 ≤ ρ(x, y) + ρ(y, z) = 0 

o If x = z, x ≠ y ⇒ ρ(x, z) = 0 ≤ ρ(x, y) + ρ(y, z) 

o If x = y, x ≠ z ⇒ ρ(x, z) = ρ(y, z) 

o If y = z, x ≠ y ⇒ ρ(x, z) = ρ(x, y) 

o If x < y < z ⇒ By Lemma J.1, ρ(x, z) < ρ(x, y) + ρ(y, z) 

o If x < z < y ⇒ By Lemma J.2, ρ(x, z) < ρ(x, y) + ρ(y, z) 

o If z < x < y ⇒ By Lemma J.3, ρ(x, z) < ρ(x, y) + ρ(y, z) 

o If z < y < x ⇒ By Lemma J.4, ρ(x, z) < ρ(x, y) + ρ(y, z) 

o If y < x < z ⇒ By Lemma J.5, ρ(x, z) < ρ(x, y) + ρ(y, z) 

o If y < z < x ⇒ By Lemma J.6, ρ(x, z) < ρ(x, y) + ρ(y, z) 

∴(∀x, y, z ∈ +
� )(ρ(x, z) ≤ ρ(x, y) + ρ(y, z)) 

∴ ρ is a metric over +
� .           

 

7.2.2. Extruding Color 2D-images Towards the 5D Colorspace 
 

The  color  2D-images  are  extruded  towards  the 5D colorspace: where X1, X2, X3, X4 and X5 coordinates  

correspond to the pixels’ values x1, x2, R (the red component),  G  (the green component) and B (the blue 

component), respectively [Duffin94]. This way the extrusion of each pixel will be a 5D hyperprism hj and m will 

indicate the total number of hyperprisms obtained for a color 2D-image. It is recommended to avoid zero values for 

components R, G and B in order to obtain for each pixel its corresponding 5D hyperprism. 

 

7.2.3. Computing the 5D Hypervolume of the Extruded Images 

 
Let H the set of 5D hyperprisms for a color 2D-image. According to Section 6.6.3, since our extruded pixels 

are quasi-disjoint convex orthogonal polytopes then the 5D Extreme Vertices Model associated to the set H is given 

by:  

5 5 5( ) ( )j j
j

j

EVM H EVM h EVM h
 

= = 
 

⊗∪
 

 

Now, we will compute the total 5D hypervolume HV of this set, i.e. the sum of the 5D hypervolume of each 

one of its hyperprisms [Aguilera05]. Because H is now represented through the EVM then we have that HV can be 

computed through Algorithm 6.5: 

HV = Content(EVM5(H), 5) 
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7.2.4. Determining if Two Color 2D-images are “Initially Similar” 
 

Let EVM5(Ha) and EVM5(Hb) be the associated EVM’s to the corresponding sets of  5D  hyperprisms for 

two color 2D-images a and b with their respective computed 5D hypervolumes HVa and HVb. If we assume that the 

color components R, G and B are inside the range [1, 256] (where 1 indicates the least intensity), then we can expect 

that the hyperprism of a white pixel (R=256, G=256, B=256) will have the maximum 5D hypervolume (in fact 256
3
 

u
5
), while the hyperprism of a black pixel (R=1, G=1, B=1) will have the minimum 5D hypervolume (1

3
 u

5
). If the 

majority of the pixels of an image are dark then its associated 5D hypervolume will be less than the associated 5D 

hypervolume of an image whose pixels are lighter and therefore, both images will have numeric differences related 

with the color of their pixels. These differences can be determined through the computation of the function Qa,b 

between the total hypervolumes  according to: 

, ( , ) ( , )
a b a b a b

Q HV HV HV HVρ=  

Where ρ is the metric we defined in Section 7.2.1. 

 

Let ε1 be an arbitrary value such that 0 ≤ ε1 ≤ 1. Then, we will propose that two images a and b are “initially 

similar” [Aguilera05] (a second comparison will be considered in Section 7.2.6)  if  the  Qa,b of the 5D 

hypervolumes of the corresponding sets Ha and Hb satisfies the inequality (in fact ε1 is an allowed difference): 

Qa,b ≤ ε1 

 

For example, consider the images presented in Figure 7.9 and ε1 = 0.05 (both images have a size of  

320 ×  240 pixels). Then HVa (according to our implementation) is 5,146,844 u
5
 (where u

5
 stands for 5D 

hypercubical units) and HVb is 4,996,787 u
5
. Therefore Qa,b(HVa,HVb) ≈ 0.029 which implies that Qa,b ≤ ε1 and thus 

the images are “initially similar”. 

 

The images from Figure 7.10 were classified, according to our proposed procedure, as not “initially 

similar”. Let ε1=0.05, HVa is equal to 10,742,439 u
5
, HVb is 9,819,038 u

5
 and Qa,b(HVa,HVb) ≈  0.085. Therefore the 

condition Qa,b ≤ ε1 is not fulfilled. 

