
Chapter 6

Algorithms in the nD-EVM

and their Performance

In this chapter we will introduce some basic algorithms that perform operations between nD-OPP’s

represented through the nD-EVM. We will specify aspects related to their implementation. In [Aguilera98] were

described a set of primitive algorithms that should be present in a system that implements the nD-EVM. In our case

we will start from those defined algorithms. It is natural to ask about the performance, or in more detailed words,

about the time complexity of these algorithms. In this work we will deal with this last topic but from a statistical

point of view. The bounds we provide will be obtained from experimental data which were obtained according to

procedures we mention with detail in the corresponding sections. Because our algorithms are recursive on the

number of dimensions of the input polytopes and in each recursivity level a wide range of situations can be present is

that a formal analysis for time complexity is above of the scope of this work. We expect our estimations can be

useful in suggesting an expected result for formal temporal complexity analysis, or well, in providing to the reader

clues about timings of algorithms when they are implemented.

This chapter is divided in the following sections: Section 6.1 defines the basic algorithms to be considered

for the manipulation of nD-EVM’s. As commented before, these procedures were originally proposed in

[Aguilera98] and here we are taking them as stating point. The Section 6.1.1 provides details about the way we are

storing and implementing EVM’s. Such implementations are essential for the time statistical analysis discussed in

Sections 6.2 to 6.6 where we describe and test experimentally algorithms for Boolean Operations, computing of nD

Content and computing of (n-1)D Content of nD-OPP’s represented through the nD-EVM.

6.1. Basic Algorithms for the nD-EVM

 In Section 5.4 we stated that in this work we will assume that the coordinates of extreme vertices in the

Extreme Vertices Model of an nD-OPP p, EVMn(p) are sorted according to coordinate X1, then to coordinate X2, and

so on until coordinate Xn. That is, we are considering the only ordering X1…Xi…Xn, 1 < i ≤ n. According to

Sections 5.2 to 5.6 we can define the following primitive operations which are based in the functions originally

presented in [Aguilera98] (for 2D and 3D cases) and they consider the ordering previously commented:

Output: An empty nD-EVM.

Procedure InitEVM()

{ Returns the empty set. }

Input: An (n-1)D-EVM hvl embedded in nD space.

Input/Output: An nD-EVM p
Procedure PutHvl(EVM hvl, EVM p)

{ Appends an (n-1)D couplet hvl, which is perpendicular to X1-axis, to p. }

Input: An nD-EVM p
Output: An (n-1)D-EVM embedded in (n-1)D space.

Procedure ReadHvl(EVM p)

{ Extracts next (n-1)D couplet perpendicular to X1-axis from p. }

Input: Two vertices Vb and Ve.

Input/Output: An nD-EVM p

Procedure PutBrink(Vertex Vb, Vertex Ve, EVM p)

{ Appends to an nD-EVM p a brink defined by its Extreme Vertices Vb and Ve. }

Chapter 6 - Algorithms in the nD-EVM and their Performance

Input: An nD-EVM p

Output: Two vertices Vb and Ve.

Procedure ReadBrink(EVM p)

{ Reads next brink (or pair of Extreme Vertices) from an nD-EVM p. }

Input: An nD-EVM p

Output: A Boolean.

Procedure EndEVM(EVM p)

{ Returns true if the end of p along X1-axis has been reached. }

Input/Output: An (n-1)D-EVM p embedded in (n-1)D space.

Input: A coordinate coord of type CoordType

 (CoordType is the chosen type for the vertex coordinates: Integer or Real)

Procedure SetCoord(EVM p, CoordType coord)

{ Sets the X1-coordinate to coord on every vertex of the (n-1)D couplet p.

For coord = 0, it performs the projection
1()pπ . }

Input: An (n-1)D-EVM p embedded in nD space.
Output: A CoordType (CoordType is the chosen type for the vertex coordinates: Integer or Real)

Procedure GetCoord(EVM p)

{ Gets the common X1 coordinate of the (n-1)D couplet p. }

Input: Two nD-EVM’s p and q.

Output: An nD-EVM
Procedure MergeXor(EVM p, EVM q)

{ Applies the Exclusive OR operation to the vertices of p and q and returns the resulting set. }

 Function MergeXor performs an XOR between two nD-EVM’s, that is, it keeps all vertices belonging to

either EVMn(p) or EVMn(q) and discards any vertex that belongs to both EVMn(p) and EVMn(q). Since the model is

sorted, this function consists on a simple merging-like algorithm, and therefore, it runs on linear time [Aguilera98].

Its complexity is given by O(Card(EVMn(p)) + Card(EVMn(q)) since each vertex from EVMn(p) and EVMn(q) needs

to be processed just once. Moreover, according to Theorem 5.19, the resulting set corresponds to the regularized

XOR operation between p and q since

(*) () ()n n nEVM p q EVM p EVM q⊗ = ⊗

From the above primitive operations and [Aguilera98], the Algorithms 6.1 and 6.2 may be easily derived.

Input: An (n-1)D-EVM corresponding to section S.

 An (n-1)D-EVM corresponding to couplet hvl.

Output: An (n-1)D-EVM.
Procedure GetSection(EVM S, EVM hvl)

 // Returns the projection of the next section of an nD-OPP whose previous section is S.

 return MergeXor(S, plv)

end-of-procedure

Algorithm 6.1. Computing ()1 1(())i

n kEVM S pπ−
 as () ()1 1 1 1 1(()) (())i i

n k n kEVM S p EVM pπ π− − −⊗ Φ (by Corollary 5.8).

Input: An (n-1)D-EVM corresponding to section Si.

 An (n-1)D-EVM corresponding to section Sj.

Output: An (n-1)D-EVM.
Procedure GetHvl(EVM Si, EVM Sj)

 // Returns the projection of the couplet between consecutive sections Si and Sj.

 return MergeXor(Si, Sj)

end-of-procedure

Algorithm 6.2. Computing () () ()1 1 1 1 1 1 1(()) (()) (())i i i

n k n k n k
EVM p EVM S p EVM S pπ π π− − − −Φ = ⊗ (by Corollary 5.7).

Orthogonal Polytopes: Study and Application

The Algorithm 6.3 computes the sequence of sections of an nD-OPP p from its nD-EVM using the previous

functions [Aguilera98]. It sequentially reads the projections of the (n-1)D couplets hvl of the polytope p. Then it

computes the sequence of sections using function GetSection. Each pair of sections Si and Sj (the previous and next

sections about the current hvl) is processed by a generic processing procedure (called Process), which performs the

desired actions upon Si and Sj (Note that some processes may only need one of such sections).

Input: An nD-EVM p.
Procedure EVM_to_SectionSequence(EVM p)

 EVM hvl // Current couplet.

 EVM Si, Sj // Previous and next sections about hvl.

 hvl = InitEVM()

Si = InitEVM()

 Sj = InitEVM()

 hvl = ReadHvl(p)

 while(Not(EndEVM(p)))

 Sj = GetSection(Si, hvl)

 Process(Si, Sj)

 Si = Sj

 hvl = ReadHvl(p) // Read next couplet.

 end-of-while
end-of-procedure

Algorithm 6.3. Computing the sequence of sections from an nD-OPP p represented through the nD-EVM.

6.1.1. About the nD-EVM Implementation

6.1.1.1. The Trie Tree Data Structure

Usually procedures as searching in trees are based in comparisons between the values of their keys. A trie

tree is a data structure that uses the way the keys are represented, in this case, as sequences of characters or digits, in

order to guide procedures as searching through the structure. The name of the trie tree, coined by [Friendkin60], was

assigned because it is contained in “information retrieval”.

A trie tree is an m-ary tree. The order of a trie is determined by the base used to represent the values of its

keys. For example, if its keys are represented through digits then the base and order is 10; if its keys are represented

through alphabetical characters then its order is 26. Each node in a trie of order m is, in its original definition by

[Friendkin60], an array of m pointers. Each element in the arrays corresponds to one of the elements in the base of

the keys. The position of a pointer in the node determines its corresponding value in the base. The height of a trie is

determined by the length of its keys. For a node P in the j-th level, in a 10-ary trie, Pi points to a subtree that

represents to all the values of keys whose j-th digit is i. For example, P4, in the sixth level of a 10-ary trie, points to a

subtree that represents to all the values of keys whose sixth digit is 4.

