
Chapter 6 

Algorithms in the nD-EVM  

and their Performance 
  
 

In this chapter we will introduce some basic algorithms that perform operations between nD-OPP’s 

represented through the nD-EVM. We will specify aspects related to their implementation. In [Aguilera98] were 

described a set of primitive algorithms that should be present in a system that implements the nD-EVM. In our case 

we will start from those defined algorithms. It is natural to ask about the performance, or in more detailed words, 

about the time complexity of these algorithms. In this work we will deal with this last topic but from a statistical 

point of view. The bounds we provide will be obtained from experimental data which were obtained according to 

procedures we mention with detail in the corresponding sections. Because our algorithms are recursive on the 

number of dimensions of the input polytopes and in each recursivity level a wide range of situations can be present is 

that a formal analysis for time complexity is above of the scope of this work. We expect our estimations can be 

useful in suggesting an expected result for formal temporal complexity analysis, or well, in providing to the reader 

clues about timings of algorithms when they are implemented. 
 

This chapter is divided in the following sections: Section 6.1 defines the basic algorithms to be considered 

for the manipulation of nD-EVM’s. As commented before, these procedures were originally proposed in 

[Aguilera98] and here we are taking them as stating point. The Section 6.1.1 provides details about the way we are 

storing and implementing EVM’s. Such implementations are essential for the time statistical analysis discussed in 

Sections 6.2 to 6.6  where we describe and test experimentally algorithms for Boolean Operations, computing of nD 

Content and computing of (n-1)D Content of nD-OPP’s represented through the nD-EVM. 

 

6.1. Basic Algorithms for the nD-EVM 
 

 In Section 5.4 we stated that in this work we will assume that the coordinates of extreme vertices in the 

Extreme Vertices Model of an nD-OPP p, EVMn(p) are sorted according to coordinate X1, then to coordinate X2, and 

so on until coordinate Xn. That is, we are considering the only ordering X1…Xi…Xn, 1 < i ≤ n. According to 

Sections 5.2 to 5.6 we can define the following primitive operations which are based in the functions originally 

presented in [Aguilera98] (for 2D and 3D cases) and they consider the ordering previously commented: 
 

 
Output: An empty nD-EVM. 

Procedure InitEVM( ) 

{ Returns the empty set.          } 

 

 
Input:   An (n-1)D-EVM hvl embedded in nD space. 

Input/Output:  An nD-EVM p 
Procedure PutHvl(EVM hvl, EVM p) 

{ Appends an (n-1)D couplet hvl, which is perpendicular to X1-axis, to p.   } 
 

 
Input: An nD-EVM p 
Output: An (n-1)D-EVM embedded in (n-1)D space. 

Procedure ReadHvl(EVM p) 

{ Extracts next (n-1)D couplet perpendicular to X1-axis from p.    } 

 
  
Input:   Two vertices Vb and Ve. 

Input/Output: An nD-EVM p 

Procedure PutBrink(Vertex Vb, Vertex Ve, EVM p) 

{ Appends to an nD-EVM p a brink defined by its Extreme Vertices Vb and Ve.   } 
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Input:   An nD-EVM p 

Output:  Two vertices Vb and Ve. 

Procedure ReadBrink(EVM p) 

{ Reads next brink (or pair of Extreme Vertices) from an nD-EVM p.    } 

 

 
Input:  An nD-EVM p 

Output:  A Boolean. 

Procedure EndEVM(EVM p) 

{ Returns true if the end of p along X1-axis has been reached.    } 

 

 
Input/Output: An (n-1)D-EVM p embedded in (n-1)D space. 

Input:  A coordinate coord of type CoordType 

  (CoordType is the chosen type for the vertex coordinates: Integer or Real) 

Procedure SetCoord(EVM p, CoordType coord) 

{ Sets the X1-coordinate to coord on every vertex of the (n-1)D couplet p.  

For coord = 0, it performs the projection 
1( )pπ .      } 

 

 
Input: An (n-1)D-EVM p embedded in nD space. 
Output: A CoordType (CoordType is the chosen type for the vertex coordinates: Integer or Real) 

Procedure GetCoord(EVM p) 

{ Gets the common X1 coordinate of the (n-1)D couplet p.     } 

 

 
Input:  Two nD-EVM’s p and q. 

Output: An nD-EVM 
Procedure MergeXor(EVM p, EVM q) 

{  Applies the Exclusive OR operation to the vertices of p and q and returns the resulting set. } 

 

 

 Function MergeXor performs an XOR between two nD-EVM’s, that is, it keeps all vertices belonging to 

either EVMn(p) or EVMn(q) and discards any vertex that belongs to both EVMn(p) and EVMn(q). Since the model is 

sorted, this function consists on a simple merging-like algorithm, and therefore, it runs on linear time [Aguilera98]. 

Its complexity is given by O(Card(EVMn(p)) + Card(EVMn(q)) since each vertex from EVMn(p) and EVMn(q) needs 

to be processed just once. Moreover, according to Theorem 5.19, the resulting set corresponds to the regularized 

XOR operation between p and q since  

 

( * ) ( ) ( )n n nEVM p q EVM p EVM q⊗ = ⊗  

 

From the above primitive operations and [Aguilera98], the Algorithms 6.1 and 6.2 may be easily derived. 

 
Input:  An (n-1)D-EVM corresponding to section S. 

 An (n-1)D-EVM corresponding to couplet hvl. 

Output: An (n-1)D-EVM. 
Procedure GetSection(EVM S, EVM hvl) 

 // Returns the projection of the next section of an nD-OPP whose previous section is S. 

 return MergeXor(S, plv) 

end-of-procedure 

 

Algorithm 6.1. Computing ( )1 1( ( ))i

n kEVM S pπ−
 as ( ) ( )1 1 1 1 1( ( )) ( ( ))i i

n k n kEVM S p EVM pπ π− − −⊗ Φ  (by Corollary 5.8). 

 
Input: An (n-1)D-EVM corresponding to section Si. 

 An (n-1)D-EVM corresponding to section Sj. 

Output: An (n-1)D-EVM. 
Procedure GetHvl(EVM Si, EVM Sj) 

 // Returns the projection of the couplet between consecutive sections Si and Sj.  

 return MergeXor(Si, Sj) 

end-of-procedure 

 

Algorithm 6.2. Computing ( ) ( ) ( )1 1 1 1 1 1 1( ( )) ( ( )) ( ( ))i i i

n k n k n k
EVM p EVM S p EVM S pπ π π− − − −Φ = ⊗  (by Corollary 5.7). 
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The Algorithm 6.3 computes the sequence of sections of an nD-OPP p from its nD-EVM using the previous 

functions [Aguilera98]. It sequentially reads the projections of the (n-1)D couplets hvl of the polytope p. Then it 

computes the sequence of sections using function GetSection. Each pair of sections Si and Sj (the previous and next 

sections about the current hvl) is processed by a generic processing procedure (called Process), which performs the 

desired actions upon Si and Sj (Note that some processes may only need one of such sections). 

 
Input: An nD-EVM p. 
Procedure EVM_to_SectionSequence(EVM p) 

 EVM hvl  // Current couplet. 

 EVM Si, Sj // Previous and next sections about hvl. 

 hvl = InitEVM( ) 

Si = InitEVM( ) 

 Sj = InitEVM( )  

 hvl = ReadHvl(p) 

 while(Not(EndEVM(p))) 

  Sj = GetSection(Si, hvl) 

  Process(Si, Sj) 

  Si = Sj 

  hvl = ReadHvl(p)  // Read next couplet. 

 end-of-while 
end-of-procedure 

 
Algorithm 6.3. Computing the sequence of sections from an nD-OPP p represented through the nD-EVM. 

 

6.1.1. About the nD-EVM Implementation 
 

6.1.1.1. The Trie Tree Data Structure 
 

Usually procedures as searching in trees are based in comparisons between the values of their keys. A trie 

tree is a data structure that uses the way the keys are represented, in this case, as sequences of characters or digits, in 

order to guide procedures as searching through the structure. The name of the trie tree, coined by [Friendkin60], was 

assigned because it is contained in “information retrieval”.  

 

A trie tree is an m-ary tree. The order of a trie is determined by the base used to represent the values of its 

keys. For example, if its keys are represented through digits then the base and order is 10; if its keys are represented 

through alphabetical characters then its order is 26. Each node in a trie of order m is, in its original definition by 

[Friendkin60], an array of m pointers. Each element in the arrays corresponds to one of the elements in the base of 

the keys. The position of a pointer in the node determines its corresponding value in the base. The height of a trie is 

determined by the length of its keys. For a node P in the j-th level, in a 10-ary trie, Pi points to a subtree that 

represents to all the values of keys whose j-th digit is i. For example, P4, in the sixth level of a 10-ary trie, points to a 

subtree that represents to all the values of keys whose sixth digit is 4. 

 

Consider the following example of a trie whose keys are numbers in base 4 with four digits. The keys 

introduced in the structure are 1112, 1113, 2210, 3003 and 3102. See the Figure 6.1. The structure is a 4-ary trie and 

also has a height equal to four; each level is given by the position of each digit in the keys.  
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Figure 6.1. A trie tree for storing the keys 1112, 1113, 2210, 3003 and 3102 in base 4. 
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Originally trie trees were proposed as structures for storing file indexes [Loomis89] but they can be used to 

store and represent sets of data. In this later case, each leaf node will contain empty positions that indicate the 

absence of the corresponding value. See in our previous example (Figure 6.1), the character ‘#’ is used to indicate 

the presence of a value in leaf nodes while character ‘/’ indicates the absence of a value or a null pointer in the case 

of nodes in first, second and third levels. 

 

 

Searching in a trie must finish in the leaf nodes. To determine the existence of a key in the structure it is 

required to visit all the levels in the tree. In each level, the ramification to follow is determined by the pertinent digit 

in the key. Hence, the length of a successful searching is determined by the height of the trie, which is based in the 

length of the keys. In our example from Figure 6.1 a successful searching requires to visit four nodes, a value that is 

independent of the number of keys represented by the trie. In the other hand, a non-successful searching finishes 

when one of the digits in the key is not present in the structure. In this case, a non-successful searching can finish in 

any level of the structure. For example, by visiting the root node in our example we can infer that there are no keys 

whose first digit is zero. 

 

 

The insertion of new keys in a trie is a direct process. The correct position in a node for representing a new 

digit is located by direct searching. When the position is located then it is changed from null to pointer, or in the 

second case, the pointer present in that position is followed to access next level in the structure. When a new pointer 

is added then a new leaf node is also added in order to direct a searching to it. Consider for example the adding of the 

key 1320 to our trie from Figure 6.1. In the first level we found that there are yet stored keys with first digit equal to 

one (Figure 6.2.a). In the second level we have that position three in the node is null, hence a new pointer is created 

and a new leaf node in the third level is attached to it (Figure 6.2.b). In the third level obviously all the positions in 

the new node are null, hence, its position two is modified to store a pointer and a new leaf node is added in level 

four. Because this is the last digit in the key then the position zero in the new node is modified to indicate the 

presence of the new value (Figure 6.2.c). 

 

 

 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 0 1 2 3

0 1 2 3 

0 1 2 3 

/

/ / / / / / /

/ / / / / / / / / / / /

# # # # # / / / / / / / / / / /

1st digit

2nd digit

3th digit

4th digit

key

/

 

 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

/

/ / / / / / /

/ / / / / / / / / / / / / / /

# # # # # / / / / / / / / / / / 

1st digit

2nd digit

3th digit

4th digit

key

/

 
a) b) 

 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

0 1 2 3 

/

/ / / / / / / 

/ / / / / / / / / / / / / / / 

# # # # # / / / / / / / / / / / / / /

1st digit

2nd digit

3th digit

4th digit

key

# 
 

c) 

Figure 6.2. Inserting the key 1320 in the trie tree from Figure 6.1. b) Adding a new node in the third level.  

c) Adding the final leaf node in the fourth level. 
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At this point the reader can have detected a problem related to tries’ storage requirements. Consider for 

example the following case: suppose that we have 250 keys with 9 digits each one in base 10. The trie will be a  

10-ary tree with nine levels and potential space for 10
9
 keys, but we are using only 0.000025% of these potential 

positions. Moreover, it can be observed that in our example from Figure 6.2.c we have positions in the node pointing 

to null or with absent values. In this sense, a solution, provided originally in [Maly76], propose to consider each node 

in the structure not as an array but as a sorted linked list. The elements in such linked lists contain three fields: 

 

 

• One field contains the value of the key in the corresponding level. 

• A pointer to the next element in the list in the same level. 

• A pointer to the following level. 

 

 

In this case the structure contains only the values of the keys that it has stored. There is no space reserved, as in Fi-

gures 6.1 and 6.2, for potential new keys. If a new key is stored then only the required elements in each level are 

added. By applying this idea we have the trie presented in Figure 6.2.c has now the structure shown in Figure 6.3. 
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Figure 6.3. The trie tree from Figure 6.2.c by considering the ignoring of empty nodes and null pointers. 

 

 

 With the above modification, searching and adding of keys is slightly modified. It is preserved that 

searching and adding is computed in constant time which depends on the number of the length of its keys [Maly76]. 

It is important to recall that this bound for time is valid if the length of the keys is constant [Bodon04]. This approach 

for trie trees reduces the storage requirements by using only the necessary pointers.  

 

 

6.1.1.2. Representing an nD-EVM in a Trie Tree 

 

 

 An Extreme Vertex can be seen as a key with length n. Each one of its coordinates in this case corresponds 

to each one of its “digits”. The base of the keys is given by the number of distinct coordinates present in the  

nD-EVM where such vertex is contained. Consider for example the set of extreme vertices in a 4D unit hypercube c. 