 

 
Image a 

 
Image b 

Figure 7.9. Two images classified as “initially similar” (see text for details; images obtained from the CENAPRED [Cenapred06]). 

 
 

 
Image a 

 
Image b 

Figure 7.10. Two images classified as not “initially similar” (see text for details; images obtained from the CENAPRED [Cenapred06]). 
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7.2.5. Computing the Intersection Between Two Extruded Images 
 

Now we will compute the intersection between EVM5(Ha) and EVM5(Hb) (the corresponding sets of 5D 

hyperprisms, represented through the EVM, for color 2D-images a and b) which were classified as “initially 

similar”. This process can be achieved by considering a call to Algorithm 6.4 in the following way: 

EVM5(Hc) = EVM5(Ha ∩* Hb) = BooleanOperation(EVM5(Ha), EVM5(Hb), IntersectionOperator, 5) 

 

 As shown above, the final set Hc of hyperprisms hk will correspond to the intersection between the 5D 

colorspace’s extrusions of image a and image b [Pérez-Aguila05b]. In the Figure 7.11 the color 2D-image, that is the 

result of intersecting the 5D colorspace’s extrusions of images presented in Figure 7.9, is shown. 

 

Image a 

∩ 

Image b 

= 

 
Figure 7.11. Computing the intersection between the 5D colorspace’s extrusions of two color 

2D-images “initially similar” (from Figure 7.9; images a and b obtained from the CENAPRED [Cenapred06]). 

  

7.2.6. Determining if Two Color 2D-images are Similar 

 
 We will compute the 5D hypervolume HVc of the set of prisms which are the result of the intersection 

between Ha and Hb (the 5D extrusions of the images being compared). The intersection between Ha and Hb will 

imply that the set of prisms Hc is composed by the 5D hypervolume that is common to Ha and Hb [Aguilera05]. 

Obviously there is 5D hypervolume of Ha not included in Hc and there is 5D hypervolume of Hb not included in Hc. 

We will compute the proportion of the 5D hypervolume that belongs to Ha but not included in Hc by the following 

function [Aguilera05]: 

,
( , )

a c a c
Q HV HVρ=  

 

 In a similar way, the proportion of the 5D hypervolume that belongs to Hb but not included in Hc can be 

computed by: 

,
( , )

b c b c
Q HV HVρ=  

 

 Let εa be an arbitrary assigned value such that 0 ≤ εa ≤ 1.  εa will indicate  the allowed  proportion  of 5D 

hypervolume of Ha that is not included in Hc. In a similar way, let εb be an arbitrary value such that 0 ≤ εb ≤ 1 where 

εb will indicate the allowed proportion of 5D hypervolume of Hb not included in Hc. We will assume that two images 

a and b are similar if their Qa,c and Qb,c satisfy both inequalities [Aguilera05]: 

Qa,c ≤ εa 

Qb,c ≤ εb 

 

For example, consider the images and their intersection presented in Figure 7.11. Since Section 7.2.4, we 

presented that HVa = 5,146,844 u
5
 (u

5
 stands for 5D hypercubical units) and HVb = 4,996,787 u

5
. The 5D 

hypervolume HVc of the intersection between Ha and Hb is 3,744,778 u
5
. Then Qa,c ≈ 0.272 and Qb,c ≈ 0.25. Let 

εa=εb= 0.30, then we have, that through our procedure, both Qa,c ≤ εa and Qb,c ≤ εb are satisfied. Therefore, color 2D 

images a and b in Figure 7.9 are classified as similar.  

 

7.2.7. The Algorithm 

 
The whole proposed procedure (Sections 7.2.2 to 7.2.6) for comparing two color 2D-images can be 

summarized through the Algorithm 7.3. 
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Input:  Two-dimensional color images a and b. 

 The arbitrary value e1 such that 0 ≤ e1 ≤ 1. 

 The arbitrary value ea such that 0 ≤ ea ≤ 1. 

 The arbitrary value eb such that 0 ≤ eb ≤ 1. 
Output: True, if and only if input images a and b are similar. Otherwise, it is returned the false 

value. 

Procedure ImagesAreSimilar(Image a, Image b, real e1, real ea, real eb) 

/* We get the EVM’s associated to the sets of 5D hyperprisms (extruded pixels) for images  

a and b */ 

EVM Ha = getEVMforExtrudedPixelsFromImage(a) 

EVM Hb = getEVMforExtrudedPixelsFromImage(b) 

// We calculate the 5D hypervolumes of the sets of the hyperprisms in Ha and Hb. 

real Hva = Content(Ha, 5)  // Call to Algorithm 6.5. 

real Hvb = Content(Hb, 5)  // Call to Algorithm 6.5. 