Consider the following example of a trie whose keys are numbers in base 4 with four digits. The keys

introduced in the structure are 1112, 1113, 2210, 3003 and 3102. See the Figure 6.1. The structure is a 4-ary trie and

also has a height equal to four; each level is given by the position of each digit in the keys.

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3

0 1 2 3

/

/ / / / / / /

/ / / / / / / / / / / /

/ / / / / / / / / / /

1st digit

2nd digit

3th digit

4th digit

key

/

Figure 6.1. A trie tree for storing the keys 1112, 1113, 2210, 3003 and 3102 in base 4.

Chapter 6 - Algorithms in the nD-EVM and their Performance

Originally trie trees were proposed as structures for storing file indexes [Loomis89] but they can be used to

store and represent sets of data. In this later case, each leaf node will contain empty positions that indicate the

absence of the corresponding value. See in our previous example (Figure 6.1), the character ‘#’ is used to indicate

the presence of a value in leaf nodes while character ‘/’ indicates the absence of a value or a null pointer in the case

of nodes in first, second and third levels.

Searching in a trie must finish in the leaf nodes. To determine the existence of a key in the structure it is

required to visit all the levels in the tree. In each level, the ramification to follow is determined by the pertinent digit

in the key. Hence, the length of a successful searching is determined by the height of the trie, which is based in the

length of the keys. In our example from Figure 6.1 a successful searching requires to visit four nodes, a value that is

independent of the number of keys represented by the trie. In the other hand, a non-successful searching finishes

when one of the digits in the key is not present in the structure. In this case, a non-successful searching can finish in

any level of the structure. For example, by visiting the root node in our example we can infer that there are no keys

whose first digit is zero.

The insertion of new keys in a trie is a direct process. The correct position in a node for representing a new

digit is located by direct searching. When the position is located then it is changed from null to pointer, or in the

second case, the pointer present in that position is followed to access next level in the structure. When a new pointer

is added then a new leaf node is also added in order to direct a searching to it. Consider for example the adding of the

key 1320 to our trie from Figure 6.1. In the first level we found that there are yet stored keys with first digit equal to

one (Figure 6.2.a). In the second level we have that position three in the node is null, hence a new pointer is created

and a new leaf node in the third level is attached to it (Figure 6.2.b). In the third level obviously all the positions in

the new node are null, hence, its position two is modified to store a pointer and a new leaf node is added in level

four. Because this is the last digit in the key then the position zero in the new node is modified to indicate the

presence of the new value (Figure 6.2.c).

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3

0 1 2 3

/

/ / / / / / /

/ / / / / / / / / / / /

/ / / / / / / / / / /

1st digit

2nd digit

3th digit

4th digit

key

/

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

/

/ / / / / / /

/ / / / / / / / / / / / / / /

/ / / / / / / / / / /

1st digit

2nd digit

3th digit

4th digit

key

/

a) b)

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

/

/ / / / / / /

/ / / / / / / / / / / / / / /

/ / / / / / / / / / / / / /

1st digit

2nd digit

3th digit

4th digit

key

c)

Figure 6.2. Inserting the key 1320 in the trie tree from Figure 6.1. b) Adding a new node in the third level.

c) Adding the final leaf node in the fourth level.

Orthogonal Polytopes: Study and Application

At this point the reader can have detected a problem related to tries’ storage requirements. Consider for

example the following case: suppose that we have 250 keys with 9 digits each one in base 10. The trie will be a

10-ary tree with nine levels and potential space for 10
9
 keys, but we are using only 0.000025% of these potential

positions. Moreover, it can be observed that in our example from Figure 6.2.c we have positions in the node pointing

to null or with absent values. In this sense, a solution, provided originally in [Maly76], propose to consider each node

in the structure not as an array but as a sorted linked list. The elements in such linked lists contain three fields:

• One field contains the value of the key in the corresponding level.

• A pointer to the next element in the list in the same level.

• A pointer to the following level.

In this case the structure contains only the values of the keys that it has stored. There is no space reserved, as in Fi-

gures 6.1 and 6.2, for potential new keys. If a new key is stored then only the required elements in each level are

added. By applying this idea we have the trie presented in Figure 6.2.c has now the structure shown in Figure 6.3.

1

1

00

2

3

3 2

1

1 2

2

0

3

0

0

2

1

3

/ / / / / /

1st digit

2nd digit

3th digit

4th digit

key

Figure 6.3. The trie tree from Figure 6.2.c by considering the ignoring of empty nodes and null pointers.

 With the above modification, searching and adding of keys is slightly modified. It is preserved that

searching and adding is computed in constant time which depends on the number of the length of its keys [Maly76].

It is important to recall that this bound for time is valid if the length of the keys is constant [Bodon04]. This approach

for trie trees reduces the storage requirements by using only the necessary pointers.

6.1.1.2. Representing an nD-EVM in a Trie Tree

 An Extreme Vertex can be seen as a key with length n. Each one of its coordinates in this case corresponds

to each one of its “digits”. The base of the keys is given by the number of distinct coordinates present in the

nD-EVM where such vertex is contained. Consider for example the set of extreme vertices in a 4D unit hypercube c.

Because we are considering, as stated in Chapter 5, that the coordinates of vertices are sorted according to

coordinate X1, then to coordinate X2, and so on until coordinate X4, hence we have:

EVM4(c) = {(0,0,0,0), (0,0,0,1), (0,0,1,0), (0,0,1,1), (0,1,0,0), (0,1,0,1), (0,1,1,0), (0,1,1,1),

 (1,0,0,0), (1,0,0,1), (1,0,1,0), (1,0,1,1), (1,1,0,0), (1,1,0,1), (1,1,1,0), (1,1,1,1)}

Therefore, our keys have length n = 4 and the order is given by m = 2 (the number of distinct coordinates in

EVM4(c)). Now we will proceed to introduce these points, or “keys”, in a trie tree in such way that each one of its

nodes stores their corresponding Xi-coordinate, or “digit”. Moreover, that structure have a height given by n = 4

levels. See Figure 6.4.

Chapter 6 - Algorithms in the nD-EVM and their Performance

1

2nd coordinate

0 0 0

1

1 0

1

1 0 0

1

1 0

1

3th coordinate 4th coordinate

/

/

/

/

/

/

/

/

0 0 0

1

1 0

1

1 0 0

1

1 0

1

/

/

/

/

/

/

/

/

0

1st coordinate

Figure 6.4. The trie tree associated to the EVM of a 4D unit hypercube.

The node 0 in the first level points to a subtree that represents to all the values of extreme vertices whose

first coordinate, or “digit”, is 0. In a similar way, node 1 in the same level points to the subtree that represents to all

the values of extreme vertices whose first coordinate is 1. The first of these two referred subtrees contains the

vertices embedded in the first couplet perpendicular to X1-axis, i.e. 1

1()cΦ ; while the second subtree contains the

vertices embedded in the second couplet perpendicular to X1-axis, i.e., 1

2 ()cΦ .

Orthogonal Polytopes: Study and Application

1st coordinate

0 0 0

1

1 0

1

1 0

1

0

1

/

/

/

/

1

0

2nd coordinate 3th coordinate

/

/

/

/

1

2nd coordinate

0 0 0

1

1 0

1

1 0 0

1

1 0

1

3th coordinate 4th coordinate

/

/

/

/

/

/

/

/

0 0 0

1

1 0

1

1 0 0

1

1 0

1

/

/

/

/

/

/

/

/

0
1st coordinate

0

1

0

1

/

/

/

/

1

0
1st coordinate 2nd coordinate

0

1

/

/

1st coordinate

Figure 6.5. Extracting kD couplets from the trie tree associated to the EVM in a 4D unit hypercube.

a) Extracting the projection of a 3D couplet. b) Extracting the projection of a 2D couplet. c) Extracting a brink.

In Chapter 5 we commented that in fact the couplets are themselves

(n-1)D-OPP’s, 3D-OPP’s in this case, embedded in 4D space. By applying the projection operator π1 we get the

projection of such couplet in a 3D hyperplane perpendicular to X1-axis, hence π1(1

1()cΦ) is a 3D-OPP embedded in

3D space and obviously its points contain three coordinates. The 3D-OPP π1(1

1()cΦ) is present in the trie tree from

Figure 6.4. Consider again node 0 in the trie’s first level. We commented before that such node points to the subtree

that contains those extreme vertices whose first coordinate is zero. The operation π1(1

1()cΦ) suppress precisely that

coordinate, hence, by extracting the subtree associated to node 0 first level we get the set of extreme vertices

associated to π1(1

1()cΦ). Such extracted subtree is now a trie with height 3 (See Figure 6.5).