Because we are considering, as stated in Chapter 5, that the coordinates of vertices are sorted according to 

coordinate X1, then to coordinate X2, and so on until coordinate X4, hence we have: 

 

 

EVM4(c)  = {(0,0,0,0), (0,0,0,1), (0,0,1,0), (0,0,1,1), (0,1,0,0), (0,1,0,1), (0,1,1,0), (0,1,1,1),  

  (1,0,0,0), (1,0,0,1), (1,0,1,0), (1,0,1,1), (1,1,0,0), (1,1,0,1), (1,1,1,0), (1,1,1,1)} 

 

 

Therefore, our keys have length n = 4 and the order is given by m = 2 (the number of distinct coordinates in 

EVM4(c)). Now we will proceed to introduce these points, or “keys”, in a trie tree in such way that each one of its 

nodes stores their corresponding Xi-coordinate, or “digit”. Moreover, that structure have a height given by n = 4 

levels. See Figure 6.4. 
 



Chapter 6 - Algorithms in the nD-EVM and their Performance 

  

 

 

 

 

 

 

 

1

2nd coordinate

0 0 0

1

1 0

1

1 0 0

1

1 0

1

3th coordinate 4th coordinate

/

/

/

/

/

/

/

/

0 0 0

1

1 0

1

1 0 0

1

1 0

1

/

/ 

/ 

/ 

/ 

/ 

/ 

/ 

0

1st coordinate

 
Figure 6.4. The trie tree associated to the EVM of a 4D unit hypercube. 

 

 

 

 

The node 0 in the first level points to a subtree that represents to all the values of extreme vertices whose 

first coordinate, or “digit”, is 0. In a similar way, node 1 in the same level points to the subtree that represents to all 

the values of extreme vertices whose first coordinate is 1. The first of these two referred subtrees contains the 

vertices embedded in the first couplet perpendicular to X1-axis, i.e. 1

1( )cΦ ; while the second subtree contains the 

vertices embedded in the second couplet perpendicular to X1-axis, i.e., 1

2 ( )cΦ .  
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Figure 6.5. Extracting kD couplets from the trie tree associated to the EVM in a 4D unit hypercube.  

a) Extracting the projection of a 3D couplet. b) Extracting the projection of a 2D couplet. c) Extracting a brink. 
 

In Chapter 5 we commented that in fact the couplets are themselves  

(n-1)D-OPP’s, 3D-OPP’s in this case, embedded in 4D space. By applying the projection operator π1 we get the 

projection of such couplet in a 3D hyperplane perpendicular to X1-axis, hence π1( 1

1( )cΦ ) is a 3D-OPP embedded in 

3D space and obviously its points contain three coordinates. The 3D-OPP π1( 1

1( )cΦ ) is present in the trie tree from 

Figure 6.4. Consider again node 0 in the trie’s first level. We commented before that such node points to the subtree 

that contains those extreme vertices whose first coordinate is zero. The operation π1( 1

1( )cΦ ) suppress precisely that 

coordinate, hence, by extracting the subtree associated to node 0 first level we get the set of extreme vertices 

associated to π1( 1

1( )cΦ ). Such extracted subtree is now a trie with height 3 (See Figure 6.5). 

 

 At this point it is clear that the above procedure of extraction of a subtree leads to a process where at the 

same time it is possible to extract the projection of the couplets from π1( 1

1( )cΦ ). This process can descend until we 

extract subtries with one level which corresponds to extreme vertices associated to brinks. At this point, a trie 

represents the EVM of a 1D-OPP’s and its structure corresponds to a simple connected linked list. 
 

 Trie trees as a way for representing nD-EVM’s provide us an immediate access to couplets as shown in the 

previous example. In fact, according to the operation to perform, a copy of an extracted subtrie could be not 

necessary and only a pointer to the root of the subtrie would be sufficient. In this sense, algorithms PutHvl 

(appending an couplet), ReadHvl (extracting an couplet), PutBrink (adding a brink) and ReadBrink (extracting a 

brink) which were presented in Section 6.1 can be implemented taking in account this tree structure. At this point is 

important to mention that the way trie trees represent EVM’s, and their vertices, was previously identified by 

[Aguilera98] in the context of data compression schemes for EVM in 3D space. 
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 To perform the Regularized Xor Boolean operation according to Theorem 5.19, that is, 

( * ) ( ) ( )n n nEVM p q EVM p EVM q⊗ = ⊗ , by assuming that our nD-EVM’s are stored in trie trees we can proceed as 

follows: 

 

 

 

• Copy the trie tree associated to EVMn(p). Such copy trie at the end of the process will correspond to the trie 

associated to ( * )
n

EVM p q⊗ . 

• Perform a Depth First Search in the trie tree associated to EVMn(q): 

o When a leaf node is reached we have identified the coordinates of one of the points in EVMn(q). This point 

is searched in the trie associated to ( * )
n

EVM p q⊗ . If it is not present then it is added to the structure, 

otherwise it is removed from the trie corresponding to ( * )
n

EVM p q⊗ . 

 

 

 

Because the length of our keys is constant, then as mentioned before, searching, adding and deleting a vertex is 

performed in constant time. Hence, procedure MergeXor, mentioned in Section 6.1, can be implemented assuming 

EVM’s are stored through trie trees and its execution time will preserve its linearity. 

 

 

 

Consider for example the 3D-OPP’s p and q presented in the Figures 6.6.a and b with their respective 

EVM’s stored through trie trees of height 3 which are shown in Figures 6.6.c and d. The common points to both 

EVM’s will not be present in the result of Xor operation between p and q. Such common vertices are shown in the 

trie trees. After performing Xor operation according to the procedure we have described we obtain the 3D-OPP 

corresponding to 
3( * )EVM p q⊗ . Such OPP and its trie tree are shown in Figure 6.7. 
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Figure 6.6. Two 3D-OPP’s (a and b) and their associated trie trees which store their corresponding EVM’s (c and d).  

The dotted lines indicates common extreme vertices to both OPP’s. 
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Figure 6.7. a) The 3D-OPP corresponding to 
3( * )EVM p q⊗  in Figure 6.6. b) Its associated trie tree. 

 

Following sections in this chapter will describe algorithms under the nD-EVM and we will analyze from a 

statistical point of view their execution time. The implementations of those procedures are based in the fact that the 

EVM’s are stored using trie trees and the procedures described in this section. 
 

6.2. The Boolean Operations Algorithm for the nD-EVM 
 

 This section describes the algorithm originally presented in [Aguilera98] for performing regularized 

Boolean operations. Let p and q be two nD-OPP’s represented through the nD-EVM, and let op* be a Boolean 

operator in {∪*, ∩*, -*, ⊗*}. The algorithm computes the resulting nD-OPP r = p op* q, and it is based on 

Theorem 5.20. Note that r = p ⊗* q can also be trivially performed using Theorem 5.19. The idea behind this 

algorithm is the following [Aguilera98]:  

 

• The sequence of sections from p and q, perpendicular to Xi-axis, can be obtained first, based in Theorem 5.17.  

• Then, according to Corollary 5.6, every section of r can recursively be computed as ( ) ( ) * ( )
i i i

k k kS r S p op S q= . 

• Finally, r can be obtained from its sequence of sections, perpendicular to Xi-axis, according to Theorem 5.16.   

 

Nevertheless, Algorithm 6.4 does not work in this sequential form. It actually works in a wholly merged form in 

which it only needs to store one section for each of the operands p and q, and two consecutive sections for the result 

r. It also considers a unified grid partition 
1( | )part p q  for both operands (See Section 5.6.1), assuming virtual 

couplets as needed. 
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Input:  The nD-OPP’s p and q represented through the nD-EVM. 

 The number n of dimensions and the Boolean operation op. 

Output: The output nD-OPP r, such that r = p op* q, codified through the nD-EVM. 
Procedure BooleanOperation(EVM p, EVM q, BooleanOperator op, int n) 

 EVM sP, sQ   // Current sections of p and q respectively. 

 EVM hvl   // I/O couplet. 

 boolean fromP, fromQ // flags for the source of the couplet hvl.   

 CoordType coord // the common coordinate of couplets. 

 EVM r, sRprev, sRcurr // nD-OPP r and two of its sections. 

 If(n = 1) then // Basic case 
return BooleanOperation1D(p, q, op) 

 else 

  n = n – 1 

  sP = InitEVM( ) 

  sQ = InitEVM( ) 

  sRcurr = InitEVM( ) 

  NextObject(p, q, coord, fromP, fromQ) 

  While(Not(EndEVM(p)) and Not(EndEVM(q))) 
   If(fromP = true) then 

    hvl = ReadHvl(p) 

    sP = GetSection(sP, hvl) 

   end-of-if 
   If(fromQ = true) then 

    hvl = ReadHvl(q) 

    sQ = GetSection(sQ, hvl) 

   end-of-if 

   sRprev = sRcurr 

   sRcurr = BooleanOperation(sP, sQ, n, op) // Recursive call 

   hvl = GetHvl(sRprev, sRcurr) 

   SetCoord(hvl, coord) 

   PutHvl(hvl, r) 

   NextObject(p, q, coord, fromP, fromQ) 

  end-of-while 

  while(Not(EndEVM(p))) 

   hvl = ReadHvl(p) 

   PutBool(hvl, r, op) 

  end-of-while 
  while(Not(EndEVM(q))) 

   hvl = ReadHvl(q) 

   PutBool(hvl, r, op) 

  end-of-while 
  return r 

 end-of-else 
end-of-procedure 

Algorithm 6.4. Computing Regularized Boolean Operations on the nD-EVM. 
 

We describe some functions not defined in previous section [Aguilera98]: 

• Function BooleanOperation1D performs 1D Boolean operations between p and q that are two 1D-OPP’s. 

• Procedure NextObject considers both input objects p and q and returns the common coord value of the next hvl 

to process, using function GetCoord. It also returns two flags, fromP and fromQ, which signal from which of the 

operands (both inclusive) is the next hvl to come. 

• The main loop of procedure BooleanOperation gets couplets from p and/or q, using function GetSection. These 

sections are recursively processed to compute, according to Corollary 5.6, the corresponding section of r, 

sRcurr. Since two consecutive sections, sRprev and sRcurr, are kept, then the projection of the resulting hvl, is 

obtained by means of function GetHvl and then, it is correctly positioned by procedure SetCoord. 

• When the end of one of the polytopes p or q is reached then the main iteration finishes, and the remaining 

couplets of the other polytope are either appended or not to the resulting polytope depending on the Boolean 

operation considered. Procedure PutBool performs this appending process. 
 

6.2.1. Performance of Boolean Operations under the nD-EVM 
 

6.2.1.1. A Note about the Experimental Complexity Analysis 
 

In the following section we will present results related with execution times for Algorithm 6.4 which 

performs Boolean Operations between two nD-OPP's represented through the nD-EVM. We proceed as follows: 
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• Our testing consider n = 2, 3, 4, 5. 

• For each n we have generated 16,000 random nD-OPP's according to the following procedures: 

o Given two hypervoxelizations representing nD-OPP's g1 and g2 we obtain their respective nD-EVM's 

namely EVMn(g1) and EVMn(g2). According to Theorem 5.1, if a vertex is surrounded by an odd number of 

occupied hypervoxels then it is an Extreme Vertex. Thus, a hypervoxelization to nD-EVM conversion 

consists on collecting every vertex that belongs to and odd number of hypervoxels, and discarding the 

remaining vertices (In Section 6.6 we will deal with detail the topic related to the conversion of the  

nD-EVM from and to other representation schemes). 

o Given the Regularized Boolean Operator op* we perform both g1 op* g2 and EVMn(g1 op* g2) according to 

the methodologies described in Section 2.2.5 and Section 5.6 respectively. 

o Let EVMn(r) be the output given by Algorithm 6.4, i.e., EVMn(r) = EVMn(g1 op* g2). Let r' be the result 

provided by Boolean operation op* between hypervoxelizations of nD-OPP's g1 and g2. As a mechanism for 

controlling possible errors in our implementations we obtain EVMn(r') and verify that all the 16,000 

generated nD-OPP’s satisfied EVMn(r') = EVMn(r). The comparison EVMn(r') = EVMn(r) is not considered 

in the recorded execution times. 

• The considered Boolean operations are Regularized Intersection, Union and Xor. In the case corresponding to 

Xor operation we have tested the same 8,000 pairs of generated nD-OPP’s with the Algorithm MergeXor, 

described in Section 6.1, in order to compare its efficiency with Algorithm 6.4. 

• The units for the time measures presented in Charts 6.1 to 6.11 are given in nanoseconds. 

• The evaluations were performed in a computer with Intel Celeron Processor at 900 Mhz and 256 megabytes in 

RAM memory. This equipment was isolated from network connections, virus scanners and utilities for the 

management and maintenance of files. This isolation has the objective of avoiding as possible the execution of 

additional processes that could affect the execution time of our algorithms. 

• The algorithms were implemented using the Java Programming Language under the Software Development  

Kit 1.5 provided by Sun Microsystems. 

• As commented in Section 6.1.1.2 our EVM’s are stored and managed through trie trees. Our implemented 

algorithms consider this aspect. 

• Once the generation of nD-OPP's has finished and the algorithms were evaluated we proceed with a statistical 

analysis in order to find a trendline of the form t = ax
b
, where x = Card(EVMn(g1)) + Card(EVMn(g2)), that fits 

as good as possible to our measures in order to provide an estimation of the temporal complexity of the 

evaluated algorithms for each value of n. The quality of the approximation curve is assured by computing the R
2
 

value known as the coefficient of determination. It is well known that R
2
 ∈ [0, 1] and it reveals how closely the 

estimated values for the trendline correspond to our time measures [Burden04]. According to the literature, our 

trendlines are most reliable when its R
2
 is at or near 1 [Wackerly01]. 

• In Section 6.2.1.3, and starting from the data presented in Section 6.2.1.2 and their associated trendlines, we 

will propose an approximation surface for temporal complexity of Algorithm 6.4 for each considered Boolean 

operation. Such surface which will be a function of two variables: the number x of Extreme Vertices in the input 

polytopes and the number n of dimensions.  

• The trendlines and their coefficients of determination were computed using software Mathematica version 5.0.1, 

Wolfram Research. Approximation surfaces and their coefficients of determination were determined through 

software TableCurve 3D version 4.0.01, Systat Software. 