// We compute the numeric difference between the 5D hypervolumes of the sets of 

hyperprisms. */ 

real Qab = ρ(Hva, Hvb) 
/* If the numeric difference is less or equal than the allowed difference  

indicated by the input value e1 then the images are “initially similar”. */ 

if(Qab ≤ e1) then 
/* We get the EVM corresponding to the set of 5D hyperprisms which is the intersection 

between the 5D hyperprisms in Ha and Hb. */ 

EVM Hc = BooleanOperation(Ha, Hb, IntersectionOperator, 5) // Call to Algorithm 6.4 

/* It is computed the 5D hypervolume of the intersection between sets of 

hyperprisms Ha and Hb. */ 

real Hvc = Content(Hc, 5) // Call to Algorithm 6.5 

// It is computed the proportion of hypervolume in Ha not included in Hc. 

real Qac = ρ(Hva, Hvc) 
// It is computed the proportion of hypervolume in Hb not included in Hc. 

real Qbc = ρ(Hvb, Hvc) 
/* If both proportions of hypervolume not included in Hc are less or equal  

than the allowed proportion indicated by input values ea and eb then */ 

if((Qac ≤ ea) and (Qbc ≤ eb)) then 
return true // The images are similar. 

end-of-if 

return false // The images are not similar. 

end-of-if 

return false // The images are not “initially similar”. 

end-of-procedure 

Algorithm 7.3. Determining if two images are similar through their extrusions to the 5D colorspace. 

 
 

7.2.8. An Application for Comparing Volcano’s Fumaroles 

 

 
The above proposed method for comparing images has been used in an experimental application related to 

the Popocatépetl volcano (located in the limits of Puebla state in México; and active and under monitoring since 

1997) in order to evaluate its fumaroles ([Pérez-Aguila03d] & [Aguilera05b]). 

 

 

We selected a total of 76 images from CENAPRED archives [Cenapred06] which compose a case base. 

These images represent some of the Popocatépetl volcano fumaroles during the year 2005. The selected images have 

a resolution of 480640 ×  pixels and 24-bits color under the format JPG. The objective of our application is given an 

input image, to obtain a subset of the 76 selected images which are classified as similar to that input image. Four 

inputs are expected from the user (see Figure 7.12): 

• An image which will be compared with those in the case base.  

• The value ε1, i.e. the allowed difference between the 5D hypervolumes of two images. 

• The value εa, i.e. the allowed difference between the extrusion of the input image and the intersection between 

the extrusions of the input image with each one of the stored cases. 

• The value εb, i.e. the allowed difference between a stored case and the intersection between the extrusions of the 

input image with that stored case. 

Given this set of inputs, the system retrieves those similar images of the volcano from the set of stored images. 
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a)     b)   
Figure 7.12. a) The graphical user interface which shows an example with a set of specific inputs and  

the corresponding results provided by the system. b) A retrieved case’s detailed information. 

 

In order to normalize the images in the case base, they were scaled down to a resolution of 320 × 240 pixels 

and segmented through a process of Multilevel Thresholding [Kurmyshev02]. Through this procedure we converted 

each 24-bits color image (with 16,777,216 possible colors or 256 possible values for each one of its color 

components) to a 4,096 colors image (where red, green and blue components have each one only 16 possible values). 

The following is an example of the function of Multilevel Thresholding over one of the color components (where 

g(x,y) is the value of green component for a pixel in (x,y) and G(x,y) is its new assigned value): 

8
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Since we are interested in comparing images by considering only the volcano’s fumaroles, we will try to 

eliminate some “noise” that could have impact on the retrieval process. We will consider the volcano’s silhouette as 

a source of “noise” because it has been observed that some images present that silhouette covered by snow while 

others don’t present that situation and therefore the volcano’s silhouette is visualized as a darker region (For 

example, see Figure 7.13). 

 

a)  b)  
Figure 7.13 Two possible situations related with the visualization of a volcano’s silhouette. a) The silhouette covered by snow.  

b) The silhouette visualized as a dark region (Images obtained from the CENAPRED [Cenapred06]). 

 

As commented in Section 7.2.4, the 5D hypervolume of an extruded lighter (darker) pixel will have a 

greater (lesser) value. The situation related to the silhouette’s visualization is closely linked to the final 5D 

hypervolume of an extruded image, because two images with similar fumaroles could have different silhouettes and 

therefore their total 5D hypervolumes could have important differences that could classify them as not “initially 

similar”. We will eliminate this “noise” by assigning to all our selected images in the cases base (and the input 

image) the same volcano’s silhouette [Pérez-Aguila05b]. This will be performed by computing the union of each one 

of the 76 extruded images with an image (also extruded to 5D colorspace) that contains a completely white volcano’s 

silhouette and a black background (see Figure 7.14). 
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Figure 7.14. The volcano’s silhouette to assign to the images in the case base. 