 At this point it is clear that the above procedure of extraction of a subtree leads to a process where at the

same time it is possible to extract the projection of the couplets from π1(1

1()cΦ). This process can descend until we

extract subtries with one level which corresponds to extreme vertices associated to brinks. At this point, a trie

represents the EVM of a 1D-OPP’s and its structure corresponds to a simple connected linked list.

 Trie trees as a way for representing nD-EVM’s provide us an immediate access to couplets as shown in the

previous example. In fact, according to the operation to perform, a copy of an extracted subtrie could be not

necessary and only a pointer to the root of the subtrie would be sufficient. In this sense, algorithms PutHvl

(appending an couplet), ReadHvl (extracting an couplet), PutBrink (adding a brink) and ReadBrink (extracting a

brink) which were presented in Section 6.1 can be implemented taking in account this tree structure. At this point is

important to mention that the way trie trees represent EVM’s, and their vertices, was previously identified by

[Aguilera98] in the context of data compression schemes for EVM in 3D space.

1π

1π

1π

)a

)b

)c

Chapter 6 - Algorithms in the nD-EVM and their Performance

 To perform the Regularized Xor Boolean operation according to Theorem 5.19, that is,

(*) () ()n n nEVM p q EVM p EVM q⊗ = ⊗ , by assuming that our nD-EVM’s are stored in trie trees we can proceed as

follows:

• Copy the trie tree associated to EVMn(p). Such copy trie at the end of the process will correspond to the trie

associated to (*)
n

EVM p q⊗ .

• Perform a Depth First Search in the trie tree associated to EVMn(q):

o When a leaf node is reached we have identified the coordinates of one of the points in EVMn(q). This point

is searched in the trie associated to (*)
n

EVM p q⊗ . If it is not present then it is added to the structure,

otherwise it is removed from the trie corresponding to (*)
n

EVM p q⊗ .

Because the length of our keys is constant, then as mentioned before, searching, adding and deleting a vertex is

performed in constant time. Hence, procedure MergeXor, mentioned in Section 6.1, can be implemented assuming

EVM’s are stored through trie trees and its execution time will preserve its linearity.

Consider for example the 3D-OPP’s p and q presented in the Figures 6.6.a and b with their respective

EVM’s stored through trie trees of height 3 which are shown in Figures 6.6.c and d. The common points to both

EVM’s will not be present in the result of Xor operation between p and q. Such common vertices are shown in the

trie trees. After performing Xor operation according to the procedure we have described we obtain the 3D-OPP

corresponding to
3(*)EVM p q⊗ . Such OPP and its trie tree are shown in Figure 6.7.

Orthogonal Polytopes: Study and Application

-x 1

x 1

2 x 2

-x 2 x 3

-x 3

a

b

c

d

e

f

g

h

i

j

k

l

m
n

-x 1

x 1

2 x 2

x 3

-x 3

-x 2

a'

b'

c'

d'

e'

f'

g'

h'

a) b)

-1 -1 -1

0

0 -1

0

0 -1

1

-1

0

/

/

/

/

0

-1

2nd coordinate 3th coordinate

/

/

/

/

0

1

/

/

1

1 -1

1

0

1

/

/

/

/

1

0

a

b

c

d

e

f

g

h

i

j

k

l

m

n

1st coordinate

-1 -1 -1

1

0 -1

1

/

/

2nd coordinate 3th coordinate

/

/

1 -1

1

-1

1

/

/

/

/

0

-1

a'

b'

c'

d'

e'

f'

g'

h'

1st coordinate

c) d)

Figure 6.6. Two 3D-OPP’s (a and b) and their associated trie trees which store their corresponding EVM’s (c and d).

The dotted lines indicates common extreme vertices to both OPP’s.

Chapter 6 - Algorithms in the nD-EVM and their Performance

-x 1

x 1

2 x 2

x 3
b

d

 d’

b’ f

g

h

i

j

m
n

h’

g’

e
 k

e’

a)

b)

1st coordinate

-1

-1 -1

0

/

/

0

1

0

1

/

/

/

/

1

-1

-1 0

1

/

/

0 -1

1

-1

0

/

/

/

/

0

-1

2nd coordinate 3th coordinate

0

1

/

/

1

1

0 0

1

/

/

b

d

e

f

g

h

i

j

k

m

n

b'

d'

e'

g'

h'

Figure 6.7. a) The 3D-OPP corresponding to
3(*)EVM p q⊗ in Figure 6.6. b) Its associated trie tree.

Following sections in this chapter will describe algorithms under the nD-EVM and we will analyze from a

statistical point of view their execution time. The implementations of those procedures are based in the fact that the

EVM’s are stored using trie trees and the procedures described in this section.

6.2. The Boolean Operations Algorithm for the nD-EVM

 This section describes the algorithm originally presented in [Aguilera98] for performing regularized

Boolean operations. Let p and q be two nD-OPP’s represented through the nD-EVM, and let op* be a Boolean

operator in {∪*, ∩*, -*, ⊗*}. The algorithm computes the resulting nD-OPP r = p op* q, and it is based on

Theorem 5.20. Note that r = p ⊗* q can also be trivially performed using Theorem 5.19. The idea behind this

algorithm is the following [Aguilera98]:

• The sequence of sections from p and q, perpendicular to Xi-axis, can be obtained first, based in Theorem 5.17.

• Then, according to Corollary 5.6, every section of r can recursively be computed as () () * ()
i i i

k k kS r S p op S q= .

• Finally, r can be obtained from its sequence of sections, perpendicular to Xi-axis, according to Theorem 5.16.

Nevertheless, Algorithm 6.4 does not work in this sequential form. It actually works in a wholly merged form in

which it only needs to store one section for each of the operands p and q, and two consecutive sections for the result

r. It also considers a unified grid partition
1(|)part p q for both operands (See Section 5.6.1), assuming virtual

couplets as needed.

Orthogonal Polytopes: Study and Application

Input: The nD-OPP’s p and q represented through the nD-EVM.

 The number n of dimensions and the Boolean operation op.

Output: The output nD-OPP r, such that r = p op* q, codified through the nD-EVM.
Procedure BooleanOperation(EVM p, EVM q, BooleanOperator op, int n)

 EVM sP, sQ // Current sections of p and q respectively.

 EVM hvl // I/O couplet.

 boolean fromP, fromQ // flags for the source of the couplet hvl.

 CoordType coord // the common coordinate of couplets.

 EVM r, sRprev, sRcurr // nD-OPP r and two of its sections.

 If(n = 1) then // Basic case
return BooleanOperation1D(p, q, op)

 else

 n = n – 1

 sP = InitEVM()

 sQ = InitEVM()

 sRcurr = InitEVM()

 NextObject(p, q, coord, fromP, fromQ)

 While(Not(EndEVM(p)) and Not(EndEVM(q)))
 If(fromP = true) then

 hvl = ReadHvl(p)

 sP = GetSection(sP, hvl)

 end-of-if
 If(fromQ = true) then

 hvl = ReadHvl(q)

 sQ = GetSection(sQ, hvl)

 end-of-if

 sRprev = sRcurr

 sRcurr = BooleanOperation(sP, sQ, n, op) // Recursive call

 hvl = GetHvl(sRprev, sRcurr)

 SetCoord(hvl, coord)

 PutHvl(hvl, r)

 NextObject(p, q, coord, fromP, fromQ)

 end-of-while

 while(Not(EndEVM(p)))

 hvl = ReadHvl(p)

 PutBool(hvl, r, op)

 end-of-while
 while(Not(EndEVM(q)))

 hvl = ReadHvl(q)

 PutBool(hvl, r, op)

 end-of-while
 return r

 end-of-else
end-of-procedure

Algorithm 6.4. Computing Regularized Boolean Operations on the nD-EVM.

We describe some functions not defined in previous section [Aguilera98]:

• Function BooleanOperation1D performs 1D Boolean operations between p and q that are two 1D-OPP’s.

• Procedure NextObject considers both input objects p and q and returns the common coord value of the next hvl

to process, using function GetCoord. It also returns two flags, fromP and fromQ, which signal from which of the

operands (both inclusive) is the next hvl to come.