 

6.2.1.2. The Time Complexity of the Boolean Operations Algorithm for n = 2, 3, 4, 5:  

An Experimental Analysis 

 

 We start by considering the case n = 2. Our generated 8,000 Card(EVM2(g1)) + Card(EVM2(g2)) have the 

following characteristics: 

• Max(Card(EVM2(g1)) + Card(EVM2(g2))) = 7,580 

• Min(Card(EVM2(g1)) + Card(EVM2(g2))) = 136 

• Mean(Card(EVM2(g1)) + Card(EVM2(g2))) = 4,822.5567 

• Standard_Deviation(Card(EVM2(g1)) + Card(EVM2(g2))) = 1,705.3379 

The Charts 6.1 and 6.2 show the timings of Algorithm 6.4 under Regularized Union, Intersection and Xor. The 

Table 6.1 shows the equations of their associated trendlines. We will discuss our measures at the end of this section. 
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Chart 6.1. Execution times of Algorithm 6.4 under 2D Regularized Union and Intersection. 

 
Chart 6.2. Comparing execution times of Algorithm 6.4 and MergeXor Function under 2D Regularized Xor. 
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Operation n Trendline t = ax
b
 a b R

2 

Union 2 t = 3,920.89x
1.35026

 3,920.89 1.35026 0.9709 

Intersection 2 t = 10,006.7x
1.15994

 10,006.7 1.15994 0.9030 

Xor 2 t = 4,033.48x
1.34649

 4,033.48 1.34649 0.9690 

Xor (MergeXor) 2 t = 20,883.7x
1.08317

 20,883.7 1.08317 0.9839 
Table 6.1. Trendlines approximating the execution times for 2D Regularized Boolean Operations.  

 

 

 

Now considering the case n = 3. Our generated 8,000 Card(EVM3(g1)) + Card(EVM3(g2)) have the 

following characteristics: 

 

 

 

• Max(Card(EVM3(g1)) + Card(EVM3(g2))) = 8,280 

• Min(Card(EVM3(g1)) + Card(EVM3(g2))) = 216 

• Mean(Card(EVM3(g1)) + Card(EVM3(g2))) = 5,599.993 

• Standard_Deviation(Card(EVM3(g1)) + Card(EVM3(g2))) = 1,728.84 

 

 

 

The Charts 6.3 and 6.4 show the timings of Algorithm 6.4 under 3D Regularized Union, Intersection and Xor. The 

Table 6.2 shows the equations of their associated trendlines together with their respective coefficients of 

determination. 
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Chart 6.3. Execution times of Algorithm 6.4 under 3D Regularized Union and Intersection. 

 
Chart 6.4. Comparing execution times of Algorithm 6.4 and MergeXor Function under 3D Regularized Xor. 
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Operation n Trendline t = ax
b
 a b R

2 

Union 3 t = 45,677.9x
1.10379

 45,677.9 1.10379 0.9726 

Intersection 3 t = 24,865.6x
1.11831

 24,865.6 1.11831 0.9426 

Xor 3 t = 49,920.9x
1.09301

 49,920.9 1.09301 0.9706 

Xor (MergeXor) 3 t = 46,208.3x
0.96474

 46,208.3 0.96474 0.9905 
Table 6.2. Trendlines approximating the execution times for 3D Regularized Boolean Operations.  

 

 

 

In the case n = 4 we have that the generated set of 4D-EVM’s has the following values:  

 

 

 

• Max(Card(EVM4(g1)) + Card(EVM4(g2))) = 8,492 

• Min(Card(EVM4(g1)) + Card(EVM4(g2))) = 48 

• Mean(Card(EVM4(g1)) + Card(EVM4(g2))) = 5,792.8812 

• Standard_Deviation(Card(EVM4(g1)) + Card(EVM4(g2))) = 1,783.3989 

 

 

 

The Charts 6.5 and 6.6 show the timings of Algorithm 6.4 under 4D Regularized Union, Intersection and Xor. The 

Table 6.3 shows the equations of their associated trendlines. 
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Chart 6.5. Execution times of Algorithm 6.4 under 4D Regularized Union and Intersection. 

 
Chart 6.6. Comparing execution times of Algorithm 6.4 and MergeXor Function under 4D Regularized Xor. 
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Operation n Trendline y = ax
b
 a b R

2 

Union 4 t = 24,015.4x
1.19194

 24,015.4 1.19194 0.9713 

Intersection 4 t = 4,779.91x
1.32116

 4,779.91 1.32116 0.9374 

Xor 4 t = 24,219.1x
1.19098

 24,219.1 1.19098 0.9714 

Xor (MergeXor) 4 t = 50,677.2x
0.93083

 50,677.2 0.93083 0.9905 
Table 6.3. Trendlines approximating the execution times for 4D Regularized Boolean Operations.  

 

 

 

Finally we consider case n = 5. The generated 8,000 Card(EVM5(g1)) + Card(EVM5(g2)) presents the 

following values: 

 

 

 

• Max(Card(EVM5(g1)) + Card(EVM5(g2))) = 7,592 

• Min(Card(EVM5(g1)) + Card(EVM5(g2))) = 96 

• Mean(Card(EVM5(g1)) + Card(EVM5(g2))) = 4,815.6317 

• Standard_Deviation(Card(EVM5(g1)) + Card(EVM5(g2))) = 1668.1757 

 

 

 

The Charts 6.7 and 6.8 show the timings of Algorithm 6.4 under 5D Regularized Union, Intersection and Xor. The 

Table 6.4 shows the equations of their associated trendlines together with their respective coefficients of 

determination. 
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Chart 6.7. Execution times of Algorithm 6.4 under 5D Regularized Union and Intersection. 

 
Chart 6.8. Comparing execution times of Algorithm 6.4 and MergeXor Function under 5D Regularized Xor. 
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Operation n Trendline y = ax
b
 a b R

2 

Union 5 t = 26,448.5x
1.23598

 26,448.5 1.23598 0.9596 

Intersection 5 t = 13,479.3x
1.24989

 13,479.3 1.24989 0.9002 

Xor 5 t = 38,402.8x
1.19118

 38,402.8 1.19118 0.9659 

Xor (MergeXor) 5 t = 32,990.5x
0.98554

 32,990.5 0.98554 0.9914 
Table 6.4. Trendlines approximating the execution times for 5D Regularized Boolean Operations.  

 

 

 According to the results presented in Charts 6.1 to 6.8 and Tables 6.1 to 6.4 we have the following 

observations: 

• Performing intersections has a lesser cost respect to unions. This phenomenon was previously identified in 

[Aguilera98] for the 3D case. Although both operations are performed by the same algorithm, the way the 

polytopes are processed is distinct. As pointed out by [Aguilera98], Algorithm 6.4 has three processing stages 

labeled as stage A, stage B and stage C (see Figure 6.8). Only one of the two involved nD-OPP’s is present at 

stages A and C, with trivial recursive calls at stage A, and no recursive calls at stage C. If the involved Boolean 

operation is an intersection then the result is empty at those stages, thus almost no work is done at stage A, and 

no work at all is done at stage C. Any way, stage B will deal with both operands, but the recursive calls at this 

stage will also have stages A, B and C. Unions, on the other hand, produce Boolean results at all three stages 

[Aguilera98]. 

• Performing Regularized Xor operation is more efficient by using MergeXor function instead of Algorithm 6.4. 

We have commented previously that MergeXor has a linear complexity execution time because it considers 

extreme vertices in both input polytopes and discards those vertices present in both polytopes, as established in 

Theorem 5.19 (The Table 6.5 also shows this linearity in experimental way). Moreover, execution time of 

MergeXor is not affected by the dimensionality of the input polytopes. As seen in Chart 6.9 we have 2D, 3D, 

4D and 5D-OPP’s with 0 to approximately 9,000 extreme vertices and although its dimensionality is distinct, its 

cardinality is the same. In this same Chart can be observed that execution times of Algorithm 6.4 were always 

greater than those from function MergeXor. 

• The time complexity of Algorithm 6.4 increases according to the dimensionality of the input nD-OPP’s. This 

situation is easy to deduce because the number of recursivity levels depends of the number of dimensions and it 

is visualized in Charts 6.9 to 6.11.  

 

 

 
Figure 6.8. Boolean Operations between two 2D-OPP’s a and b.  

c) The three processing stages (A, B and C) of the Boolean Operations Algorithm (figure taken from [Aguilera98]). 

 

 

n Trendline t = ax
b
 a b R

2 

2 t = 20,883.7x
1.08317

 20,883.7 1.08317 0.9839 

3 t = 46,208.3x
0.96474

 46,208.3 0.96474 0.9905 

4 t = 50,677.2x
0.93083

 50,677.2 0.93083 0.9905 

5 t = 32,990.5x
0.98554

 32,990.5 0.98554 0.9914 
Table 6.5. Showing the linearity of execution time in MergeXor function by experimental way. 
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Chart 6.9. Comparing execution times for Algorithm 6.4 and MergeXor function for nD-OPP’s with n = 2, 3, 4, 5 under Regularized Xor. 

 
Chart 6.10. Comparing execution times for Algorithm 6.4 for nD-OPP’s with n = 2, 3, 4, 5 under Regularized Union. 
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Chart 6.11. Comparing execution times for Algorithm 6.4 for nD-OPP’s with n = 2, 3, 4, 5 under Regularized Intersection. 

 

6.2.1.3. Putting all Together: Providing an Statistical Approximation for Execution Time of Boolean 

Operations Algorithm under the nD-EVM 

 

 According to the results obtained in previous section is natural to expect that execution time of Algorithm 

6.4 depends on two variables: the cardinality x of the nD-EVM’s associated to the input polytopes, and the number n 

of dimensions. Using the measures obtained in previous sections we compute approximation surfaces, i.e., functions 

from 2�  to � , that provide us an estimation of the execution time to expect given the number of extreme vertices 

and the number of dimensions. In Table 6.6 we present approximation surfaces of the form t = ax
b
n

c
 for Intersection 

and Union operations and their respective coefficients of determination; in the case for Xor operation we present a 

function of the form t = ax
b
n

b
 + c (The function t = 4506.37 x

1.1819
n

1.4462
 was also found for Xor operation, however 

its coefficient of determination was 0.8357. We decided to propose an alternative form for this specific case in order 

to provide a more precise estimation). 

 

Operation Approximation Surface a b c R
2 

Intersection t = 4,271.11x
1.1737

n
1.0862

 4,271.11 1.1737 1.0862 0.9234 

Union t = 16,698.63x
1.0821

n
1.0607

 16,698.63 1.0821 1.0607 0.9221 

Xor t = 483.17 x
1.4161

n
1.4161

 + 108,263,080 483.1716 1.4161 108,263,080 0.9260 
Table 6.6. Approximation surfaces for estimating execution times for Boolean operations using Algorithm 6.4.  

 

 In Figure 6.9.a we can visualize in three-dimensional space the approximation surfaces and the way they 

are related between them. The Figure 6.9.b shows another perspective. We have plotted a range of extreme vertices 

from 0 to 10,000 and the number of dimensions from 0 to 10. It can be observed in these figures that surface 

approximating execution time for Intersection operation preserves the property identified before: Its execution time 

is lesser that execution time of Union operation and even Xor operation. 
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a) 

 
b) 
 Union  Intersection  Xor 

Figure 6.9. Plotting approximation surfaces for execution times of Algorithm 6.4 under Regularized Boolean Union, Intersection and Xor,  

0 ≤ Card(EVMn(g1))+Card(EVMn(g2)) ≤ 10,000; 0 ≤ n ≤ 10. 

 

 The next logical step to consider is the prediction of execution times for cases n > 4 under nD-EVM 

Boolean Operations Algorithm. This inference can be made through the approximation surfaces we have presented. 

It is obvious that by fixing the number of dimensions in the equations from Table 6.6 we obtain a function which 

depends of the number of input extreme vertices. In Tables 6.7, 6.8 and 6.9 we present our predictions for executions 

times in the cases with n = 6, 7 by starting from our approximation surfaces. Our tables show both the trendlines 

obtained in Section 6.2.1.2 and the trendlines obtained by fixing n value in the corresponding approximation surface 

for the referred Boolean operation. Moreover, in such cases we show the coefficients of determination showed in 

Section 6.2.1.2 and the coefficients of determination that show how closely the estimated values for the new 

trendlines correspond to our time measures with n = 2, 3, 4, 5. 
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n 
Trendline t = ax

b
 

(Section 6.2.1.2) 
R

2 Trendline t = ax
b
  

(by fixing n in approximation surface) 
R

2
 

2 t = 3,920.89 x
1.35026

 0.9709 t = 34,832.4 x
1.0821

 0.8500 

3 t = 45,677.9 x
1.10379

 0.9726 t = 53,550.5 x
1.0821 

0.9634 

4 t = 24,015.4 x
1.19194

 0.9713 t = 72,658.4 x
1.0821 

0.7679 

5 t = 26,448.5 x
1.23598

 0.9596 t = 92,061.6 x
1.0821 

0.9079 

6   t = 111,717.5 x
1.0821

  

7   t = 131,563.8 x
1.0821

  
Table 6.7. Fixing the n value in surface approximation for Union operation, under Algorithm 6.4, in order to predict trendlines for n > 4. 

 

 

n Trendline t = ax
b
 

(Section 6.2.1.2) 
R

2 Trendline t = ax
b
  

(by fixing n in approximation surface) 
R

2
 

2 t = 10,006.7 x
1.15994

 0.9030 t = 9,068.18 x
1.1737 

0.9028 

3 t = 24,865.6 x
1.11831

 0.9426 t = 14,086.08 x
1.1737 

0.8833 

4 t = 4,779.91 x
1.32116

 0.9374 t = 19,253.01 x
1.1737 

0.8573 

5 t = 13,479.3 x
1.24989

 0.9002 t = 24,533.7 x
1.1737 

0.8861 

6   t = 29,909.9 x
1.1737

  

7   t = 35,362.1 x
1.1737

  
Table 6.8. Fixing the n value in surface approximation for Intersection operation, under Algorithm 6.4, in order to predict trendlines for n > 4. 