 

The union of two extruded images can be performed in direct way by considering Algorithm 6.4. Let S be 

the set of 5D hyperprisms that represent the extrusion of the image in Figure 7.14, and let H be the set of 5D 

hyperprisms corresponding to one of the 76 images in our case base. Hence we should to operate them according to 
 

EVM5(H ∪* S) = BooleanOperation(EVM5(S), EVM5(H), UnionOperator, 5) 
 

Independently of the silhouette’s coloration in the original images, the union of them with image of Figure 7.14 will 

assign the white silhouette because all its color components are the highest possible, while the black background of 

Figure 7.14 won’t affect the original images’ background because its color components are the lowest possible (see 

two examples in Figure 7.15). 
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Figure 7.15. Two examples of the assignation of the same volcano’s silhouette by performing the union of images 

 

7.3. Application 3: Incorporating the nD-EVM to Image Based Reasoning 
 

Case Based Reasoning has been used to attack some problems in different domains, such as the diagnosis 

and interpretation of diseases ([Oliver00], [Schmidt95] & [Schmidt99]) or the developing of automated tutors for 

games like chess [Lazzeri96]. In this section we will describe the incorporation of the nD-EVM to Image Based 

Reasoning, a paradigm described by Jurisica & Glasgow, which combines Case Based Reasoning and Image 

Processing and Analysis in order to compare images [Jurisica00]. The combination of those areas arises from the fact 

that not always the information is, according to Jurisica & Glasgow, symbolic; however, sometimes that information 

is associated to multimedia content (images, for example). This section is organized as follows: in Sections 7.3.1, 

7.3.2 and 7.3.3 we will describe Image Based Reasoning’s main aspects and in Section 7.3.4 we will propose some 

extensions to the paradigm by taking in account our nD-EVM. 
 

7.3.1. Images Storing 
 

In [Jurisica00] two ways for storing an image in a case base are defined: 

• Explicit Storing: An image is stored as a bitmap that contains all its associated visual information. 

• Implicit Storing: Only some useful descriptors of the image are stored. For example, by transforming the raster 

image in a vector representation and by selecting only some of its polygons, lines, etc. 
 

7.3.2. Image’s Retrieval 
 

In the images’ domain one of the most important aspects to consider is the selection of the set of the most 

important characteristics in order to determine the similarity between two images and thus to achieve the retrieval 

process. Independently of the process for comparing two images, it is necessary to consider the previous preparation 

that they require. Jurisica & Glasgow summarize that previous preparation by considering the images’ segmentation 

in order to reduce their complexity and to identify some objects in them: 
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• Region Oriented Segmentation: Which is based in the searching of regions with similar coloring. An example is 

the Multilevel Thresholding [Kurmyshev02].  

• Edge Oriented Segmentation: Which is based in the searching of abrupt changes in the coloration that could 

indicate the presence of an edge between two or more objects. 
 

Basically, in [Jurisica00] the comparison between two images is performed by using as similarity metric the 

number of geometric transformations required to make the images equivalent (as commented previously, in  

Section 7.3.4 we will propose an additional metric).  
 

7.3.3. The Process of the Image Based Reasoning 
 

The process followed by an Image Based Reasoner system can be summarized as follows (See Figure 7.16): 

a) Input. An image represented through a bitmap. 

b) Originally in [Jurisica00] a way for indexing is not proposed, therefore all the images in the case base are 

candidates to be similar to the input image. 

c) If the images in the case base are stored explicitly, then each one must be considered for the segmentation 

process; otherwise, only the input image is segmented. 

d) The pair of images (the input one and each image in the case base), both in a vector representation, will be 

compared. The similarity metric proposed in [Jurisica00] has as principle the number of geometric 

transformations applied to the input image in order to make it similar to each one of the images in the case base.  

e) Output: The images in the case base which are similar to the input image. 
 

 
Figure 7.16. A schematic view of an Image Based Reasoner according to Jurisica & Glasgow [Jurisica00]. 

 

7.3.4. New Options for Retrieval in Image Based Reasoning 
 

Now we will propose a second similarity metric: the comparison of images through their extrusions to the 

5D colorspace (Section 7.2). The output of the procedure described in Section 7.2.4 is a set of stored images 

classified as “initially similar” to the input. Since our process requires computing 5D geometric and Boolean 

operations under the 5D-EVM, implicit storing seems to be the most suitable format for image storage. For this 

format we consider the following descriptors (See Section 7.2.3): 

• The EVM of the set of 5D hyperprisms associated with the original image. 

• The total 5D hypervolume of the set of 5D hyperprisms. 
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Jurisica & Glasgow did not propose an indexing scheme associated with the images [Jurisica00]. This 

means that in order to select the most appropriated images stored in the case base it will imply to consider all of 

them. However, our proposed comparison procedure has to verify, as one of its first steps, whether or not two images 

are “initially similar” (see Section 7.2.4). This verification can be achieved by comparing the 5D hypervolumes 

associated to both images. The input image’s 5D hypervolume can be immediately computed after its extrusion to 

the 5D colorspace. Finally, we will select only as candidate cases those that are “initially similar” to the input image. 