• The main loop of procedure BooleanOperation gets couplets from p and/or q, using function GetSection. These

sections are recursively processed to compute, according to Corollary 5.6, the corresponding section of r,

sRcurr. Since two consecutive sections, sRprev and sRcurr, are kept, then the projection of the resulting hvl, is

obtained by means of function GetHvl and then, it is correctly positioned by procedure SetCoord.

• When the end of one of the polytopes p or q is reached then the main iteration finishes, and the remaining

couplets of the other polytope are either appended or not to the resulting polytope depending on the Boolean

operation considered. Procedure PutBool performs this appending process.

6.2.1. Performance of Boolean Operations under the nD-EVM

6.2.1.1. A Note about the Experimental Complexity Analysis

In the following section we will present results related with execution times for Algorithm 6.4 which

performs Boolean Operations between two nD-OPP's represented through the nD-EVM. We proceed as follows:

Chapter 6 - Algorithms in the nD-EVM and their Performance

• Our testing consider n = 2, 3, 4, 5.

• For each n we have generated 16,000 random nD-OPP's according to the following procedures:

o Given two hypervoxelizations representing nD-OPP's g1 and g2 we obtain their respective nD-EVM's

namely EVMn(g1) and EVMn(g2). According to Theorem 5.1, if a vertex is surrounded by an odd number of

occupied hypervoxels then it is an Extreme Vertex. Thus, a hypervoxelization to nD-EVM conversion

consists on collecting every vertex that belongs to and odd number of hypervoxels, and discarding the

remaining vertices (In Section 6.6 we will deal with detail the topic related to the conversion of the

nD-EVM from and to other representation schemes).

o Given the Regularized Boolean Operator op* we perform both g1 op* g2 and EVMn(g1 op* g2) according to

the methodologies described in Section 2.2.5 and Section 5.6 respectively.

o Let EVMn(r) be the output given by Algorithm 6.4, i.e., EVMn(r) = EVMn(g1 op* g2). Let r' be the result

provided by Boolean operation op* between hypervoxelizations of nD-OPP's g1 and g2. As a mechanism for

controlling possible errors in our implementations we obtain EVMn(r') and verify that all the 16,000

generated nD-OPP’s satisfied EVMn(r') = EVMn(r). The comparison EVMn(r') = EVMn(r) is not considered

in the recorded execution times.

• The considered Boolean operations are Regularized Intersection, Union and Xor. In the case corresponding to

Xor operation we have tested the same 8,000 pairs of generated nD-OPP’s with the Algorithm MergeXor,

described in Section 6.1, in order to compare its efficiency with Algorithm 6.4.

• The units for the time measures presented in Charts 6.1 to 6.11 are given in nanoseconds.

• The evaluations were performed in a computer with Intel Celeron Processor at 900 Mhz and 256 megabytes in

RAM memory. This equipment was isolated from network connections, virus scanners and utilities for the

management and maintenance of files. This isolation has the objective of avoiding as possible the execution of

additional processes that could affect the execution time of our algorithms.

• The algorithms were implemented using the Java Programming Language under the Software Development

Kit 1.5 provided by Sun Microsystems.

• As commented in Section 6.1.1.2 our EVM’s are stored and managed through trie trees. Our implemented

algorithms consider this aspect.

• Once the generation of nD-OPP's has finished and the algorithms were evaluated we proceed with a statistical

analysis in order to find a trendline of the form t = ax
b
, where x = Card(EVMn(g1)) + Card(EVMn(g2)), that fits

as good as possible to our measures in order to provide an estimation of the temporal complexity of the

evaluated algorithms for each value of n. The quality of the approximation curve is assured by computing the R
2

value known as the coefficient of determination. It is well known that R
2
 ∈ [0, 1] and it reveals how closely the

estimated values for the trendline correspond to our time measures [Burden04]. According to the literature, our

trendlines are most reliable when its R
2
 is at or near 1 [Wackerly01].

• In Section 6.2.1.3, and starting from the data presented in Section 6.2.1.2 and their associated trendlines, we

will propose an approximation surface for temporal complexity of Algorithm 6.4 for each considered Boolean

operation. Such surface which will be a function of two variables: the number x of Extreme Vertices in the input

polytopes and the number n of dimensions.

• The trendlines and their coefficients of determination were computed using software Mathematica version 5.0.1,

Wolfram Research. Approximation surfaces and their coefficients of determination were determined through

software TableCurve 3D version 4.0.01, Systat Software.

6.2.1.2. The Time Complexity of the Boolean Operations Algorithm for n = 2, 3, 4, 5:

An Experimental Analysis

 We start by considering the case n = 2. Our generated 8,000 Card(EVM2(g1)) + Card(EVM2(g2)) have the

following characteristics:

• Max(Card(EVM2(g1)) + Card(EVM2(g2))) = 7,580

• Min(Card(EVM2(g1)) + Card(EVM2(g2))) = 136

• Mean(Card(EVM2(g1)) + Card(EVM2(g2))) = 4,822.5567

• Standard_Deviation(Card(EVM2(g1)) + Card(EVM2(g2))) = 1,705.3379

The Charts 6.1 and 6.2 show the timings of Algorithm 6.4 under Regularized Union, Intersection and Xor. The

Table 6.1 shows the equations of their associated trendlines. We will discuss our measures at the end of this section.

Orthogonal Polytopes: Study and Application

Chart 6.1. Execution times of Algorithm 6.4 under 2D Regularized Union and Intersection.

Chart 6.2. Comparing execution times of Algorithm 6.4 and MergeXor Function under 2D Regularized Xor.

Chapter 6 - Algorithms in the nD-EVM and their Performance

Operation n Trendline t = ax
b
 a b R

2

Union 2 t = 3,920.89x
1.35026

 3,920.89 1.35026 0.9709

Intersection 2 t = 10,006.7x
1.15994

 10,006.7 1.15994 0.9030

Xor 2 t = 4,033.48x
1.34649

 4,033.48 1.34649 0.9690

Xor (MergeXor) 2 t = 20,883.7x
1.08317

 20,883.7 1.08317 0.9839
Table 6.1. Trendlines approximating the execution times for 2D Regularized Boolean Operations.

Now considering the case n = 3. Our generated 8,000 Card(EVM3(g1)) + Card(EVM3(g2)) have the

following characteristics:

• Max(Card(EVM3(g1)) + Card(EVM3(g2))) = 8,280

• Min(Card(EVM3(g1)) + Card(EVM3(g2))) = 216

• Mean(Card(EVM3(g1)) + Card(EVM3(g2))) = 5,599.993

• Standard_Deviation(Card(EVM3(g1)) + Card(EVM3(g2))) = 1,728.84

The Charts 6.3 and 6.4 show the timings of Algorithm 6.4 under 3D Regularized Union, Intersection and Xor. The

Table 6.2 shows the equations of their associated trendlines together with their respective coefficients of

determination.

Orthogonal Polytopes: Study and Application

Chart 6.3. Execution times of Algorithm 6.4 under 3D Regularized Union and Intersection.

Chart 6.4. Comparing execution times of Algorithm 6.4 and MergeXor Function under 3D Regularized Xor.

Chapter 6 - Algorithms in the nD-EVM and their Performance

Operation n Trendline t = ax
b
 a b R

2

Union 3 t = 45,677.9x
1.10379

 45,677.9 1.10379 0.9726

Intersection 3 t = 24,865.6x
1.11831

 24,865.6 1.11831 0.9426

Xor 3 t = 49,920.9x
1.09301

 49,920.9 1.09301 0.9706

Xor (MergeXor) 3 t = 46,208.3x
0.96474

 46,208.3 0.96474 0.9905
Table 6.2. Trendlines approximating the execution times for 3D Regularized Boolean Operations.

In the case n = 4 we have that the generated set of 4D-EVM’s has the following values:

• Max(Card(EVM4(g1)) + Card(EVM4(g2))) = 8,492

• Min(Card(EVM4(g1)) + Card(EVM4(g2))) = 48

• Mean(Card(EVM4(g1)) + Card(EVM4(g2))) = 5,792.8812

• Standard_Deviation(Card(EVM4(g1)) + Card(EVM4(g2))) = 1,783.3989

The Charts 6.5 and 6.6 show the timings of Algorithm 6.4 under 4D Regularized Union, Intersection and Xor. The

Table 6.3 shows the equations of their associated trendlines.

Orthogonal Polytopes: Study and Application

Chart 6.5. Execution times of Algorithm 6.4 under 4D Regularized Union and Intersection.