 

 

n 
Trendline t = ax

b
 

(Section 6.2.1.2) 
R

2 Trendline t = ax
b
 + c 

(by fixing n in approximation surface) 
R

2
 

2 t = 4,033.48 x
1.34649

 0.9690 t = 1289.4 x
1.4161

 + 108263080 0.72955 

3 t = 49,920.9 x
1.09301

 0.9706 t = 2289.5 x
1.4161

 + 108263080 0.9219 

4 t = 24,219.1 x
1.19098

 0.9714 t = 3440.9 x
1.4161

 + 108263080 0.7379 

5 t = 38,402.8 x
1.19118

 0.9659 t = 4719.6 x
1.4161

 + 108263080 0.9559 

6   t = 6110.1 x
1.4161

 + 108263080  

7   t = 7600.5 x
1.4161

 + 108263080  
Table 6.9. Fixing the n value in surface approximation for Xor operation, under Algorithm 6.4, in order to predict trendlines for n > 4. 

 

 

6.3. Computing the Content of an nD-OPP 
 

 

The 1D content of a segment is its perimeter; the 2D content of a polygon is its area; the 3D content of a 

polyhedron is its volume, and so on. In this section, we will show a procedure to compute the nD content enclosed by 

an nD-OPP. An nD hyperprism is generated by the parallel motion of an (n-1)D polytope; it is bounded by the  

(n-1)D polytope in its initial and final positions and by several (n-1)D hyperprisms [Sommerville58] (a special case 

of an nD hyperprism is an nD unit hypercube generated according to the procedure by Claude Bragdon [Rucker84], 

shown in Figure 6.10). Consider an nD hyperprism Pn whose base is an (n-1)D polytope Pn-1 of content Cn-1. If hn is 

the distance between its bases, i.e. the height of the hyperprism, then its content is given by [Sommerville58]: 

Content(Pn) = Content(Pn-1)⋅hn = Cn-1⋅hn  (Equation 6.1) 

 

 

If is the case where Pn-1 is an (n-1)D hyperprism with height hn-1 generated by the parallel motion of an  

(n-2)D polytope Pn-2 (as the 4D hypercube in Figure 6.10.d) then Cn-1 is given by the expression Cn-1 = Cn-2⋅hn-1 

where Cn-2 is the content of Pn-2. This last expression yields to rewrite Equation 6.1 as: 

Content(Pn) = (Content(Pn-2)⋅hn-1)⋅hn = (Cn-2⋅hn-1)⋅hn 
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c) d) 

Figure 6.10. The Claude Bragdon process for generating the 4D hypercube. a) A 1D segment is generated by the motion of a point along X1-axis. 

b) A 2D square is generated by the motion of a segment along X2-axis. c) A 3D cube is generated by the motion of a square along X3-axis. d) A 

4D hypercube is generated by the motion of a cube along X4-axis. The values h1 to h4 denote the heights of the hyperprisms generated in each step 

of Bragdon’s sequence. 

 

 

 

By considering that each (n-k)D hyperprism Pn-k is generated by the parallel motion of an (n-k-1)D 

hyperprism Pn-k-1, where k = 0, 1, 2, …, n-1 (as the cases of the 3D, 2D and 1D cubes from Figures 6.10.c, b and a 

respectively) then we have that the content of Pn can be computed according to 

 

 

1

1

1
( )

( ) 1
n

n n

h n
Content P

Content P h n−

=
= 

⋅ >

 

 

 

where hn is the height of hyperprism Pn when n > 1. In the basic case where n = 1 we have that the content of a 

segment is given directly by its “height”, i.e., the distance between its two boundary points. 

 

 

 

Now, we will extend the previous idea in order to compute the content of nD space enclosed by an nD-OPP. 

In this case we will consider the partition induced by its Slices. A Slice from an nD-OPP can be seen as a set of one 

or more disjoint nD hyperprisms whose (n-1)D base is the slice’ section. As pointed out in [Aguilera98] the volume 

of a 3D-OPP p can be computed as the sum of the volumes of its 3D slices, where the volume of a ( )
i

kSlice p  is given 

by the product between the content of its respective section ( )i

k
S p  (the 2D base of ( )

i

kSlice p ) and the distance 

between ( )
i

k pΦ  and 
1( )

i

k p+Φ  (the height of the 3D prism ( )
i

kSlice p ). Now let q = ( )i

k
S p . The area of the 2D-OPP q 

(see Figure 6.11 for an example) can be computed as the sum of the areas of its 2D slices, where the area of a 

( )
i

kSlice q  is given by the product between the content of its respective section ( )i

k
S q  (the 1D base of ( )

i

kSlice q ) and the 

distance between ( )
i

k qΦ  and 
1( )

i

k q+Φ  (the height of the “2D prism” ( )
i

kSlice p ). Finally let r = ( )i

k
S q . In the basic case 

the length of the 1D-OPP r is computed as the sum of the lengths of its brinks. 
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 X2 

X1 
 

Figure 6.11. A 2D-OPP q whose area is being computed: The total area of q is the sum of the areas of its slices. The area of 1( )iSlice q  is given by 

the product of the length of its respective section 1( )iS q  and the distance between 1 1

1( ),i iq +Φ Φ . 

 

Let p be an nD-OPP. The nD space enclosed by p, denoted by Content(n)(p), can be computed as the sum of 

the contents of its nD slices: 

( ) ( )
1

( )

1
( 1)

1

( ) 1

( )
( ) ( ), ( ) 1

inp
n i i i

k k k
n

k

Length p n

Content p
Content S p dist p p n

−

+
−

=

=


= 
⋅ Φ Φ >


∑

  (Equation 6.2) 

Where npi is the number of couplets of p perpendicular to Xi-axis; ( )
i

kS p  is the k-th section of the nD-OPP p which is 

perpendicular to Xi-axis and it is between couplets 
1( ), ( )

i i

k kp p+Φ Φ . 

 

 Algorithm 6.5 implements Equation 6.2 in order to compute the content of nD space enclosed by a  

nD-OPP p expressed through the EVM-nD. 
 

Input:  An nD-EVM p. 

 The number n of dimensions. 

Output: The content of nD space enclosed by p. 
Procedure Content(EVM p, int n) 

 real cont = 0.0 // Variable cont will store the content of nD space enclosed by p. 

 EVM hvl1, hvl2  // Couplets between a slice of p. 

 EVM s   // Current section of p. 

if(n = 1) then 

  return Length(p) 

 else 

  n = n – 1 

hvl1 = InitEVM( )  

  hvl2 = InitEVM( ) 

  s = InitEVM( ) 

hvl1 = ReadHvl(p) 

  while(Not(EndEVM(p))) 

   hvl2 = ReadHvl(p) 

   s = GetSection(s, hvl1) 

   cont = cont + Content(s, n) * dist(hvl1, hvl2)  // Recursive Call. 

   hvl1 = hvl2    

  end-of-while 

  return cont 
 end-of-else 

end-of-procedure 

 
Algorithm 6.5. Computing the content of nD space enclosed by p. 

( )1 1

1 2( ), ( )dist q qΦ Φ
( )1 1

2 3( ), ( )dist q qΦ Φ

( )1 1

3 4( ), ( )dist q qΦ Φ

( )1 1

4 5( ), ( )dist q qΦ Φ

1

1( )qΦ

1

2 ( )qΦ

1

3 ( )qΦ

1

4 ( )qΦ 1

5 ( )qΦ

1

3 ( )S q
1

1 ( )S q
1

2 ( )S q

1

4 ( )S q
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6.3.1. Performance of the Algorithm 
 

 We will proceed with a statistical analysis in order to determine execution time of Algorithm 6.5. This 

analysis share some aspects respect to the study described in Section 6.2.1. In this case we will describe only the key 

points related to the analysis to be applied over Algorithm 6.5: 

• Our testing consider n = 2, 3, 4, 5. 

• For each n we have generated 10,000 random nD-OPP's according to the following procedures: 

o Given a hypervoxelization representing nD-OPP's g we obtain their respective nD-EVM, EVMn(g). 

o Let C be the content of nD space enclosed by the polytope represented through EVMn(g). Such content is 

computed through Algorithm 6.5. 

o Let C’ be the content of nD space enclosed by the polytope g represented through a hypervoxelization. Such 

computing is straightforward. 

o As a mechanism for controlling possible errors in our implementations we verified that all the 10,000 

generated nD-OPP’s satisfied C = C’. 

The Table 6.10 shows some information related to our generated data. In Chart 6.12 it can be visualized the 

behavior of Algorithm 6.5 with our set of nD-OPP’s. In the same chart can be also visualized the associated 

trendline for each value of n.  

 

n Max Min Mean Standard Deviation 

2 5,418 0 2,788.999 1,549.5579 

3 5,352 0 3,148.462 1,485.0206 

4 5,464 0 3,210.922 1,488.6948 

5 5,332 0 2,743.690 1,457.3235 
Table 6.10. Some statistical characteristics of the set of 10,000 random nD-OPP’s for testing of Algorithm 6.5. 

 

 
Chart 6.12. Comparing execution times for Algorithm 6.5 for nD-OPP’s with n = 2, 3, 4, 5. 

 

 

 



Chapter 6 - Algorithms in the nD-EVM and their Performance 

  

 

n Trendline t = ax
b
 a b R

2
 

2 t = 9,715.6x
1.0823

 9,715.6 1.0823 0.9844 

3 t = 44,031x
0.9848

 44,031 0.9848 0.9878 

4 t = 49,267x
0.9910

 49,267 0.9910 0.9665 

5 t = 13,955x
1.1469

 13,955 1.1469 0.9479 
Table 6.11. Equations associated to the trendlines that describe execution time of Algorithm 6.5 in the cases with n = 2, 3, 4, 5. 

 

 

 An interesting aspect to be inferred from Table 6.11 yields to make the observation that all the exponents in 

the obtained equations are almost linear. This property is preserved when we determine an approximation surface for 

execution time of Algorithm 6.5. The associated equation, as previously commented in Section 6.2, is a function 

from 2�  to �  which has as arguments the number x of extreme vertices in the input polytope g, i.e.,  

x = Card(EVMn(g)) and the number of dimensions n. According to our analysis we have that the approximation 

surface is given by  

t = 4,763.939 x
1.1894

n
0.8390

 

In this case we have identified a coefficient of determination R
2
 = 0.9803. The Figure 6.12 shows the plotting of the 

above function and shows graphically an estimation of the execution time of Algorithm 6.5 when the number of 

input extreme vertices is from 0 to 10,000 and when the number of dimensions is between 0 and 10. 

 

 
Figure 6.12. Plotting the approximation surface for execution time of Algorithm 6.5, 0 ≤ Card(EVMn(g)) ≤ 10,000; 0 ≤ n ≤ 10. 

 

 

 The prediction of execution time for Algorithm 6.5 based in our approximation surface can be performed 

by fixing the value of n in its associated equation. In this case, we have obtained a good approximation by our 

trendlines presented in Table 6.11 and now by considering the new trendlines obtained from the equation of our 

approximation surface. See Table 6.12 where we present our estimations for execution time of Algorithm 6.5 in the 

cases n = 6, 7. 
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n Trendline t = ax
b
 R

2
 

Trendline t = ax
b
  

(by fixing n in approximation surface) 
R

2
 

2 t = 9,715.6x
1.0823

 0.9844 t = 8521.78 x
1.1894 

0.9702 

3 t = 44,031x
0.9848

 0.9878 t = 11,974.9 x
1.1894

 0.9745 

4 t = 49,267x
0.9910

 0.9665 t = 15,243.8 x
1.1894

 0.9747 

5 t = 13,955x
1.1469

 0.9479 t = 18,382.4 x
1.1894

 0.9785 

6   t = 21,420.8 x
1.1894

  

7   t = 24,378.3 x
1.1894

  
Table 6.12. Fixing the n value in surface approximation for Algorithm 6.5 in order to predict trendlines for n > 4. 

 

6.4. Computing the Content of the Boundary of an nD-OPP 
 

Consider an nD hyperprism Pn whose base is an (n-1)D polytope Pn-1 of (n-1)D content Cn-1. Let hn be the 

distance between its bases, i.e. the height of the hyperprism. Because our nD hyperprism Pn is generated by the 

parallel motion of Pn-1 we have that the intersection between Pn and an (n-1)D hyperplane parallel to Pn-1 always 

generates an (n-1)D polytope P’n-1 with the same characteristics that Pn-1. Computing the (n-2)D content BNn-2 of the 

boundary of P’n-1 implies to compute each one the (n-2)D contents of its boundary elements. By multiplying each 

term in BNn-2 by the height hn of Pn we get the (n-1)D content of each one of the (n-1)D hyperprisms perpendicular to 

the bases of Pn. Trough this reasoning we get the following expression: 

 

BoundaryContent(Pn) = 2⋅Content(Pn-1) + BoundaryContent(Pn-1)⋅hn = 2⋅Cn-1 + BNn-2⋅hn 

 

In analogous way, respect to previous section, we have that this last expression descends recursively in the 

number of dimensions where the basic case is reached when n = 2 where the perimeter (1D content of the boundary) 

of a rectangle P2 is directly computed as the sum of the lengths of its four edges: 

 

2

1 1

( ) 2
( )

2 ( ) ( ) 2
n

n n n

Perimeter P n
BoundaryContent P

Content P BoundaryContent P h n− −

=
= 

⋅ + ⋅ >

 

 

                Now, we will extend the previous idea in order to compute the content of (n-1)D space enclosed by the 

boundary of an nD-OPP. [Aguilera98] points out that the surface of a 3D-OPP p (see Figure 6.13 for an example) 

can be computed as the sum of the areas of its 2D couplets, where the area of a ( )i

k pΦ  is given by ( )2 ( )i

kContent pΦ  

(Equation 6.2). To this sum must be added the sum of the areas of the faces between ( )i

k pΦ  and 
1( )i

k p+Φ . These 

areas are found by the product between the perimeter of the section ( )i

k
S p  and the distance between ( )

i

k pΦ  and 

1( )
i

k p+Φ  (the height of the 3D prism ( )
i

kSlice p ). Now let q = ( )i

k
S p , we have reached the basic case. The perimeter of 

the 2D-OPP q can be computed as [Aguilera98]: 

 

1 2( ) ( ) ( )Perimeter q x Sum q x Sum q= +  

 

where ( )ix Sum q  is the sum of the lengths of all brinks parallel to Xi-axis. 
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X 1 

X 3 

X 2 

 
Figure 6.13. Computing the content of the boundary in a 3D prism: part of the total area is found by computing Content2( 1

1( )pΦ ) and 

Content2( 1

2 ( )pΦ ) through Algorithm 6.5. The area of the remaining four faces is determined through the product of the perimeter of the 

 section 1

1 ( )S p  and the distance between 1

1( )pΦ  and 1

2 ( )pΦ . 