See in Figure 7.17 the schematic view of an Image Based Reasoner by considering the proposed options. 
 

 
Figure 7.17. A schematic view of an Image Based Reasoner by considering  

the images’ comparison through their extrusions to 5D colorspace. 

 

7.4. Application 4: Manipulating “Real World” 3D Datasets with the nD-EVM 
 

In this section we will describe some results related to the conversion from voxelizations to our specific 

implementation of nD-EVM when n = 3. Such voxelizations correspond to “real world” datasets taken from the 

MoViBio Research Group [MoViBio06], and the University of Tübingen’s Project VolRen [VolRen06]. As 

commented in the Section 6.6.3, a 3D voxelization is a set of black and white cells where each cell is a convex 

orthogonal polytope. The set of black cells represents an nD-OPP p whose vertices coincide with some of the black 

cells’ vertices. Each of these vertices may be common to (surrounded by) up to 8 black cells. So, according to 

Theorem 5.1, if a vertex is surrounded by an odd number of black cells then it is an Extreme Vertex. Thus, a 3D 

voxelization to the 3D-EVM conversion algorithm is as simple as collecting every vertex that belongs to and odd 

number of cells, and discarding the remaining vertices. The Tables 7.3, 7.4 and 7.5 show the measures we obtained 

when we converted 3D voxelizations, taken from the mentioned research groups, to our implementation of the  

nD-EVM when n = 3. In our measures we take in account the following aspects: 

• Each cell in the source 3D voxelizations has only two possible values: 1 if the (black) cell is occupied, 0 if the 

(white) cell is empty. That is, we will deal with binary voxelizations. 

• The evaluations were performed in a computer with Intel Celeron Processor at 2.40 Ghz and 256 megabytes in 

RAM memory. This equipment was isolated from network connections, virus scanners and utilities for the 

management and maintenance of files. This isolation has the objective of avoiding as possible the execution of 

additional processes that could affect the execution time of our algorithms. 

• The algorithms were implemented using the Java Programming Language under the Software Development Kit 

1.5 provided by Sun Microsystems. 

• As commented in Section 6.1.1 our EVM’s are stored and managed through trie trees. Our implemented 

algorithms consider this aspect. 

• The measured execution times are expressed in seconds. 
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• We report the following execution times: 

o Time for computing the conversion from 3D voxelization to 3D-EVM. 

o Time for computing the content of the 3D-OPP (Section 6.3) expressed under the 3D-EVM. 

o Time for computing the boundary content of the 3D-OPP (Section 6.4) expressed under the 3D-EVM. 

o Time for computing the 2D sections, starting from the 2D couplets (Section 5.5.3) perpendicular to  

X1-axis, of the resulting 3D-OPP. 

The descriptions corresponding to the set of objects being modeled in each voxelization are given in Tables 7.3, 7.4 

and 7.5, as well as the total number of voxels in each representation. 

 

 
Aneurism  

Voxelization size: (256 × 256 × 256) ≡ 16,777,216 voxels 

Description: Rotational computer arm x-ray scan of the 

arteries of the right half of a human head. A 

contrast agent was injected into the blood 

and an aneurism is present. 

EVM size: 265,520 

Time for conversion from  

Voxelization to EVM: 
48.389 s 

Content: 168,948 u3 

Time for computing content: 8.272 s 

Boundary content: 363,000 u2 

Time for computing boundary content: 16.154 s 
 

Time for computing 2D sections: 8.312 s 

Teapot  

Voxelization size: (256 × 256 × 178) ≡ 11,665,408 voxels 

Description: Computed generated teapot. 

EVM size: 302,872 

Time for conversion from  

Voxelization to EVM: 
799.269 s 

Content: 4,932,534 u3 

Time for computing content: 13.479 s 

Boundary content: 841,104 u2 

Time for computing boundary content: 24.415 s 

 
Time for computing 2D sections: 12.488 s 

Bonsai  

Voxelization size: (256 × 256 × 256) ≡ 16,777,216 voxels 

Description: Computed tomography of a bonsai tree. 

EVM size: 641,462 

Time for conversion from  

Voxelization to EVM: 
858.905 s 

Content: 3,412,818 u3 

Time for computing content: 33.709 s 

Boundary content: 2,098,246 u2 

Time for computing boundary content: 71.322 s 

 
Time for computing 2D sections: 36.282 s 

Engine  

Voxelization size: (256 × 256 × 128) ≡ 8,388,608 voxels 

Description: Computed tomography of two cylinders of 

an engine block. 