Chart 6.6. Comparing execution times of Algorithm 6.4 and MergeXor Function under 4D Regularized Xor.

Chapter 6 - Algorithms in the nD-EVM and their Performance

Operation n Trendline y = ax
b
 a b R

2

Union 4 t = 24,015.4x
1.19194

 24,015.4 1.19194 0.9713

Intersection 4 t = 4,779.91x
1.32116

 4,779.91 1.32116 0.9374

Xor 4 t = 24,219.1x
1.19098

 24,219.1 1.19098 0.9714

Xor (MergeXor) 4 t = 50,677.2x
0.93083

 50,677.2 0.93083 0.9905
Table 6.3. Trendlines approximating the execution times for 4D Regularized Boolean Operations.

Finally we consider case n = 5. The generated 8,000 Card(EVM5(g1)) + Card(EVM5(g2)) presents the

following values:

• Max(Card(EVM5(g1)) + Card(EVM5(g2))) = 7,592

• Min(Card(EVM5(g1)) + Card(EVM5(g2))) = 96

• Mean(Card(EVM5(g1)) + Card(EVM5(g2))) = 4,815.6317

• Standard_Deviation(Card(EVM5(g1)) + Card(EVM5(g2))) = 1668.1757

The Charts 6.7 and 6.8 show the timings of Algorithm 6.4 under 5D Regularized Union, Intersection and Xor. The

Table 6.4 shows the equations of their associated trendlines together with their respective coefficients of

determination.

Orthogonal Polytopes: Study and Application

Chart 6.7. Execution times of Algorithm 6.4 under 5D Regularized Union and Intersection.

Chart 6.8. Comparing execution times of Algorithm 6.4 and MergeXor Function under 5D Regularized Xor.

Chapter 6 - Algorithms in the nD-EVM and their Performance

Operation n Trendline y = ax
b
 a b R

2

Union 5 t = 26,448.5x
1.23598

 26,448.5 1.23598 0.9596

Intersection 5 t = 13,479.3x
1.24989

 13,479.3 1.24989 0.9002

Xor 5 t = 38,402.8x
1.19118

 38,402.8 1.19118 0.9659

Xor (MergeXor) 5 t = 32,990.5x
0.98554

 32,990.5 0.98554 0.9914
Table 6.4. Trendlines approximating the execution times for 5D Regularized Boolean Operations.

 According to the results presented in Charts 6.1 to 6.8 and Tables 6.1 to 6.4 we have the following

observations:

• Performing intersections has a lesser cost respect to unions. This phenomenon was previously identified in

[Aguilera98] for the 3D case. Although both operations are performed by the same algorithm, the way the

polytopes are processed is distinct. As pointed out by [Aguilera98], Algorithm 6.4 has three processing stages

labeled as stage A, stage B and stage C (see Figure 6.8). Only one of the two involved nD-OPP’s is present at

stages A and C, with trivial recursive calls at stage A, and no recursive calls at stage C. If the involved Boolean

operation is an intersection then the result is empty at those stages, thus almost no work is done at stage A, and

no work at all is done at stage C. Any way, stage B will deal with both operands, but the recursive calls at this

stage will also have stages A, B and C. Unions, on the other hand, produce Boolean results at all three stages

[Aguilera98].

• Performing Regularized Xor operation is more efficient by using MergeXor function instead of Algorithm 6.4.

We have commented previously that MergeXor has a linear complexity execution time because it considers

extreme vertices in both input polytopes and discards those vertices present in both polytopes, as established in

Theorem 5.19 (The Table 6.5 also shows this linearity in experimental way). Moreover, execution time of

MergeXor is not affected by the dimensionality of the input polytopes. As seen in Chart 6.9 we have 2D, 3D,

4D and 5D-OPP’s with 0 to approximately 9,000 extreme vertices and although its dimensionality is distinct, its

cardinality is the same. In this same Chart can be observed that execution times of Algorithm 6.4 were always

greater than those from function MergeXor.

• The time complexity of Algorithm 6.4 increases according to the dimensionality of the input nD-OPP’s. This

situation is easy to deduce because the number of recursivity levels depends of the number of dimensions and it

is visualized in Charts 6.9 to 6.11.

Figure 6.8. Boolean Operations between two 2D-OPP’s a and b.

c) The three processing stages (A, B and C) of the Boolean Operations Algorithm (figure taken from [Aguilera98]).

n Trendline t = ax
b
 a b R

2

2 t = 20,883.7x
1.08317

 20,883.7 1.08317 0.9839

3 t = 46,208.3x
0.96474

 46,208.3 0.96474 0.9905

4 t = 50,677.2x
0.93083

 50,677.2 0.93083 0.9905

5 t = 32,990.5x
0.98554

 32,990.5 0.98554 0.9914
Table 6.5. Showing the linearity of execution time in MergeXor function by experimental way.

Orthogonal Polytopes: Study and Application

Chart 6.9. Comparing execution times for Algorithm 6.4 and MergeXor function for nD-OPP’s with n = 2, 3, 4, 5 under Regularized Xor.

Chart 6.10. Comparing execution times for Algorithm 6.4 for nD-OPP’s with n = 2, 3, 4, 5 under Regularized Union.

Chapter 6 - Algorithms in the nD-EVM and their Performance

Chart 6.11. Comparing execution times for Algorithm 6.4 for nD-OPP’s with n = 2, 3, 4, 5 under Regularized Intersection.

6.2.1.3. Putting all Together: Providing an Statistical Approximation for Execution Time of Boolean

Operations Algorithm under the nD-EVM

 According to the results obtained in previous section is natural to expect that execution time of Algorithm

6.4 depends on two variables: the cardinality x of the nD-EVM’s associated to the input polytopes, and the number n

of dimensions. Using the measures obtained in previous sections we compute approximation surfaces, i.e., functions

from 2� to � , that provide us an estimation of the execution time to expect given the number of extreme vertices

and the number of dimensions. In Table 6.6 we present approximation surfaces of the form t = ax
b
n

c
 for Intersection

and Union operations and their respective coefficients of determination; in the case for Xor operation we present a

function of the form t = ax
b
n

b
 + c (The function t = 4506.37 x

1.1819
n

1.4462
 was also found for Xor operation, however

its coefficient of determination was 0.8357. We decided to propose an alternative form for this specific case in order

to provide a more precise estimation).

Operation Approximation Surface a b c R
2

Intersection t = 4,271.11x
1.1737

n
1.0862

 4,271.11 1.1737 1.0862 0.9234

Union t = 16,698.63x
1.0821

n
1.0607

 16,698.63 1.0821 1.0607 0.9221

Xor t = 483.17 x
1.4161

n
1.4161

 + 108,263,080 483.1716 1.4161 108,263,080 0.9260
Table 6.6. Approximation surfaces for estimating execution times for Boolean operations using Algorithm 6.4.

 In Figure 6.9.a we can visualize in three-dimensional space the approximation surfaces and the way they

are related between them. The Figure 6.9.b shows another perspective. We have plotted a range of extreme vertices

from 0 to 10,000 and the number of dimensions from 0 to 10. It can be observed in these figures that surface

approximating execution time for Intersection operation preserves the property identified before: Its execution time

is lesser that execution time of Union operation and even Xor operation.

Orthogonal Polytopes: Study and Application

a)

b)
 Union Intersection Xor

Figure 6.9. Plotting approximation surfaces for execution times of Algorithm 6.4 under Regularized Boolean Union, Intersection and Xor,

0 ≤ Card(EVMn(g1))+Card(EVMn(g2)) ≤ 10,000; 0 ≤ n ≤ 10.

 The next logical step to consider is the prediction of execution times for cases n > 4 under nD-EVM

Boolean Operations Algorithm. This inference can be made through the approximation surfaces we have presented.

It is obvious that by fixing the number of dimensions in the equations from Table 6.6 we obtain a function which

depends of the number of input extreme vertices. In Tables 6.7, 6.8 and 6.9 we present our predictions for executions

times in the cases with n = 6, 7 by starting from our approximation surfaces. Our tables show both the trendlines

obtained in Section 6.2.1.2 and the trendlines obtained by fixing n value in the corresponding approximation surface

for the referred Boolean operation. Moreover, in such cases we show the coefficients of determination showed in

Section 6.2.1.2 and the coefficients of determination that show how closely the estimated values for the new

trendlines correspond to our time measures with n = 2, 3, 4, 5.