 

Let p be an nD-OPP. The (n-1)D space enclosed by p, denoted by BoundaryContent(n-1)(p), can be computed 

as follows (Equation 6.3): 

 

( ) ( ) ( )

1 2

1
( 1)

1
( 1) ( 1)

1 1

( ) ( ) 2

( )
( ) ( ) ( ), ( ) 2

i inp np
n i i i i

k k k k
n n

k k

x Sum p x Sum p n

BoundaryContent p
Content p BoundaryContent S p dist p p n

−
−

+
− −

= =

+ =


= 
Φ + ⋅ Φ Φ >


∑ ∑

  

 

 Algorithm 6.6 implements Equation 6.3 in order to compute the content of (n-1)D space enclosed by the 

boundary of p expressed through the EVM-nD. 

 
Input:  An nD-EVM p. 

 The number n of dimensions. 

Output: The content of (n-1)D space enclosed by the boundary of p. 
Procedure BoundaryContent(EVM p, int n) 

 real cont = 0.0 // cont stores the content of (n-1)D space enclosed by the boundary of p. 

 EVM hvl1, hvl2  // Couplets between a slice of p. 

 EVM s   // Current section of p. 

hvl1 = InitEVM( )  

 hvl2 = InitEVM( ) 

 s = InitEVM( )  

If(n = 2) then 
 return cont = x1Sum(p) + x2Sum(p)  

 else 

  n = n - 1 

hvl1 = ReadHvl(p) 

  while(Not(EndEVM(p))) 

   hvl2 = ReadHvl(p) 

   s = GetSection(s, hvl1) 

   // Call to algorithm Content and recursive call. 

   cont = cont + Content(hvl1, n) + BoundaryContent(s, n) * dist(hvl1, hvl2) 

   hvl1 = hvl2    

  end-of-while 

  cont = cont + Content(hvl1, n) // hvl1 contains the last couplet of p. 

  return cont 

 end-of-else 

end-of-procedure 

 
Algorithm 6.6. Computing the content of (n-1)D space enclosed by the boundary of p. 

 

 

( )1 1

1 2( ), ( )dist p pΦ Φ

1

1( )pΦ 1

2 ( )pΦ

1

1 ( )S p
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6.4.1. Performance of the Algorithm 
 

 The key points of the statistical analysis for execution time of Algorithm 6.6 are very similar to the analysis 

described in Section 6.3.1: 

• Our testing consider n = 2, 3, 4, 5. 

• For each n we have generated 10,000 random nD-OPP's according to the following procedures: 

o Given a hypervoxelization representing nD-OPP's g we obtain their respective nD-EVM, EVMn(g). 

o Let BC be the content of the boundary of the polytope represented through EVMn(g). Such content is 

computed through Algorithm 6.6. 

o Let BC’ be the content of the boundary enclosed by the polytope g represented through a hypervoxelization. 

Such computing is performed in a straightforward way. 

o As a mechanism for controlling possible errors in our implementations we verified that all the 10,000 

generated nD-OPP’s satisfied BC = BC’. 

The Table 6.13 shows some information related to our generated data. In Chart 6.13 it can be visualized the 

behavior of Algorithm 6.6 with our set of nD-OPP’s. In the same chart can be also visualized the associated 

trendline for each value of n whose associated equations are shown in Table 6.14. 

 

 

n Max Min Mean Standard Deviation 

2 5,442 0 2,789.028 1,549.5244 

3 5,382 0 3,148.203 1484.8637 

4 5,482 0 3,212.393 1,489.3084 

5 5,278 0 2,743.906 1,457.0870 
Table 6.13. Some statistical characteristics of the set of 10,000 random nD-OPP’s for testing of Algorithm 6.6. 

 

 

 
Chart 6.13. Comparing execution times for Algorithm 6.6 for nD-OPP’s with n = 2, 3, 4, 5. 
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n Trendline t = ax
b
 a b R

2 

2 t = 2,034.8x
1.5862

 2,034.8 1.5862 0.9976 

3 t = 69,566x
1.0018

 69,566 1.0018 0.9889 

4 t = 105,588x
0.9867

 105,588 0.9867 0.9571 

5 t = 21,943x
1.1658

 21,943 1.1658 0.9321 
Table 6.14. Equations associated to the trendlines that describe execution time of Algorithm 6.6 in the cases with n = 2, 3, 4, 5. 

 

 As seen in Chart 6.13, and observing equations from trendlines in Table 6.14, execution time of 

Algorithm 6.6 in the 2D case is above execution times of cases with n = 3, 4, 5. We will expose the reasons behind 

this behavior. Consider nD-OPP’s from Figures 6.14.a, d and g. All of them contain 16 extreme vertices. Figure 

6.14.a is a 2D-OPP an according to Algorithm 6.6 it is in the basic case. Due to the ordering we are considering for 

its extreme vertices the lengths of the brinks parallel to X2-axis are directly computed (Figure 6.14.b). In the other 

hand, in order to compute the lengths of the brinks parallel to X1-axis a sorting must be applied (see Figure 6.14.c). 

In the particular case of this 2D-OPP the sorting considers 16 vertices. In the case related to Figure 6.14.d, the  

3D-OPP p, whose 2D couplets perpendicular to X1-axis are shown in Figure 6.14.e, has two sections, perpendicular 

to X1-axis, with 6 extreme vertices in each one (Figure 6.14.f). Those sections reach the basic case of Algorithm 6.6 

and hence two sets of 6 extreme vertices must be sorted. Finally, the 4D hypercube from Figure 6.14.g has one 3D 

section (Figure 6.14.h), and in the 2D case, one section with 4 extreme vertices which are also sorted (Figure 

6.14.i). It is clear that all 2D-OPP’s reach the basic case of Algorithm 6.6 and therefore all its extreme vertices must 

be sorted for computing the lengths of the brinks parallel to X1-axis. According to Chart 6.13, this situation is 

relaxed according the dimensionality increases and execution times in cases for n = 3, 4, 5 increase, but not at the 

same order than 2D case.  
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X2
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X1
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g) h) i) 

Figure 6.14. Three nD-OPP’s with 16 extreme vertices which shown the behavior behind execution time of Algorithm 6.6.  

a) A 2D-OPP, d) a 3D-OPP and g) a 4D hypercube (see text for details). 
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Now we determine an approximation surface for execution time of Algorithm 6.6. The associated equation 

is a function from 2�  to �  which has as arguments the number x of extreme vertices in the input polytope g, i.e.,  

x = Card(EVMn(g)) and the number of dimensions n. According to our analysis the best approximation surface we 

have found is given by  

 

3 2

1454430 12921.02 7196150

0.0212336 0.247936 0.92776 1

n x
t

n n n

+ −
=

− + −
 

 

Whose coefficient of determination is R
2
 = 0.9963. The Figure 6.15 shows the plotting of the above function and 

shows graphically an estimation of the execution time of Algorithm 6.6 when the number of input extreme vertices 

is from 0 to 10,000 and when the number of dimensions is between 2 and 10. 

 

 

 
Figure 6.15. Plot of the approximation surface for execution time of Algorithm 6.6, 0 ≤ Card(EVMn(g)) ≤ 10,000; 2 ≤ n ≤ 10. 

 

 

As shown in previous algorithms, the prediction of execution time for Algorithm 6.6 based in our 

approximation surface can be performed by fixing the value of n in its associated equation. In this case, we have 

obtained the new trendlines presented in Table 6.15 (the second and third columns show trendlines and coefficients 

of determination obtained from the data shown in Chart 6.13). A special mention is given to the new trendline 

obtained for the case n = 2 where we identify a coefficient R
2
 = 0.2875. This situation is present because we consider 

all data for n = 2, 3, 4, 5 when we determined our approximation surface and, moreover, we mentioned before that 

the case n = 2 is special, respect to cases with n > 2, because the behavior of the Algorithm 6.6 in the basic case. See 

Table 6.15 where we present our estimations for execution time of Algorithm 6.6. in the cases n = 6, 7. 

 

 

n Trendline t = ax
b
 R

2 Trendline t = ax
 
+ b  

(by fixing n in approximation surface) 
R

2
 

2 t = 2,034.8 x
1.5862

 0.9976 384,039.59 x – 1.27427×10
8
 0.2875 

3 t = 69,566 x
1.0018

 0.9889 103,232.89 x – 2.26333×10
7
 0.8883 

4 t = 105,588 x
0.9867

 0.9571 125,427.79 x – 1.33809×10
7
 0.8681 

5 t = 21,943 x
1.1658

 0.9321 136,582.83 x + 803,287.66 0.8774 

6   56,840.3 x + 6,732,440   

7   20,555.9 x + 4,748,570  
Table 6.15. Fixing the n value in surface approximation for Algorithm 6.6 in order to predict trendlines for n > 4. 
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6.5. Computing Forward and Backward Differences of an nD-OPP 
 

According to Theorem 5.18, in an nD-OPP p, forward differences ( )
i

kFD p  are the (n-1)D cells on ( )i

k
pΦ  

whose normal vectors point to the positive side of the coordinate axis Xi which is perpendicular to ( )i

k
pΦ , while 

backward differences ( )i

k
BD p  are the (n-1)D cells on ( )i

k
pΦ  whose normal vectors point to the negative side of the 

coordinate axis Xi which is perpendicular to ( )i

k
pΦ . Through Definition 5.25 we have that a forward difference 

( )
i

kFD p  and a backward difference ( )i

k
BD p  are computed according to ( ) ( )( )1

( ) * ( )i i

i k i k
S p S pπ π− −  and 

( ) ( )( )1
( ) * ( )i i

i k i k
S p S pπ π −−  respectively.  Hence, an algorithm for computing forward and backward differences 

consists in obtaining projections of sections of the input polytope and processing them through Definition 5.25 and 

Algorithm 6.4 by computing Regularized difference between two consecutive sections, in order to obtain their 

corresponding forward and backward differences. Algorithm 6.7 implements the above ideas in order to compute the 

forward and backward differences in an nD-OPP p represented through the nD-EVM. The output of the proposed 

algorithm will consist of two sets: the first set FD contains the (n-1)D-EVM’s corresponding to forward differences 

in p, that is FD = ( ) ( ){ }1 1 1
( ) ,..., ( )

i

i i

n n np
EVM FD p EVM FD p− −

; while the second set BD contains the (n-1)D-EVM’s 

corresponding to backward differences in p, i.e. BD = ( ) ( ){ }1 1 1
( ) ,..., ( )

i

i i

n n np
EVM BD p EVM BD p− −

. 

 

Input: An nD-EVM p. 

 The number n of dimensions. 

Output: A set FD containing the (n-1)D-EVM’s of forward differences in p. 

 A set BD containing the (n-1)D-EVM’s of backward differences in p. 

Procedure GetForwardBackwardDifferences(EVM p, int n) 

 FD = ∅  // FD will store (n-1)D-EVM’s corresponding to forward differences. 

 BD = ∅  // BD will store (n-1)D-EVM’s corresponding to backward differences. 

EVM hvl  // Current couplet. 

 EVM Si, Sj // Previous and next sections about hvl. 

 EVM FDcurr // Current forward difference. 

 EVM BDcurr // Current backward difference. 

hvl = InitEVM( ) 

Si = InitEVM( ) 

 Sj = InitEVM( )  

 while(Not(EndEVM(p))) 

hvl = ReadHvl(p)  // Read next couplet. 

Sj = GetSection(Si, hvl) 

  FDcurr = BooleanOperation(Si, Sj, DifferenceOperator, n-1)  //Call to Algorithm 6.4. 

BDcurr = BooleanOperation(Sj, Si, DifferenceOperator, n-1) //Call to Algorithm 6.4. 

FD = FD ∪ FDcurr  // The new computed forward difference is added to set FD. 

BD = BD ∪ BDcurr  // The new computed backward difference is added to set BD. 

  Si = Sj 

 end-of-while 
 return FD, BD 

end-of-procedure 

Algorithm 6.7. Computing the forward and backward differences in a polytope p represented through an nD-EVM. 
 

 Algorithm 6.7 will be useful when we describe our procedure for extracting the boundary of an nD-OPP 

which is represented through the nD-EVM. Such procedure will be described in Section 6.6. 
 

6.5.1. Performance of the Algorithm 
 

 The following key points define the conditions under which the execution time of Algorithm 6.7 was 

measured: 

• Our testing consider n = 2, 3, 4, 5. 

• For each n we have generated 10,000 random nD-OPP's according to the following procedures: 

o Given a hypervoxelization representing nD-OPP's g we obtain their respective nD-EVM, that is EVMn(g). 

o According to Theorem 5.13 ( ) ( )( )1

1

( )
inp

i

i n n i k

k

EVM g EVMπ π−

=

= Φ∪ , and by Theorem 5.16 such expression can 

be rewritten as ( ) ( )1 1

1

( ) ( ( )) * ( ( ))
inp

i i

i n n i k i k

k

EVM g EVM S g S gπ π π− −

=

= ⊗∪ . By Property 5.9 we have  

( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 1
( ) * ( ) ( ) * ( ) * ( ) * ( )i i i i i i

i k i k i k i k i k i k
S g S g S g S g S g S gπ π π π π π

− − −
⊗ = − ∪ −  
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Hence, and by applying definition of backward and forward differences, we obtain: 

( ) ( )1

1

( ) ( ) * ( )
inp

i i

i n n k k

k

EVM g EVM FD g BD gπ −

=

= ∪∪  

o We can compute the set ( )( )i nEVM gπ  by applying our projection operator (Definition 5.10) in a 

straightforward way to the set of extreme vertices in the EVM associated to polytope g. In the order hand, 

the set ( )1

1

( ) * ( )
inp

i i

n k k

k

EVM FD g BD g−

=

∪∪  is computed through our algorithm for Boolean operations (Algorithm 

6.4) where ( )
i

kFD p  and ( )i

k
BD p  are included in the sets FD and BD which are the output of Algorithm 6.7. 