EVM size: 644,060 

Time for conversion from  

Voxelization to EVM: 
699.145 s 

Content: 5,198,360 u3 

Time for computing content: 30.504 s 

Boundary content: 1,320,558 u2 

Time for computing boundary content: 65.864 s 
 Time for computing 2D sections: 29.944 s 

Table 7.3. Results from the conversion of 3D voxelizations (Aneurism, Teapot, Bonsai and Engine) to the 3D-EVM. 
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Foot  

Voxelization size: (256 × 256 × 256) ≡ 16,777,216 voxels 

Description: Rotation computer arm x-ray scan of a 

human foot. 

EVM size: 658,450 

Time for conversion from  

Voxelization to EVM: 
1,187.187 s 

Content: 4,854,701 u3 

Time for computing content: 26.358 s 

Boundary content: 1,078,416 u2 

Time for computing boundary content: 54.479 s 

 
Time for computing 2D sections: 28.020 s 

Leg of statue  

Voxelization size: (341 × 341 × 93) ≡ 10,814,133 voxels 

Description: Computed tomography of a leg of a 

bronze statue. 

EVM size: 1,604,538 

Time for conversion from  

Voxelization to EVM: 

480.902 s 

Content: 2,499,595 u3 

Time for computing content: 136.847 s 

Boundary content: 3,244,280 u2 

Time for computing boundary content: 367.579 s 

 
Time for computing 2D sections: 130.257 s 

Lobster  

Voxelization size: (301 × 324 × 56) ≡ 5,461,344 voxels 

Description: Computed tomography of a lobster 

contained in a block of resin. 

EVM size: 41,566 

Time for conversion from  

Voxelization to EVM: 

335.722 s 

Content: 3,831,352 u3 

Time for computing content: 0.921 s 

Boundary content: 263,910 u2 

Time for computing boundary content: 1.582 s 

 
Time for computing 2D sections: 0.751 s 

Marschner/Lobb  

Voxelization size: (41 × 41 × 41) ≡ 68,921 voxels 

Description: Simulation of high frequencies where 

99% of the sinusoids are right below the 

Nyquist frequency. 

EVM size: 872 

Time for conversion from  

Voxelization to EVM: 

1.332 s 

Content: 68,637 u3 

Time for computing content: 0.010 s 

Boundary content: 11,070 u2 

Time for computing boundary content: 0.020 s 

 Time for computing 2D sections: 0.001 s 

Neghip  

Voxelization size: (64 × 64 × 64) ≡ 262,144 voxels 

Description: Simulation of the spatial probability 

distribution of the electrons in a high 

potential protein molecule. 

EVM size: 12,998 

Time for conversion from  

Voxelization to EVM: 

5.208 s 

Content: 121,586 u3 

Time for computing content: 0.250 s 

Boundary content: 34,930 u2 

Time for computing boundary content: 0.451 s 

 

Time for computing 2D sections: 0.170 s 

Table 7.4. Results from the conversion of 3D voxelizations (Foot, Leg of statue, Lobster, Marschner/Lobb and Neghip) to the 3D-EVM. 
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Silicium  

Voxelization size: (98 × 34 × 34) ≡ 113,288 voxels 

Description: Simulation of a silicium grid. 

EVM size: 1,164 

Time for conversion from  

Voxelization to EVM: 

1.412 s 

Content: 66,163 u3 

Time for computing content: 0.010 s 

Boundary content: 11,274 u2 

Time for computing boundary content: 0.020 s 
 Time for computing 2D sections: 0.001 s 

Skull  

Voxelization size: (256 × 256 × 256) ≡ 16,777,216 voxels 

Description: Rotational computer arm x-ray scan of a 

human skull. 

EVM size: 1,302,134 

Time for conversion from  

Voxelization to EVM: 
2,626.757 s 

Content: 14,834,427 u3 

Time for computing content: 87.907 s 

Boundary content: 2,656,000 u2 

Time for computing boundary content: 245.873 s 

 

Time for computing 2D sections: 78.723 s 

CSF  

Voxelization size: (256 × 256 × 124) ≡ 8,126,464 voxels 

Description: Dataset corresponding to the  

Cerebro-Spinal-Fluid in a human head. 

EVM size: 86,570 

Time for conversion from  

Voxelization to EVM: 

798.458 s 

Content: 8,115,182 u3 

Time for computing content: 2.293 s 

Boundary content: 323,810 u2 

Time for computing boundary content: 3.395 s 

 
Time for computing 2D sections: 2.283 s 

Table 7.5. Results from the conversion of 3D voxelizations (Silicium, Skull and CSF) to the 3D-EVM. 

 

 

 

 

From Tables 7.3, 7.4 and 7.5 can be observed, in first place, that the processing time for the conversion 

from the 3D voxelizations to the 3D-EVM was the largest from all the considered tasks. In this situation model Skull 

(Table 7.5) required 2,626.757 seconds (almost 45 minutes) for its conversion while, on the other hand, the shortest 

time for conversion corresponds to the model Marschner/Lobb (Table 7.4) with 1.332 seconds. It is interesting to 

observe that the model Skull does not contain the maximum number of extreme vertices in its corresponding EVM. 