Chapter 6 - Algorithms in the nD-EVM and their Performance

n
Trendline t = ax

b

(Section 6.2.1.2)
R

2 Trendline t = ax
b

(by fixing n in approximation surface)
R

2

2 t = 3,920.89 x
1.35026

 0.9709 t = 34,832.4 x
1.0821

 0.8500

3 t = 45,677.9 x
1.10379

 0.9726 t = 53,550.5 x
1.0821

0.9634

4 t = 24,015.4 x
1.19194

 0.9713 t = 72,658.4 x
1.0821

0.7679

5 t = 26,448.5 x
1.23598

 0.9596 t = 92,061.6 x
1.0821

0.9079

6 t = 111,717.5 x
1.0821

7 t = 131,563.8 x
1.0821

Table 6.7. Fixing the n value in surface approximation for Union operation, under Algorithm 6.4, in order to predict trendlines for n > 4.

n Trendline t = ax
b

(Section 6.2.1.2)
R

2 Trendline t = ax
b

(by fixing n in approximation surface)
R

2

2 t = 10,006.7 x
1.15994

 0.9030 t = 9,068.18 x
1.1737

0.9028

3 t = 24,865.6 x
1.11831

 0.9426 t = 14,086.08 x
1.1737

0.8833

4 t = 4,779.91 x
1.32116

 0.9374 t = 19,253.01 x
1.1737

0.8573

5 t = 13,479.3 x
1.24989

 0.9002 t = 24,533.7 x
1.1737

0.8861

6 t = 29,909.9 x
1.1737

7 t = 35,362.1 x
1.1737

Table 6.8. Fixing the n value in surface approximation for Intersection operation, under Algorithm 6.4, in order to predict trendlines for n > 4.

n
Trendline t = ax

b

(Section 6.2.1.2)
R

2 Trendline t = ax
b
 + c

(by fixing n in approximation surface)
R

2

2 t = 4,033.48 x
1.34649

 0.9690 t = 1289.4 x
1.4161

 + 108263080 0.72955

3 t = 49,920.9 x
1.09301

 0.9706 t = 2289.5 x
1.4161

 + 108263080 0.9219

4 t = 24,219.1 x
1.19098

 0.9714 t = 3440.9 x
1.4161

 + 108263080 0.7379

5 t = 38,402.8 x
1.19118

 0.9659 t = 4719.6 x
1.4161

 + 108263080 0.9559

6 t = 6110.1 x
1.4161

 + 108263080

7 t = 7600.5 x
1.4161

 + 108263080
Table 6.9. Fixing the n value in surface approximation for Xor operation, under Algorithm 6.4, in order to predict trendlines for n > 4.

6.3. Computing the Content of an nD-OPP

The 1D content of a segment is its perimeter; the 2D content of a polygon is its area; the 3D content of a

polyhedron is its volume, and so on. In this section, we will show a procedure to compute the nD content enclosed by

an nD-OPP. An nD hyperprism is generated by the parallel motion of an (n-1)D polytope; it is bounded by the

(n-1)D polytope in its initial and final positions and by several (n-1)D hyperprisms [Sommerville58] (a special case

of an nD hyperprism is an nD unit hypercube generated according to the procedure by Claude Bragdon [Rucker84],

shown in Figure 6.10). Consider an nD hyperprism Pn whose base is an (n-1)D polytope Pn-1 of content Cn-1. If hn is

the distance between its bases, i.e. the height of the hyperprism, then its content is given by [Sommerville58]:

Content(Pn) = Content(Pn-1)⋅hn = Cn-1⋅hn (Equation 6.1)

If is the case where Pn-1 is an (n-1)D hyperprism with height hn-1 generated by the parallel motion of an

(n-2)D polytope Pn-2 (as the 4D hypercube in Figure 6.10.d) then Cn-1 is given by the expression Cn-1 = Cn-2⋅hn-1

where Cn-2 is the content of Pn-2. This last expression yields to rewrite Equation 6.1 as:

Content(Pn) = (Content(Pn-2)⋅hn-1)⋅hn = (Cn-2⋅hn-1)⋅hn

Orthogonal Polytopes: Study and Application

X

1

h
1

X 1 X 1

X 2

h 2

a) b)

X
1

X
2

X
1

X 2
X 3

h
3

X 1

X
3

X 2

X 1

X 4

X2
X

3 h 4

c) d)

Figure 6.10. The Claude Bragdon process for generating the 4D hypercube. a) A 1D segment is generated by the motion of a point along X1-axis.

b) A 2D square is generated by the motion of a segment along X2-axis. c) A 3D cube is generated by the motion of a square along X3-axis. d) A

4D hypercube is generated by the motion of a cube along X4-axis. The values h1 to h4 denote the heights of the hyperprisms generated in each step

of Bragdon’s sequence.

By considering that each (n-k)D hyperprism Pn-k is generated by the parallel motion of an (n-k-1)D

hyperprism Pn-k-1, where k = 0, 1, 2, …, n-1 (as the cases of the 3D, 2D and 1D cubes from Figures 6.10.c, b and a

respectively) then we have that the content of Pn can be computed according to

1

1

1
()

() 1
n

n n

h n
Content P

Content P h n−

=
= 

⋅ >

where hn is the height of hyperprism Pn when n > 1. In the basic case where n = 1 we have that the content of a

segment is given directly by its “height”, i.e., the distance between its two boundary points.

Now, we will extend the previous idea in order to compute the content of nD space enclosed by an nD-OPP.

In this case we will consider the partition induced by its Slices. A Slice from an nD-OPP can be seen as a set of one

or more disjoint nD hyperprisms whose (n-1)D base is the slice’ section. As pointed out in [Aguilera98] the volume

of a 3D-OPP p can be computed as the sum of the volumes of its 3D slices, where the volume of a ()
i

kSlice p is given

by the product between the content of its respective section ()i

k
S p (the 2D base of ()

i

kSlice p) and the distance

between ()
i

k pΦ and
1()

i

k p+Φ (the height of the 3D prism ()
i

kSlice p). Now let q = ()i

k
S p . The area of the 2D-OPP q

(see Figure 6.11 for an example) can be computed as the sum of the areas of its 2D slices, where the area of a

()
i

kSlice q is given by the product between the content of its respective section ()i

k
S q (the 1D base of ()

i

kSlice q) and the

distance between ()
i

k qΦ and
1()

i

k q+Φ (the height of the “2D prism” ()
i

kSlice p). Finally let r = ()i

k
S q . In the basic case

the length of the 1D-OPP r is computed as the sum of the lengths of its brinks.

Chapter 6 - Algorithms in the nD-EVM and their Performance

 X2

X1

Figure 6.11. A 2D-OPP q whose area is being computed: The total area of q is the sum of the areas of its slices. The area of 1()iSlice q is given by

the product of the length of its respective section 1()iS q and the distance between 1 1

1(),i iq +Φ Φ .

Let p be an nD-OPP. The nD space enclosed by p, denoted by Content(n)(p), can be computed as the sum of

the contents of its nD slices:

() ()
1

()

1
(1)

1

() 1

()
() (), () 1

inp
n i i i

k k k
n

k

Length p n

Content p
Content S p dist p p n

−

+
−

=

=


= 
⋅ Φ Φ >


∑

 (Equation 6.2)

Where npi is the number of couplets of p perpendicular to Xi-axis; ()
i

kS p is the k-th section of the nD-OPP p which is

perpendicular to Xi-axis and it is between couplets
1(), ()

i i

k kp p+Φ Φ .

 Algorithm 6.5 implements Equation 6.2 in order to compute the content of nD space enclosed by a

nD-OPP p expressed through the EVM-nD.

Input: An nD-EVM p.

 The number n of dimensions.

Output: The content of nD space enclosed by p.
Procedure Content(EVM p, int n)

 real cont = 0.0 // Variable cont will store the content of nD space enclosed by p.

 EVM hvl1, hvl2 // Couplets between a slice of p.

 EVM s // Current section of p.

if(n = 1) then

 return Length(p)

 else

 n = n – 1

hvl1 = InitEVM()

 hvl2 = InitEVM()

 s = InitEVM()

hvl1 = ReadHvl(p)

 while(Not(EndEVM(p)))

 hvl2 = ReadHvl(p)

 s = GetSection(s, hvl1)

 cont = cont + Content(s, n) * dist(hvl1, hvl2) // Recursive Call.

 hvl1 = hvl2

 end-of-while

 return cont
 end-of-else

end-of-procedure

Algorithm 6.5. Computing the content of nD space enclosed by p.