As a mechanism for identifying possible errors in our implementation of Algorithm 6.7 we verify if 

( )( )i nEVM gπ  and ( )1

1

( ) * ( )
inp

i i

n k k

k

EVM FD g BD g−

=

∪∪  contain exactly the same vertices. If this is the case then we 

store the operation’s results and proceed to generate a new random nD-OPP for testing.  

The Table 6.16 shows some information related to our generated data. In Chart 6.14 can be visualized the behavior 

of Algorithm 6.7 with our set of nD-OPP’s. In the same chart can be also visualized the associated trendline for each 

value of n whose associated equations are shown in Table 6.17. 

 

 

n Max Min Mean Standard Deviation 

2 5,472 0 2,788.70 1,549.56 

3 5,368 0 3,148.00 1,485.30 

4 5,458 0 3,210.50 1,488.60 

5 5,288 0 2,743.87 1,457.05 
Table 6.16. Some statistical characteristics of the set of 10,000 random nD-OPP’s for testing of Algorithm 6.7. 

 

 

 
Chart 6.14. Comparing execution times for Algorithm 6.7 for nD-OPP’s with n = 2, 3, 4, 5. 
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n Trendline t = ax
b
 a b R

2
 

2 t = 1,668.39 x
1.42

 1,668.39 1.42 0.9859 

3 t = 65,377.04 x
1.09

 65,377.04 1.09 0.9584 

4 t = 28,506.68 x
1.25

 28,506.68 1.25 0.9859 

5 t = 54,637.82 x
1.20

 54,637.82 1.20 0.9664 
Table 6.17. Equations associated to the trendlines that describe execution time of Algorithm 6.7 in the cases with n = 2, 3, 4, 5. 

 

 

As we have proceeded in previous algorithms, now we determine an approximation surface for execution 

time of Algorithm 6.7. The associated equation is a function from 2�  to �  which has as arguments the number x of 

extreme vertices in the input polytope g, i.e., x = Card(EVMn(g)), and the number of dimensions n. According to our 

analysis we have that the approximation surface is given by  

 

t = 1,849.27 x
1.3

n
1.64855

 

 

In this case we have identified a coefficient of determination R
2
 = 0.9797. The Figure 6.16 shows the plotting of the 

above function and shows graphically an estimation of the execution time of Algorithm 6.7 when the number of 

input extreme vertices is from 0 to 10,000 and when the number of dimensions is between 0 and 10. 

 

 
Figure 6.16. Plot of the approximation surface for execution time of Algorithm 6.7, 0 ≤ Card(EVMn(g)) ≤ 10,000; 0 ≤ n ≤ 10. 

 

Through the proposed approximation surface we have obtained the new trendlines presented in Table 6.18 

(the second and third columns show trendlines and coefficients of determination obtained from the data shown in 

Chart 6.14). Although the new trendline obtained for the case n = 2 has a coefficient R
2
 = 0.7454, the remaining 

trendlines for cases n = 3, 4, 5 have coefficients above 0.94, which lead us to expect that given estimations for cases 

n = 7, 8 are good bounds for execution times of Algorithm 6.7. 
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n Trendline t = ax
b
 R

2
 

Trendline t = ax
b
  

(by fixing n in approximation surface) 
R

2
 

2 t = 1,668.39 x
1.42

 0.9859 t = 5,797.8 x
1.3 

0.7454 

3 t = 65,377.04 x
1.09

 0.9584 t = 11,312.5 x
1.3

 0.9443 

4 t = 28,506.68 x
1.25

 0.9859 t = 18,177.2 x
1.3

 0.9935 

5 t = 54,637.82 x
1.20

 0.9664 t = 26,259.6 x
1.3

 0.9899 

6   t = 35,466.8 x
1.3 

 

7   t = 45,728.5 x
1.3 

 
Table 6.18. Fixing the n value in surface approximation for Algorithm 6.7 in order to predict trendlines for n > 4. 

 

 

6.6. Algorithms for Converting the nD-EVM To and From Other Schemes 
  

 

 This section deals with the process of converting the nD-EVM to and from other schemes for representing 

orthogonal polytopes. The Sections 6.6.1 and 6.6.2 deal with converting the nD-EVM to and from Boundary 

Representations (Section 2.2.3), respectively. The Section 6.6.3 covers conversions from Hyperspatial Occupancy 

Enumeration Models to the nD-EVM (see Sections 2.2.5 and 2.2.6). This work does not include conversions from 

the nD-EVM to Hyperspatial Occupancy Enumeration Models, because a general nD-OPP does not always 

decompose into identical cells arranged in a fixed regular grid. 

 

 

6.6.1. The n-Dimensional Boundary Representations to nD-EVM conversion 
 

 

 A boundary representation of an nD-OPP p, must be able to provide, either directly or indirectly the set of 

(n-1)D cells incident to each edge of p. According to Theorem 4.7, if n is odd then an odd edge of p has an even 

number of incident (n-1)D cells; in the other hand, if n is even then an odd edge of p has an odd number of incident 

(n-1)D cells. Then, all those vertices that have exactly n perpendicular odd edges in p, by Theorem 5.7 (see Section 

5.3) will be Extreme Vertices. Thus, a Boundary Representation to nD-EVM algorithm would be as simple as 

collecting every vertex that belongs to n perpendicular odd edges, and discarding the remaining ones. 

 

 

 Any way, in this conversion process, [Aguilera98] points out that we must be aware of the boundary 

representation must represent a valid orthogonal pseudo-polytope p, otherwise the obtained result (if any) will not be 

meaningfull at all. Moreover, once the conversion has been performed, the potential set EVMn(p) should be validated 

using Theorem 5.21 [Aguilera98]. 

 

 

6.6.2. The nD-EVM to n-Dimensional Boundary Representation Conversion 
 

 

 In Section 2.2.3 we commented that a boundary representation can be seen as a Boundary Tree 

[Putnam86]. In the tree, each node is split into a component for each element that it bounds. An element (vertex, 

edge, etc.) will be represented several times inside the tree, one for each boundary that it belongs to. See Figure 6.17 

for a cube’s boundary tree. 
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Figure 6.17. The boundary tree associated to a 3D cube. 

 

 The way we convert an nD-OPP represented through the nD-EVM to a boundary representation will 

consider the reconstruction of the boundary tree associated to such nD-OPP. According to Theorem 5.18, in an  

nD-OPP p, forward differences ( )
i

kFD p  are the (n-1)D cells on ( )i

k
pΦ  whose normal vectors point to the positive side 

of the coordinate axis Xi which is perpendicular to ( )i

k
pΦ , while backward differences ( )i

k
BD p  are the (n-1)D cells 

on ( )i

k
pΦ  whose normal vectors point to the negative side of the coordinate axis Xi which is perpendicular to ( )i

k
pΦ . 

Such forward and backward differences can be computed through Algorithm 6.7. In fact, all ( )
i

kFD p  and ( )i

k
BD p  

from an nD-OPP are (n-1)D-OPP’s embedded in (n-1)D space because by Definition 5.21  

( )
i

kFD p = ( ) ( )( )1
( ) * ( )i i

i k i k
S p S pπ π

−
−  and ( )i

k
BD p = ( ) ( )( )1

( ) * ( )i i

i k i k
S p S pπ π

−
− . If such forward and backward 

differences were computed through our proposed algorithm then they are expressed as 
1( ( ))

i

n kEVM FD p−
 and 

1( ( ))
i

n kEVM BD p−
. If we apply again Algorithm 6.7 to such (n-1)D-OPP’s we will get new forward and backward 

differences that correspond to the (n-2)D oriented cells on the boundary of such (n-1)D-OPP’s. These new forward 

and backward differences are themselves (n-2)D-OPP’s represented through the EVM. Hence, by applying again 

Algorithm 6.7 to them we obtain their associated (n-3)D oriented cells grouped as forward and backward 

differences. This procedure generates a recursive process which descends in the number of dimensions. In each 

recursivity level we obtain forward and backward differences associated to the input (n-k)D-OPP’s. The basic case is 

present when n = 1. In this situation the boundary of a 1D-OPP is described by the beginning and ending extreme 

vertices of each one of its composing segments. Forward differences in a 1D-OPP are composed by the ending 

vertices while backward differences are composed by the beginning vertices. In Figure 6.18 we present the 

extraction of forward and backward differences according to the procedure we have described. Because Algorithm 

6.7 considers such extraction only for differences perpendicular to the first coordinate of the input EVM then in our 

example we will consider such situation.  
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Figure 6.18. Computing forward and backward differences for a cube and some of its boundary elements (See text for details). 

 

 

 In Figure 6.18 we compute first forward and backward differences, perpendicular to X1-axis, in the 3D 

cube. By assuming that such differences were computed through Algorithm 6.7 then we have that the output set BD 

contains only the face whose normal points to the negative side of X1-axis, while set FD contains only the face 

whose normal points to the positive side of X1-axis. By applying again Algorithm 6.7 over such pair of faces we 

have in each case forward and backward differences perpendicular to X2-axis (assuming that the next coordinate in 

the EVM associated to the cube is X2). As seen in Figure 6.18, the set FD contains an edge whose normal vector 

points to the positive side of X2-axis and the set BD contains an edge whose normal vector points to the negative side 

of X2-axis. By computing forward and backward differences associated to such edges we get the extreme vertices 

shown at the right side of Figure 6.18. As seen in our example, the tree we have obtained has the characteristic that 

each one of its nodes is split into a component for the elements that it bound. We say in this case that we have 

obtained a Differences Tree associated to a cube originally expressed in the 3D-EVM.  

 

 

 A recursive procedure can be performed in order to build the Differences Tree associated to an nD-OPP 

represented through the EVM. In fact, such Differences Tree can be associated to a tree data structure where a node, 

which corresponds to a boundary element, contains pointers to boundary elements that it bound. Moreover, 

additional information or processing, according to the application, can be added or performed to the nodes in the tree. 

For example, the normal vector could be added as a field in a node in order to indicate the orientation of the referred 

boundary cell corresponding to the node. The Algorithm 6.8 implements the above proposed ideas. Input parameters 

for our algorithm require the EVM associated to an nD-OPP p, the number n of dimensions, and a reference (pointer) 

to the tree data structure associated to the boundary tree. By the moment, when we refer to a Differences Tree we 

denote a tree generated according Algorithm 6.8. That is, as pointed previously, the new algorithm depends on 

Algorithm 6.7 which performs the extraction of forward and backward differences perpendicular to the first 

coordinate of the input EVM. In Section 6.6.2.2 we will discuss methodologies for the extraction of backward and 

forward differences perpendicular to remaining main axes. 
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Input: An nD-EVM p. 

 The number n of dimensions. 

 A pointer to Differences Tree t. 

Procedure GetDifferencesTree(EVM p, int n, Tree t) 

 EVM FDcurr // Current forward difference. 

 EVM BDcurr // Current backward difference. 

 FD = ∅  // FD stores (n-1)D-EVM’s corresponding to forward differences in p. 

 BD = ∅  // BD stores (n-1)D-EVM’s corresponding to backward differences in p. 

 Tree tn  // A leaf to be added to Differences Tree t 

if(n = 1) then 

  {FD, BD} = GetForwardBackwardDifferences(p, 1) // Call to Algorithm 6.7 

  for each vertex v in FD do 

   Initialize(tn) 

   Process(tn, v) 

   Link(t, tn)   

  end-of-for 

  for each vertex v in BD do 

   Initialize(tn) 

   Process(tn, v) 

   Link(t, tn) 

  end-of-for 
 else 

  {FD, BD} = GetForwardBackwardDifferences(p, n) // Call to Algorithm 6.7 

  // We process Differences Trees for each forward difference in p. 

  for each forward difference in FD do 

FDcurr = FD.next( ) 

// Check if FDcurr is not empty to avoid adding empty Differences subtrees. 

if(Not(EndEVM(FDcurr))) then 

Initialize(tn) 

    Process(tn, FDcurr) 

GetDifferencesTree(FDcurr, n-1, tn)  // Recursive call 

    Link(t, tn) 

   end-of-if 

  end-of-for 

  // We process Differences Trees for each backward difference in p. 

for each backward difference in BD do 

   BDcurr = BD.next( ) 

// Check if BDcurr is not empty to avoid adding empty Differences subtrees. 

if(Not(EndEVM(BDcurr))) then 

Initialize(tn) 

Process(tn, BDcurr) 

    GetDifferencesTree(BDcurr, n-1, tn)  // Recursive call 

    Link(t, tn) 

   end-of-if 
  end-of-for 

 end-of-else 
end-of-procedure 

Algorithm 6.8. Processing the Differences Tree of an nD-OPP p through forward and backward differences 

(Forward and Backward differences are perpendicular to the axis associated to the first coordinate in the extreme vertices of p). 

 

 Our algorithm proceeds as follows when n > 1: 

• We compute forward and backward differences perpendicular to the axis associated to the first coordinate of the 

vertices in the input EVM.  

• Once the differences have been computed through Algorithm 6.7, we proceed to process each one of them. In 

each iteration of the first loop, a non empty forward difference is extracted from set FD and a new leaf tn to be 

added to the Differences Tree is initialized. Such leaf is associated to the current forward difference FDcurr. 

According to the needs of the application, the leaf tn and the difference FDcurr are processed through a generic 

process (called Process) which performs the desired actions upon tn and FDcurr. Because FDcurr is a  

(n-1)D-OPP then a recursive call to the algorithm is performed in order to compute its corresponding forward 

and backward differences. After returning from the recursive call we proceed to link the current node tn to the 

input Differences Tree t. Depending of the recursivity level, the node tn can be pointing to the Differences 

subtree associated to the current forward difference.  
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• Once we have processed forward differences in the set FD, we proceed to process each one of the backward 

differences in the set BD in the same way as the previous loop. Such processes are performed in the second loop 

of the algorithm.  