The 3D model Leg of Statue (Table 7.4) was represented with 1,604,538 extreme vertices while Skull was 

represented with 1,302,134 extreme vertices, however, Leg of Statue required 480.902 seconds for its conversion to 

the 3D-EVM (approximately 8 minutes). The model Marschner/Lobb has both the lowest number of extreme 

vertices (872) and the lowest processing time for its conversion (1.332 seconds). 
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Now, let p be a 3D-OPP expressed under a voxelization with size (x1Size × x2Size × x3Size) and with 

EVM3(p) as its corresponding EVM. Consider the ratio 

1 2 3

3( ( ))

x Size x Size x Size

Card EVM p

⋅ ⋅  

As can be seen, the idea behind such ratio is to express the number of times the quantity of voxels in the original 

representation of the object p is greater than the number of extreme vertices in its corresponding representation 

through the 3D-EVM. For example, consider model CSF (Table 7.5). Its source voxelization has size  

(256 × 256 × 124) which implies that we require to store 8,126,464 voxels. The 3D-EVM associated to CSF has 

86,570 extreme vertices (see Table 7.5). Hence, our proposed ratio gives us the value 93.87 which implies that the 

number of stored voxels that belong to the original representation of the object is precisely  

93.87 times greater than the number of obtained extreme vertices. The Table 7.6 shows the ratio  

Number-of-voxels/Number-of-Extreme-Vertices for the models described in Tables 7.3, 7.4 and 7.5. According to 

the results we obtained, the number of voxels in the model Lobster is 131.38 times greater than the cardinality of its 

corresponding 3D-EVM. In fact, model Lobster has the largest ratio from our twelve tested models.  On the other 

hand, the model Leg of Statue (Table 7.5) has a number of voxels which is 6.73 times greater than the number of 

extreme vertices required for representing it. The value shared by our ratio depends on the topology and geometry of 

the objects being modeled, but it shows to us the conciseness, related to storing requirements, when we represent 

such objects through the EVM. 

 

 

Object p 
Voxelization Size 

(Number of voxels) 

Card(EVM3(p)) 
(Number of  

extreme vertices) 

1 2 3

3( ( ))

x Size x Size x Size

Card EVM p

⋅ ⋅  

Aneurism 16,777,216 265,520 63.18 

Teapot 11,665,408 302,872 38.51 

Bonsai 16,777,216 641,462 26.15 

Engine 8,388,608 644,060 13.02 

Foot 16,777,216 658,450 25.47 

Leg of Statue 10,814,133 1,604,538 6.73 

Lobster 5,461,344 41,566 131.38 

Marschner/Lobb 68,921 872 79.03 

Neghip 262,144 12,998 20.16 

Silicium 113,288 1,164 97.32 

Skull 16,777,216 1,302,134 12.88 

CSF 8,126,464 86,570 93.87 
Table 7.6. The ratio Number-of-voxels/Number-of-Extreme-Vertices for the 3D voxelizations shown in Tables 7.3, 7.4 and 7.5. 

 

 

The importance behind a “real world” 3D dataset is the information can be obtained about it. As commented 

in the introduction of this section, we computed for each model shown in Tables 7.3, 7.4 and 7.5, through its 

corresponding 3D-EVM, the volume (u
3
), the area of its boundary (u

2
), and its sections. The 3D model Leg of Statue 

(that with the highest number of extreme vertices) required the maximum processing times for computing both its 

volume as the area of its boundary: 136.847 seconds and 367.579 seconds respectively. Conversely, the 3D model 

Marschner/Lobb (that with the lowest number of extreme vertices) required the minimum processing times for 

computing both its volume as the area of its boundary: 0.01 seconds and 0.02 seconds respectively. In the case 

related to the computing of sections, we found again that Leg of Statue required the maximum processing time: 

130.257 seconds. A “tie” was found in the minimum processing time for sections corresponding to 3D models 

Marschner/Lobb and Silicium (Table 7.5): their sections were computed in only one millisecond.  

 

 

Computing sections associated to the 3D models expressed under the 3D-EVM has an essential role in the 

analysis of these 3D datasets. Consider for example the Computed tomography shown in Table 7.7. In this case, we 

show the selected 13 sections from a patient’s head in order to inspect internal regions in his brain. 
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Table 7.7. A computed tomography which shows some sections of a patient’s head. 