()1 1

1 2(), ()dist q qΦ Φ
()1 1

2 3(), ()dist q qΦ Φ

()1 1

3 4(), ()dist q qΦ Φ

()1 1

4 5(), ()dist q qΦ Φ

1

1()qΦ

1

2 ()qΦ

1

3 ()qΦ

1

4 ()qΦ 1

5 ()qΦ

1

3 ()S q
1

1 ()S q
1

2 ()S q

1

4 ()S q

Orthogonal Polytopes: Study and Application

6.3.1. Performance of the Algorithm

 We will proceed with a statistical analysis in order to determine execution time of Algorithm 6.5. This

analysis share some aspects respect to the study described in Section 6.2.1. In this case we will describe only the key

points related to the analysis to be applied over Algorithm 6.5:

• Our testing consider n = 2, 3, 4, 5.

• For each n we have generated 10,000 random nD-OPP's according to the following procedures:

o Given a hypervoxelization representing nD-OPP's g we obtain their respective nD-EVM, EVMn(g).

o Let C be the content of nD space enclosed by the polytope represented through EVMn(g). Such content is

computed through Algorithm 6.5.

o Let C’ be the content of nD space enclosed by the polytope g represented through a hypervoxelization. Such

computing is straightforward.

o As a mechanism for controlling possible errors in our implementations we verified that all the 10,000

generated nD-OPP’s satisfied C = C’.

The Table 6.10 shows some information related to our generated data. In Chart 6.12 it can be visualized the

behavior of Algorithm 6.5 with our set of nD-OPP’s. In the same chart can be also visualized the associated

trendline for each value of n.

n Max Min Mean Standard Deviation

2 5,418 0 2,788.999 1,549.5579

3 5,352 0 3,148.462 1,485.0206

4 5,464 0 3,210.922 1,488.6948

5 5,332 0 2,743.690 1,457.3235
Table 6.10. Some statistical characteristics of the set of 10,000 random nD-OPP’s for testing of Algorithm 6.5.

Chart 6.12. Comparing execution times for Algorithm 6.5 for nD-OPP’s with n = 2, 3, 4, 5.

Chapter 6 - Algorithms in the nD-EVM and their Performance

n Trendline t = ax
b
 a b R

2

2 t = 9,715.6x
1.0823

 9,715.6 1.0823 0.9844

3 t = 44,031x
0.9848

 44,031 0.9848 0.9878

4 t = 49,267x
0.9910

 49,267 0.9910 0.9665

5 t = 13,955x
1.1469

 13,955 1.1469 0.9479
Table 6.11. Equations associated to the trendlines that describe execution time of Algorithm 6.5 in the cases with n = 2, 3, 4, 5.

 An interesting aspect to be inferred from Table 6.11 yields to make the observation that all the exponents in

the obtained equations are almost linear. This property is preserved when we determine an approximation surface for

execution time of Algorithm 6.5. The associated equation, as previously commented in Section 6.2, is a function

from 2� to � which has as arguments the number x of extreme vertices in the input polytope g, i.e.,

x = Card(EVMn(g)) and the number of dimensions n. According to our analysis we have that the approximation

surface is given by

t = 4,763.939 x
1.1894

n
0.8390

In this case we have identified a coefficient of determination R
2
 = 0.9803. The Figure 6.12 shows the plotting of the

above function and shows graphically an estimation of the execution time of Algorithm 6.5 when the number of

input extreme vertices is from 0 to 10,000 and when the number of dimensions is between 0 and 10.

Figure 6.12. Plotting the approximation surface for execution time of Algorithm 6.5, 0 ≤ Card(EVMn(g)) ≤ 10,000; 0 ≤ n ≤ 10.

 The prediction of execution time for Algorithm 6.5 based in our approximation surface can be performed

by fixing the value of n in its associated equation. In this case, we have obtained a good approximation by our

trendlines presented in Table 6.11 and now by considering the new trendlines obtained from the equation of our

approximation surface. See Table 6.12 where we present our estimations for execution time of Algorithm 6.5 in the

cases n = 6, 7.

Orthogonal Polytopes: Study and Application

n Trendline t = ax
b
 R

2

Trendline t = ax
b

(by fixing n in approximation surface)
R

2

2 t = 9,715.6x
1.0823

 0.9844 t = 8521.78 x
1.1894

0.9702

3 t = 44,031x
0.9848

 0.9878 t = 11,974.9 x
1.1894

 0.9745

4 t = 49,267x
0.9910

 0.9665 t = 15,243.8 x
1.1894

 0.9747

5 t = 13,955x
1.1469

 0.9479 t = 18,382.4 x
1.1894

 0.9785

6 t = 21,420.8 x
1.1894

7 t = 24,378.3 x
1.1894

Table 6.12. Fixing the n value in surface approximation for Algorithm 6.5 in order to predict trendlines for n > 4.

6.4. Computing the Content of the Boundary of an nD-OPP

Consider an nD hyperprism Pn whose base is an (n-1)D polytope Pn-1 of (n-1)D content Cn-1. Let hn be the

distance between its bases, i.e. the height of the hyperprism. Because our nD hyperprism Pn is generated by the

parallel motion of Pn-1 we have that the intersection between Pn and an (n-1)D hyperplane parallel to Pn-1 always

generates an (n-1)D polytope P’n-1 with the same characteristics that Pn-1. Computing the (n-2)D content BNn-2 of the

boundary of P’n-1 implies to compute each one the (n-2)D contents of its boundary elements. By multiplying each

term in BNn-2 by the height hn of Pn we get the (n-1)D content of each one of the (n-1)D hyperprisms perpendicular to

the bases of Pn. Trough this reasoning we get the following expression:

BoundaryContent(Pn) = 2⋅Content(Pn-1) + BoundaryContent(Pn-1)⋅hn = 2⋅Cn-1 + BNn-2⋅hn

In analogous way, respect to previous section, we have that this last expression descends recursively in the

number of dimensions where the basic case is reached when n = 2 where the perimeter (1D content of the boundary)

of a rectangle P2 is directly computed as the sum of the lengths of its four edges:

2

1 1

() 2
()

2 () () 2
n

n n n

Perimeter P n
BoundaryContent P

Content P BoundaryContent P h n− −

=
= 

⋅ + ⋅ >

 Now, we will extend the previous idea in order to compute the content of (n-1)D space enclosed by the

boundary of an nD-OPP. [Aguilera98] points out that the surface of a 3D-OPP p (see Figure 6.13 for an example)

can be computed as the sum of the areas of its 2D couplets, where the area of a ()i

k pΦ is given by ()2 ()i

kContent pΦ

(Equation 6.2). To this sum must be added the sum of the areas of the faces between ()i

k pΦ and
1()i

k p+Φ . These

areas are found by the product between the perimeter of the section ()i

k
S p and the distance between ()

i

k pΦ and

1()
i

k p+Φ (the height of the 3D prism ()
i

kSlice p). Now let q = ()i

k
S p , we have reached the basic case. The perimeter of

the 2D-OPP q can be computed as [Aguilera98]:

1 2() () ()Perimeter q x Sum q x Sum q= +

where ()ix Sum q is the sum of the lengths of all brinks parallel to Xi-axis.

Chapter 6 - Algorithms in the nD-EVM and their Performance

X 1

X 3

X 2

Figure 6.13. Computing the content of the boundary in a 3D prism: part of the total area is found by computing Content2(1

1()pΦ) and

Content2(1

2 ()pΦ) through Algorithm 6.5. The area of the remaining four faces is determined through the product of the perimeter of the

 section 1

1 ()S p and the distance between 1

1()pΦ and 1

2 ()pΦ .

Let p be an nD-OPP. The (n-1)D space enclosed by p, denoted by BoundaryContent(n-1)(p), can be computed

as follows (Equation 6.3):

() () ()

1 2

1
(1)

1
(1) (1)

1 1

() () 2

()
() () (), () 2

i inp np
n i i i i

k k k k
n n

k k

x Sum p x Sum p n

BoundaryContent p
Content p BoundaryContent S p dist p p n

−
−

+
− −

= =

+ =


= 
Φ + ⋅ Φ Φ >


∑ ∑

 Algorithm 6.6 implements Equation 6.3 in order to compute the content of (n-1)D space enclosed by the

boundary of p expressed through the EVM-nD.