In the basic case, when n = 1, we call Algorithm 6.7 in order to get forward and backward differences associated to 

the input 1D-OPP. Set FD contains the ending vertices of each one of the segments that compose to the input  

1D-OPP. Such vertices are processed with the leaf node tn which is then added to the input Differences Tree t. The 

set BD contains the beginning vertices of each one of the segments that compose to the input 1D-OPP. These 

vertices are processed with their corresponding leaf node and it is added to the input tree t. 
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Figure 6.19. Differences tree associated to a 3D-OPP q composed by two cubes sharing a vertex (See text for details). 

 

 When we compute the Differences Tree of a polytope through forward and backward differences some 

situations should be observed. Consider the 3D-OPP q shown in Figure 6.19. Such 3D-OPP q is composed by two 

cubes that share a vertex. Such shared vertex is not included in EVM3(q) because it is a  

non-manifold vertex with six incident odd edges. When we compute backward differences perpendicular to X1-axis 

we can observe that the EVM of the backward difference on the couplet where the vertex adjacency takes place 
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contains precisely the projection of such shared vertex. It is indicated in Figure 6.19 by a double circle. In the same 

figure, the face on that couplet but with opposite orientation is shown in dotted lines. Such face is not included in the 

backward difference but in the forward difference, where also the projection of the shared vertex by the cubes is 

present in the EVM associated to such forward difference. Figure 6.19 exemplifies a situation where projections of 

non-manifold vertices are obtained after computing backward and forward differences, and therefore, they are 

included in the Differences Tree. The reason behind this phenomenon arises from the fact that the faces on the 

couplet where the non-extreme vertex in embedded have opposite orientations. In the Figure 6.20 we have a 

situation where a 3D-OPP r is composed by two cubes sharing an edge.  
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Figure 6.20. Differences Tree associated to a 3D-OPP r composed by two cubes sharing an edge (See text for details). 

 

 As seen in Figure 6.20 the vertices included in the edge adjacency are not included in EVM(r). The pair of 

faces on the two couplets perpendicular to X1 axis have the same orientation, hence, the 2D-EVM in the backward 

difference consider both of them and the situation is the same with the 2D-EVM in the forward difference. The 

projections of the vertices included in the edge adjacency between the two cubes lead to a 2D non-manifold vertex 

and therefore the projected vertex is not included in both 2D-EVM’s. Consider the couplets perpendicular to X2-axis 

in the 2D forward and backward differences. Edges included in such couplets have opposite orientations hence its 1D 

forward and backward differences contain only one segment. The projection of the non-manifold vertex is obtained 

after computing the differences, and therefore, it is included in the boundary tree. It is indicated in Figure 6.20 by a 

double circle. 
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 Because of the foundations behind the nD-EVM we have that non-extreme vertices do not belong to the 

EVM. However, projections of such vertices can be obtained by successively computing, as seen in the above two 

examples, kD forward and backward differences, k = n-1, n-2, …, 0. By this way, the last level in the Differences 

Tree contains the projections of all the vertices included in an nD-OPP, with some of them duplicated. Computing 

successive forward and backward differences provides us a new methodology for obtaining non-extreme vertices 

from the EVM associated to an nD-OPP. The first methodology was presented in Theorem 5.9. One of the 

advantages of our new methodology is that it provides us the Differences Tree of an nD-OPP. 
 

 Let’s consider a third case to analyze and which can be possibly present in the Differences Trees we build 

according to Algorithm 6.8. See Figure 6.21. 
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Figure 6.21. Differences Tree associated to a 3D-OPP. One of the nodes in the structure has two disjoint faces with the same orientation  

(See text for details). 
 

 As can be observed in Figure 6.21 we have the case when one of the nodes in the tree has associated two 

(or more) disjoint cells with the same orientation. This kind of situation can be present in any level of the tree. In this 

work we will deal with nodes with two or more disjoint cells taking no action when they are present because our 

algorithms presented in the following sections are not affected by them. 
 

6.6.2.1. Performance of the Algorithm 
 

 In this section we present some results related to the measured execution times for Algorithm 6.8 in the 

cases for n = 2, 3, 4, 5. As previously proceeded, we generated 10,000 random nD-OPP’s for each considered value 

of n. The Table 6.19 shows some statistical characteristics of the sets of generated nD-OPP’s. 
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n Max Min Mean Standard Deviation 

2 5,432 0 2,788.98 1,549.72 

3 5,364 0 3,148.42 1,485.08 

4 5,528 0 3,211.01 1,488.91 

5 5,328 0 2,744.30 1,456.52 
Table 6.19. Some statistical characteristics of the set of 10,000 random nD-OPP’s for testing of Algorithm 6.8. 

 

In Chart 6.15 can be visualized the behavior of Algorithm 6.8 with our set of nD-OPP’s. In the same chart 

can be also visualized the associated trendline for each value of n whose associated equations are shown in  

Table 6.20. 
 

n Trendline t = ax
b
 a b R

2
 

2 t = 2,065.31 x
1.39

 2,065.31 1.39 0.9623 

3 t = 92,413.80 x
1.09

 92,413.80 1.09 0.9693 

4 t = 23,904.62 x
1.35

 23,904.62 1.35 0.9715 

5 t = 65,509.94 x
1.28

 65,509.94 1.28 0.9644 
Table 6.20. Equations associated to the trendlines that describe execution time of Algorithm 6.8 in the cases with n = 2, 3, 4, 5. 

 
Chart 6.15. Comparing execution times for Algorithm 6.8 for nD-OPP’s with n = 2, 3, 4, 5. 

 

As we have proceeded in previous algorithms, we now determine an approximation surface for execution 

time of Algorithm 6.8. The associated equation is a function from 2�  to �  which has as arguments the number x of 

extreme vertices in the input polytope g, i.e., x = Card(EVMn(g)) and the number of dimensions n. According to our 

analysis we have that the approximation surface is given by  
 

t = 1,160.7 x
1.3189

n
2.3720

 
 

In this case we have identified a coefficient of determination R
2
 = 0.9871. The Figure 6.22 shows the plotting of the 

above function and shows graphically an estimation of the execution time of Algorithm 6.8 when the number of 

input extreme vertices is from 0 to 10,000 and when the number of dimensions is between 0 and 10. Through the 
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proposed approximation surface we have obtained the new trendlines presented in Table 6.21 (the second and third 

columns show trendlines and coefficients of determination obtained from the data shown in Chart 6.15). Although 

the new trendline obtained for the case n = 2 has a coefficient R
2
 = 0.2566, the remaining trendlines for cases n = 3, 

4, 5 have coefficients above 0.95, which lead us to expect that given estimations for cases n = 7, 8 are good bounds 

for execution times of Algorithm 6.8 (when we analyzed execution times for Algorithm 6.7 we had a similar 

situation with the new trendline for n = 2). 

 

n Trendline t = ax
b
 R

2
 

Trendline t = ax
b
  

(by fixing n in approximation surface) 
R

2
 

2 t = 1,668.39 x
1.42

 0.9859 t = 6,008.46 x
1.3189 

0.2566 

3 t = 65,377.04 x
1.09

 0.9584 t = 15,719.96 x
1.3189

 0.9501 

4 t = 28,506.68 x
1.25

 0.9859 t = 31,103.28 x
1.3189

 0.9731 

5 t = 54,637.82 x
1.20

 0.9664 t = 52,805.21 x
1.3189

 0.9844 

6   t = 81,375.70 x
1.3189 

 

7   t = 117,298.52 x
1.3189 

 
Table 6.21. Fixing the n value in surface approximation for Algorithm 6.8 in order to predict trendlines for n > 4. 

 

 
Figure 6.22. Plot of the approximation surface for execution time of Algorithm 6.8, 0 ≤ Card(EVMn(g)) ≤ 10,000; 0 ≤ n ≤ 10. 

 

6.6.2.2. Computing the Complete Differences Tree of an nD-OPP in the nD-EVM 

 

 Algorithm 6.8 extracts, from an nD-OPP p, the (n-1)D backward/forward differences perpendicular to  

X1-axis, by assuming the coordinates of extreme vertices have the ordering X1X2�Xn-1Xn. Then, for all 1
( )kFD p  and 

1
( )KBD p , it extracts their (n-2)D forward/backward differences perpendicular from X2-axis, then the (n-3)D 

forward/backward differences perpendicular from X3-axis, and so on until the basic case is reached. As pointed out 

in Section 6.6.2, the Algorithm 6.8 provides a Differences Tree whose nodes refer to forward/backward differences 

perpendicular to the first coordinate in the input EVM’s (See Figures 6.18, 6.19, 6.20 and 6.21). Consider the cube 

shown in Figure 6.18. Its EVM has the ordering X1X2X3, hence, Algorithm 6.8 provides at the main call 2D 

forward/backward differences perpendicular to X1-axis. In the first recursive call it computes 1D forward/backward 
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differences perpendicular to X2-axis. In the second recursive call, where it reaches the basic case, returns vertices 

along X3-axis. Now, by sorting coordinates in the cube’s vertices as X2X3X1 and applying Algorithm 6.8 we have 

the Differences Tree shown in Figure 6.23. 
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Figure 6.23. Computing the Differences Tree for a cube whose extreme vertices have the coordinates ordering X2X3X1 (See text for details). 
 

 Through the ordering X2X3X1 we have access, according to Figure 6.23, to forward/backward differences 

perpendicular to X2-axis. Then, we have access to 1D forward/backward differences perpendicular to X3-axis, and 

finally, in the basic case of Algorithm 6.8, we found vertices along X1-axis. Now consider coordinates ordering 

X3X1X2, hence, we have the Differences Tree in Figure 6.24. In this sense, we have access to the cube’s oriented 

faces perpendicular to X3-axis, edges perpendicular to X1-axis and finally to vertices along X2-axis. 
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Figure 6.24. Computing the Differences Tree for a cube whose extreme vertices have the coordinates ordering X3X1X2 (See text for details). 

  

As seen in Figures 6.18, 6.23 and 6.24, the three Differences Trees have the same root, but their associated 

subtrees differ according to the coordinates ordering. Now, we will define the Cube’s Complete Differences Tree as 

the union of the boundary trees each one obtained through the coordinates ordering X1X2X3, X2X3X1 and X3X1X2 

and the respective application of Algorithm 6.8. See Figure 6.25. 
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Figure 6.25. The Complete Differences Tree for a 3D cube (See text for details). 
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 Let p be an nD-OPP. We assume the coordinates ordering in EVMn(p) is given by X1X2�Xn-1Xn, hence, 

starting from that permutation we have the following n-1 permutations given by 

X2X3�XnX1 

X3X4�X1X2 

�  
Xn-1Xn�Xn-3Xn-2 

XnX1�Xn-2Xn-1 

The Algorithm 6.9 computes the Complete Differences Tree associated to p. The way it works is simple: 

• A pointer t to a tree data structure is initialized and it, together with EVMn(p), is manipulated through a generic 

process (called Process) according to the needs of the application. Such pointer t is in fact the root of the 

Complete Differences Tree associated to p. 

• A main loop is maintained while each one of the orderings, that is permutations, in the set  

{X1X2�Xn-1Xn, X2X3�XnX1, X3X4�X1X2, …, Xn-1Xn�Xn-3Xn-2, XnX1�Xn-2Xn-1} is used for sorting 

EVMn(p). Such sorting is performed by calling procedure SortEVM. Given a permutation 
i 2 n-1 nα α α α

X X X X�  

SortEVM sorts the extreme vertices of p first according to the coordinate 
iα

X , after according to the coordinate 

2α
X , and so on until p is sorted according to coordinate 

nα
X . Following the calling to SortEVM, it is performed 

the calling to Algorithm 6.8. Through the procedure GetDifferencesTree we obtain the subtree that contains  

(n-1)D forward/backward differences perpendicular to 
iα

X -axis, then the (n-2)D forward/backward differences 

perpendicular to 
nα

X -axis, and so on until the level than contains their leaves is composed by vertices along  

nα
X -axis. Such subtree is attached to the pointer t which performs the role of root node in the Complete 

Differences Tree of p (the linking takes place in Algorithm 6.8). 

 
Input: An nD-EVM p. 

 The number n of dimensions. 

Output: A pointer to the Complete Differences Tree associated to p. 

procedure GetCompleteDifferencesTree(EVM p, int n) 

Tree t  // The root of the Complete Differences Tree associated to p 

Initialize(t) 

Process(t, p)  

for sorting in {X1X2�Xn-1Xn, X2X3�XnX1, X3X4�X1X2, …, Xn-1Xn�Xn-3Xn-2, XnX1�Xn-2Xn-1} do 

 SortEVM(p, n, sorting) 

/* We call Algorithm 6.8 and get the Differences Tree according to the current 

sorting of p. */ 

 GetDifferencesTree(p, n, t) 

 end-of-for 

 return t 

end-of-procedure 

Algorithm 6.9. Computing the Complete Differences Tree of an nD-OPP expressed through the nD-EVM. 

 

 By comparing our Complete Differences Tree for the cube, which is shown in Figure 6.26.b, with its 

Boundary Tree, as defined in Section 2.2.3, as seen in Figure 6.26.a, it seems that the first one is incomplete respect 

to the second one. Although both trees coincide in the description of faces in the cube, the level corresponding to 

description of edges is bounded in the Complete Differences Tree because the way we have obtained Forward and 

Backward differences. However, each edge in the cube is present in our Complete Differences Tree because if one of 

them was not obtained through a given face under certain coordinates ordering, it was obtained by means of one of 

the 2 remaining permutations of coordinates.  Speaking in a more general way, if an specific kD cell in an nD-OPP 

was not obtained through computing forward and backward differences of a (k+1)D cell under a coordinates 

ordering, it can be obtained by means of the n-1 remaining permutations of coordinates. Such kD cell in our 

Complete Differences Tree will be linked to the (k+1)D cell that generated it.  