 

 

 

 

 

 If our 3D models are represented through the 3D-EVM then, according to the procedures mentioned in 

Section 5.5.3, their sections will describe to us the interior of the modeled objects with the objective to perform the 

appropriate analyses according to the application. The Table 7.8 shows some sections corresponding to the 3D 

model Bonsai originally presented in Table 7.3. The model has a total of 641,462 extreme vertices and the required 

time for processing its 256 sections perpendicular to X1-axis was 36.282 seconds. The Table 7.8 shows 18 of these 

2D sections which allow observing the interior of the original 3D object. The original 3D voxelization has 

incomplete the bowl where the tree stands. Such incompleteness can be observed in the additional perspective of the 

model that we present in Table 7.8 (the perspective used in Table 7.3 does not permit to observe this characteristic). 
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Table 7.8. Visualizing some sections perpendicular to X1-axis of the 3D-OPP Bonsai (Table 7.3) expressed in the 3D-EVM. 
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7.5. Application 5: Collision Detection 
 

 This application was originally proposed in [Zhou91]. It can be considered under our context in the 

following way: If p and q are two (4D polytopes) 3D polyhedra representing the motion of two (solids) polygons 

(See Figure 7.18), then these two (solids) polygons collide if and only if p ∩ q ≠ ∅. Furthermore, if p ∩ q ≠ ∅ then 

the time coordinate values of the intersection indicate the precise range time of the collision.  

 

 
Figure 7.18. Two polyhedra representing the motion of a triangle and a square. In this specific case the intersection  

between such polyhedra is empty which implies that no collision occurred. Picture taken from [Rucker84]. 

 

In this application we will concern to the representation of the motion of an object in 3D space through a 4D 

polytope. Such motion is described by the 4D polytope under the Space-Time geometry: each instant in the motion 

will have associated points of the form (x1, x2, x3, t) where the fourth dimension will be associated to time. We will 

proceed to represent the motion of a 3D-OPP as follows: 

 

1) Let m be the number of instants that describe the motion of an object. Let statek be the state associated to the 

object at the instant tk, 1 ≤ k ≤ m. Each 3D-OPP statek describes the position of the object in 3D space and its 

geometry at the instant tk. For example, Figure 7.19 shows three states associated to the motion of an object at 

three consecutive instants (m = 3). In this specific example, we have that the geometry of the object changes 

along time.  

 
 

 

 

 
 

 
Instant t1: state1 Instant t2: state2 Instant t3: state3 

Figure 7.19. Three states associated to the motion of an object in 3D space (See text for details). 

 

2) Each 3D-OPP statek, 1 ≤ k ≤ m, is extruded towards the fourth dimension and a 4D hyperprism hyperstatek is 

obtained. The bases of hyperstatek are the 3D-OPP statek and its length is proportional to the time that the object 

preserves its current state. Consider for example, in Figure 7.20, the 4D hyperprisms associated to the states 

described in Figure 7.19. In Figure 7.20 can be observed that hyperprism hyperstate3 shows that the object’s 

state at instant t3 is preserved more time than the other two states (represented by hyperstate1 and hyperstate2). 
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hyperstate1 hyperstate2 
 

 
 

hyperstate3 
Figure 7.20. The three 4D hyperprisms associated to the motion of an object in 3D space (See text for details). 

 

3) Let p be defined as 
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Then p is a 4D-OPP that represents the motion of an object in 3D space. If each hyperstatek is described through 

the 4D-EVM then 
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4) Detecting Collisions: Let p and q be two 4D-OPP’s that describe the motion of two objects in the 3D space. We 

assume that p and q were composed under the same time scale and both are expressed through the 4D-EVM. 

Therefore, p and q collide if and only if: 
 

EVM4(p ∩* q) = BooleanOperation(EVM4(p), EVM4(q), IntersectionOperator, 4) ≠ ∅ 
 

Let r be a 4D-OPP resulting from the situation where EVM4(p ∩* q) = EVM4(r) ≠ ∅, that is, r describes the 

intersection between polytopes p and q which at their time describe motion of two objects in 3D space. Because r is 

expressed through the 4D-EVM, then the range time of the collision can be obtained by analyzing the set of np4  

3D-couplets from r which are perpendicular to X4-axis (See Definition 5.14). Because the extreme vertices in 

EVM4(r) that lie in each 3D-couplet of r have a common X4-coordinate, then we will have a set VX4 of distinct  

X4-coordinates present in r (See Definition 5.11). In fact, Card(VX4) = np4. The set VX4 provides us the precise 

range time of the collision between our 3D objects represented through 4D-OPP’s p and q. 
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7.6. Conclusions 
 
 In this chapter we have experienced the modeling of certain applications under the context of the nD-EVM. 

In particular we considered: 

• Classification of Color 2D-Images. 

• Representation and manipulation of Color 2D and 3D Animations. 

• Enhancing Image Based Reasoning. 

• Manipulation of “real world” 3D datasets. 

• Collision detection of 3D objects. 

In each one of these applications we have described the way the algorithms and operations defined under the  

nD-EVM can be applied in order to solve the required tasks by these applications. The concise way those tasks can 

be expressed and performed under the EVM lead us to consider a wide range of additional applications to be 

expressed under our model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