 

Some applications can find our Complete Differences Tree useful in the sense that it provides access to all 

the oriented boundary cells of an nD-OPP. However other applications can find that some information about the 

connectivity between boundary elements can be lost or hidden. For example, according to Figure 6.26.b, the 

Complete Differences Tree does not explicitly provide information about all the boundary edges in the face whose 

normal points towards the negative side of X1-axis, because our tree presents explicitly two of the four edges. Such 

specific pair of edges was obtained starting from the coordinates ordering of the 2D-EVM associated to the face 

when its forward and backward differences were computed using Algorithm 6.8. A possible solution in order to 
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have access to those two “hidden” edges is to consider the two possible coordinates sortings of the 2D-EVM 

associated to the current face in the cube. The first ordering will provide the original pair of edges in the tree and the 

new sorting will provide the remaining two which will generate new subtrees which can be linked to the structure 

and processed in order to obtain its boundary elements. This process of sorting coordinates should be added to 

Algorithm 6.8 with the objective to take in account the processing of all boundary elements on an OPP expressed 

through the EVM. Hence, the final obtained tree will correspond to a boundary tree as defined in Section 2.2.3. 
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a) b) 

Figure 6.26. a) The boundary tree associated to a 3D cube as defined in Section 1.2.3.  

b) The Complete Differences Tree associated to a 3D cube as computed through Algorithm 6.9. 

 

6.6.3. Hyperspatial Occupancy Enumeration Models to the nD-EVM 
 

 This section deals with the process of converting other schemes for the modeling of nD-OPP’s to the  

nD-EVM. We will consider particularly two conversions: 

• nD Hypervoxelizations to the nD-EVM. 

• 2
n
-trees to the nD-EVM. 

Both considered schemes correspond to the category of the Hyperspatial Occupancy Enumerations. A model in this 

category is a set of black and white cells or nodes where each cell is a convex orthogonal polytope. The set of black 

cells represents an nD-OPP p whose vertices coincide with some of the black cells’ vertices. A hyperspatial 

occupancy enumeration model should provide means for generating a list of all 2
n
 vertices of each black cell.  
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 Each of these vertices may be common to (surrounded by) up to 2
n
 black cells. So, according to Theorem 

5.1, if a vertex is surrounded by an odd number of black cells (hyper-octants of a classical 2
n
-tree) then it is an 

Extreme Vertex. Thus, a hyperspatial occupancy enumeration model to nD-EVM conversion algorithm would be as 

simple as collecting every vertex that belongs to and odd number of cells, and discarding the remaining vertices 

[Aguilera98].  

 

Since black nodes in a hyperspatial occupancy enumeration model are quasi-disjoint convex orthogonal 

polytopes, then ∪
λ

λBlackNodep = , thus, by the expression ( * ) ( ) ( )n n nEVM p q EVM p EVM q∪ = ⊗  if ∅=∩ qp *  

(Corollary 5.9), we have [Aguilera98]:  

( ) ( )
n n n

EVM p EVM BlackNode EVM BlackNodeλ λ
λ

λ

 
= = 

 
⊗∪  

 

Since all 2
n
 vertices of a box are Extreme Vertices, then all we have to do is list all 2

n
 vertices of every black 

node and collect (because of the XOR) every vertex that appears in an odd number of times in such a list, and 

discarding the remaining ones. 

 

 This provides a method for converting hyperspatial occupancy enumeration models to the nD-EVM. 

However, as stated before, a hyperspatial occupancy enumeration model should provide means for generating a list 

of all 2
n
 vertices for each black cell. The following sections will provide some clues which are related to the last 

comment. 

 

6.6.3.1. Listing Vertices’ Coordinates for the nD Hypercube 

 

[Coxeter63] establishes that the coordinates for an nD hypercube with edges of length 2 can be described in 

general as: 

( 1,..., 1)

n

± ±����	
 

 

For example, using the above description, the coordinates for a square (n = 2) are: 

)1,1(

)1,1(

)1,1(

)1,1(

−−

+−

−+

++

 

 

If we apply the translation (1,…,1), and the scaling 1 1
,...,

2 2

 
 
 

 we obtain the general set of coordinates for a 

unit n-Dimensional hypercube: 

 

(0,0,...0,0),...,

n

����	 

1

1

( 1 ,0,...,0,0),...,

n−

����	 

(1,...,1, 0,...,0),...,
i n i−



11

(1,1,...,1, 0 ),

n−

��	 (1,1,...,1,1)

n

=����	

)0,1(),0,1(...,),0,1(...,),0,1(),0,1( 011110 nnininn −−−  

 

where the coordinates must be permuted according the following distribution: 

, , ..., , ..., ,
0 1 1

n n n n n

i n n

         
         

−         

 

where !

!( )!

n n

i i n i

 
= 

− 

 defines the number of those coordinates that have i ones and n-i zeros. Then we can evaluate 

and relate the previous distribution with the number of vertices in the n-Dimensional hypercube  

[Pérez-Aguila03d]: 

0

!
1 ... ... 1 2

!( )!

n
n

i

nn
n n

ii n i =

 
+ + + + + + = = 

−  
∑  
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Table 6.22 shows the application of the procedure on the 4D hypercube. 

 

 
Value of i Number of Combinations Coordinates 

0 1 (0,0,0,0) 

1 
4

4
1

 
= 

 

 
(1,0,0,0) 

(0,1,0,0) 

(0,0,1,0) 

(0,0,0,1) 

2 
4

6
2

 
= 

 

 

(1,1,0,0) 

(1,0,1,0) 

(0,1,1,0) 

(1,0,0,1) 

(0,1,01) 

(0,0,1,1) 

3 
4

4
3

 
= 

 

 
(1,1,1,0) 

(1,1,0,1) 

(1,0,1,1) 

(0,1,1,1) 

4 1 (1,1,1,1) 

Table 6.22. Defining the 4D hypercube’s vertices coordinates. 

 

 

6.6.3.2. Listing Hypervoxels Vertices 
 

 The procedure commented in previous section can be extended in a straightforward way in order to list the 

2
n
 vertices of an nD hypervoxel. Consider an n-dimensional grid where 


0,...,0

n

C  is the origin and the dimensions of each 

hypervoxel are given by x1Side, ..., xnSide. By applying to the general set of coordinates corresponding to a unit  

n-Dimensional hypercube the translation (x1, …, xn) and the scaling (x1Side, ..., xnSide) we obtain the set of 

coordinates for an n-dimensional hypervoxel 
nxxC ,...,1

. For example, in Table 6.23 is presented the listing of the 16 

vertices from a rexel (a 4D hypervoxel) 
1 2 3 4, , ,x x x x

C . 

 

 
Vertex X1 coordinate X2 coordinate X3 coordinate X4 coordinate 

0 x1 ⋅ x1Side x2 ⋅ x2Side x3 ⋅ x3Side x4 ⋅ x4Side 

1 x1 ⋅ x1Side x2 ⋅ x2Side x3 ⋅ x3Side (x4+1) ⋅ x4Side 

2 x1 ⋅ x1Side x2 ⋅ x2Side (x3+1) ⋅ x3Side x4 ⋅ x4Side 

3 x1 ⋅ x1Side x2 ⋅ x2Side (x3+1) ⋅ x3Side (x4+1) ⋅ x4Side 

4 x1 ⋅ x1Side (x2+1) ⋅ x2Side x3 ⋅ x3Side x4 ⋅ x4Side 

5 x1 ⋅ x1Side (x2+1) ⋅ x2Side x3 ⋅ x3Side (x4+1) ⋅ x4Side 

6 x1 ⋅ x1Side (x2+1) ⋅ x2Side (x3+1) ⋅ x3Side x4 ⋅ x4Side 

7 x1 ⋅ x1Side (x2+1) ⋅ x2Side (x3+1) ⋅ x3Side (x4+1) ⋅ x4Side 

8 (x1+1) ⋅ x1Side x2 ⋅ x2Side x3 ⋅ x3Side x4 ⋅ x4Side 

9 (x1+1) ⋅ x1Side x2 ⋅ x2Side x3 ⋅ x3Side (x4+1) ⋅ x4Side 

10 (x1+1) ⋅ x1Side x2 ⋅ x2Side (x3+1) ⋅ x3Side x4 ⋅ x4Side 

11 (x1+1) ⋅ x1Side x2 ⋅ x2Side (x3+1) ⋅ x3Side (x4+1) ⋅ x4Side 

12 (x1+1) ⋅ x1Side (x2+1) ⋅ x2Side x3 ⋅ x3Side x4 ⋅ x4Side 

13 (x1+1) ⋅ x1Side (x2+1) ⋅ x2Side x3 ⋅ x3Side (x4+1) ⋅ x4Side 

14 (x1+1) ⋅ x1Side (x2+1) ⋅ x2Side (x3+1) ⋅ x3Side x4 ⋅ x4Side 

15 (x1+1) ⋅ x1Side (x2+1) ⋅ x2Side (x3+1) ⋅ x3Side (x4+1) ⋅ x4Side 

Table 6.23. Listing a rexel's sixteen vertices. 

 

 

6.6.3.3. Listing Black Nodes’ Vertices for 2
n
-trees 

 

 

 The Algorithm 6.10 is an extension of a procedure originally described in [Aguilera97b]. Its objective is to 

list all 2
n
 vertices for each black node in a 2

n
-tree. Q is a reference (pointer) to the tree; width is the length of the 

node under consideration whose minimum coordinates are given by the point p = (x1, …, xn). 
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Input: A pointer Q to a 2n-tree. 

 The width of the current node in the tree. 

 The point p = (x1, …, xn) whose coordinates are the minimum in the current node. 

 The number n of dimensions. 

Procedure ListHyperocttreeVertices(Tree Q, real width, Point p, int n) 
 if(NodeType(Q) = Black) then 

  for k = 0 until 2n - 1 do 

   offset_p = OffsetVertex(p, k, width); 

   Write(offset_p); // We list the k-th point in the current black node. 

  end-of-for 
 else 

  If(NodeType(Q) = Gray) then 
   for k = 0 until 2n – 1 do 

    offset_p = OffsetVertex(p, k, width/2); 

    ListOctreeVertices(son(Q, k), width/2, offset_p); // Recursive call 

   end-of-for 
  end-of-if 

 end-of-else 
end-of-procedure 

Algorithm 6.10. Listing all 2n vertices for each black node in a 2n-tree. 

 

 

 The Algorithm 6.11 shows, as an example, the offset of a vertex in nD space towards the k-th direction, 

where k ∈ {0, …, 2
n
-1}, or equivalently k ∈ {
 
2 20...0 ,...,1...1

n n

} where each bit determines whether or not the vertex 

will be displaced by distance dist along each one of the coordinate axes. 

 

 
Input:  The point p=(x1, …, xn) to be ‘offseted’. 

 An integer k which indicates the direction along which p will be ‘offseted’. 

 The distance dist which defines the amount of translation to be applied to point p. 

Output: The point p1 which corresponds to the offset of input point p=(x1, …, xn) 

Procedure OffsetVertex(Point p, int k, real dist) 

 p1 = p; 

 for i = 1 until 2n do 
  if Odd(k) then 

   p1.xi = p.xi + dist 

  end-of-if 

  k = Int(k/2) // We update k by performing integer division of k by 2. 

 end-of-for 

 return p1 

end-of-procedure 

 

Algorithm 611. Computing the offset of a vertex. 

 

 

6.7. Conclusions 
 

 

 In this chapter we have experienced the development and performance of some algorithms designed under 

the context of the Extreme Vertices Model in the n-Dimensional space. Summarizing, we have shown the efficiency 

of our algorithms under the following tasks: 

• Regularized Boolean Operations (Algorithm 6.4). 

• nD-OPP’s measures (Algorithms 6.5 and 6.6). 

• Extraction of boundary elements of nD-OPP’s (Algorithms 6.7, 6.8 and 6.9). 

As mentioned above, the efficiency of such algorithms was evaluated from a statistical point of view. In such 

statistical analyses we have proposed approximation surfaces that fit as good as possible to the measures we obtained 

from the execution times of these algorithms. Such surfaces depend on two parameters: the number of input extreme 

vertices and the number of dimensions. The quality of the approximations is given by the coefficient of 

determination R
2
 which reveals how closely the estimated values for the approximation surfaces correspond to our 

time measures. Table 6.24 summarizes the execution times of the algorithms that were analyzed in this chapter.  
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Algorithm Operation Approximation Surface 
x’s 

exponent 
R

2
 

6.4 Regularized Intersection t = 4,271.11 x
1.1737

n
1.0862

 1.1737 0.9234 

6.4 Regularized Union t = 16,698.63 x
1.0821

n
1.0607

 1.0821 0.9221 

6.4 Regularized Xor t = 483.17 x
1.4161

n
1.4161

 + 108,263,080 1.4161 0.9260 

6.5 Computing Content t = 4,763.939 x
1.1894

n
0.8390

 1.1894 0.9803 

6.6 Computing  

Boundary Content 
3 2

12921.02 x + 1454430 n - 7196150
t =

0.0212336 n - 0.247936 n + 0.92776 n - 1

 
1.0000 0.9963 

6.7 Extracting Forward and 

Backward Differences 
t = 1,849.27 x

1.3
n

1.64855
 1.3000 0.9797 

6.8 Building Differences Tree t = 1,160.7 x
1.3189

n
2.3720

 1.3189 0.9871 
Table 6.24. Summarizing execution times of algorithms under the nD-EVM (x: Number of input extreme vertices, n: number of dimensions). 

 

 In all the equations associated to our approximation surfaces we have that by fixing the number of 

dimensions our functions become dependent only of one variable: the number of input extreme vertices. By this way 

we can then identify, as shown in Table 6.24, that the exponents associated to the number of vertices varies between 

1 and 1.5. This experimentally identified complexity for our algorithms provides us elements to determine the 

temporal efficiency when we perform some operations between nD-OPP’s represented through the nD-EVM. 

 

 Respect to conversion from and to other schemes for representing polytopes, we have presented algorithms 

to convert Hyperspatial Occupancy Enumeration Models to the nD-EVM which are generalizations of algorithms 

originally presented in [Aguilera98]. On the other hand, our Algorithms 6.7, 6.8 and 6.9 provide elements to have 

access to boundary elements in an nD-OPP represented through the nD-EVM. Moreover, some clues have been 

proposed in order to modify Algorithm 6.8, if the application requires, for obtaining, in combination with 

Algorithm 6.9 the boundary tree of an nD-OPP as defined in Section 2.2.3 leading to a conversion process for  

nD-EVM to an n-Dimensional Boundary Representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 