Input: An nD-EVM p.

 The number n of dimensions.

Output: The content of (n-1)D space enclosed by the boundary of p.
Procedure BoundaryContent(EVM p, int n)

 real cont = 0.0 // cont stores the content of (n-1)D space enclosed by the boundary of p.

 EVM hvl1, hvl2 // Couplets between a slice of p.

 EVM s // Current section of p.

hvl1 = InitEVM()

 hvl2 = InitEVM()

 s = InitEVM()

If(n = 2) then
 return cont = x1Sum(p) + x2Sum(p)

 else

 n = n - 1

hvl1 = ReadHvl(p)

 while(Not(EndEVM(p)))

 hvl2 = ReadHvl(p)

 s = GetSection(s, hvl1)

 // Call to algorithm Content and recursive call.

 cont = cont + Content(hvl1, n) + BoundaryContent(s, n) * dist(hvl1, hvl2)

 hvl1 = hvl2

 end-of-while

 cont = cont + Content(hvl1, n) // hvl1 contains the last couplet of p.

 return cont

 end-of-else

end-of-procedure

Algorithm 6.6. Computing the content of (n-1)D space enclosed by the boundary of p.

()1 1

1 2(), ()dist p pΦ Φ

1

1()pΦ 1

2 ()pΦ

1

1 ()S p

Orthogonal Polytopes: Study and Application

6.4.1. Performance of the Algorithm

 The key points of the statistical analysis for execution time of Algorithm 6.6 are very similar to the analysis

described in Section 6.3.1:

• Our testing consider n = 2, 3, 4, 5.

• For each n we have generated 10,000 random nD-OPP's according to the following procedures:

o Given a hypervoxelization representing nD-OPP's g we obtain their respective nD-EVM, EVMn(g).

o Let BC be the content of the boundary of the polytope represented through EVMn(g). Such content is

computed through Algorithm 6.6.

o Let BC’ be the content of the boundary enclosed by the polytope g represented through a hypervoxelization.

Such computing is performed in a straightforward way.

o As a mechanism for controlling possible errors in our implementations we verified that all the 10,000

generated nD-OPP’s satisfied BC = BC’.

The Table 6.13 shows some information related to our generated data. In Chart 6.13 it can be visualized the

behavior of Algorithm 6.6 with our set of nD-OPP’s. In the same chart can be also visualized the associated

trendline for each value of n whose associated equations are shown in Table 6.14.

n Max Min Mean Standard Deviation

2 5,442 0 2,789.028 1,549.5244

3 5,382 0 3,148.203 1484.8637

4 5,482 0 3,212.393 1,489.3084

5 5,278 0 2,743.906 1,457.0870
Table 6.13. Some statistical characteristics of the set of 10,000 random nD-OPP’s for testing of Algorithm 6.6.

Chart 6.13. Comparing execution times for Algorithm 6.6 for nD-OPP’s with n = 2, 3, 4, 5.

Chapter 6 - Algorithms in the nD-EVM and their Performance

n Trendline t = ax
b
 a b R

2

2 t = 2,034.8x
1.5862

 2,034.8 1.5862 0.9976

3 t = 69,566x
1.0018

 69,566 1.0018 0.9889

4 t = 105,588x
0.9867

 105,588 0.9867 0.9571

5 t = 21,943x
1.1658

 21,943 1.1658 0.9321
Table 6.14. Equations associated to the trendlines that describe execution time of Algorithm 6.6 in the cases with n = 2, 3, 4, 5.

 As seen in Chart 6.13, and observing equations from trendlines in Table 6.14, execution time of

Algorithm 6.6 in the 2D case is above execution times of cases with n = 3, 4, 5. We will expose the reasons behind

this behavior. Consider nD-OPP’s from Figures 6.14.a, d and g. All of them contain 16 extreme vertices. Figure

6.14.a is a 2D-OPP an according to Algorithm 6.6 it is in the basic case. Due to the ordering we are considering for

its extreme vertices the lengths of the brinks parallel to X2-axis are directly computed (Figure 6.14.b). In the other

hand, in order to compute the lengths of the brinks parallel to X1-axis a sorting must be applied (see Figure 6.14.c).

In the particular case of this 2D-OPP the sorting considers 16 vertices. In the case related to Figure 6.14.d, the

3D-OPP p, whose 2D couplets perpendicular to X1-axis are shown in Figure 6.14.e, has two sections, perpendicular

to X1-axis, with 6 extreme vertices in each one (Figure 6.14.f). Those sections reach the basic case of Algorithm 6.6

and hence two sets of 6 extreme vertices must be sorted. Finally, the 4D hypercube from Figure 6.14.g has one 3D

section (Figure 6.14.h), and in the 2D case, one section with 4 extreme vertices which are also sorted (Figure

6.14.i). It is clear that all 2D-OPP’s reach the basic case of Algorithm 6.6 and therefore all its extreme vertices must

be sorted for computing the lengths of the brinks parallel to X1-axis. According to Chart 6.13, this situation is

relaxed according the dimensionality increases and execution times in cases for n = 3, 4, 5 increase, but not at the

same order than 2D case.

X2

X1

X2

X1

X2

X1

a) b) c)

-x1

x1

2x2

x3

x1

x1

x2

x1

x2

1

1 1(())S pπ 1

1 2(())S pπ

d) e) f)

X1

X4

X2

X
3

-x1

x1

2x2

-x2

x3

-x3

x1

x2

g) h) i)

Figure 6.14. Three nD-OPP’s with 16 extreme vertices which shown the behavior behind execution time of Algorithm 6.6.

a) A 2D-OPP, d) a 3D-OPP and g) a 4D hypercube (see text for details).

1

1()pΦ

1

2 ()pΦ

1

3 ()pΦ

Orthogonal Polytopes: Study and Application

Now we determine an approximation surface for execution time of Algorithm 6.6. The associated equation

is a function from 2� to � which has as arguments the number x of extreme vertices in the input polytope g, i.e.,

x = Card(EVMn(g)) and the number of dimensions n. According to our analysis the best approximation surface we

have found is given by

3 2

1454430 12921.02 7196150

0.0212336 0.247936 0.92776 1

n x
t

n n n

+ −
=

− + −

Whose coefficient of determination is R
2
 = 0.9963. The Figure 6.15 shows the plotting of the above function and

shows graphically an estimation of the execution time of Algorithm 6.6 when the number of input extreme vertices

is from 0 to 10,000 and when the number of dimensions is between 2 and 10.

Figure 6.15. Plot of the approximation surface for execution time of Algorithm 6.6, 0 ≤ Card(EVMn(g)) ≤ 10,000; 2 ≤ n ≤ 10.

As shown in previous algorithms, the prediction of execution time for Algorithm 6.6 based in our

approximation surface can be performed by fixing the value of n in its associated equation. In this case, we have

obtained the new trendlines presented in Table 6.15 (the second and third columns show trendlines and coefficients

of determination obtained from the data shown in Chart 6.13). A special mention is given to the new trendline

obtained for the case n = 2 where we identify a coefficient R
2
 = 0.2875. This situation is present because we consider

all data for n = 2, 3, 4, 5 when we determined our approximation surface and, moreover, we mentioned before that

the case n = 2 is special, respect to cases with n > 2, because the behavior of the Algorithm 6.6 in the basic case. See

Table 6.15 where we present our estimations for execution time of Algorithm 6.6. in the cases n = 6, 7.

n Trendline t = ax
b
 R

2 Trendline t = ax

+ b

(by fixing n in approximation surface)
R

2

2 t = 2,034.8 x
1.5862

 0.9976 384,039.59 x – 1.27427×10
8
 0.2875

3 t = 69,566 x
1.0018

 0.9889 103,232.89 x – 2.26333×10
7
 0.8883

4 t = 105,588 x
0.9867

 0.9571 125,427.79 x – 1.33809×10
7
 0.8681

5 t = 21,943 x
1.1658

 0.9321 136,582.83 x + 803,287.66 0.8774

6 56,840.3 x + 6,732,440

7 20,555.9 x + 4,748,570
Table 6.15. Fixing the n value in surface approximation for Algorithm 6.6 in order to predict trendlines for n > 4.

Chapter 6 - Algorithms in the nD-EVM and their Performance

6.5. Computing Forward and Backward Differences of an nD-OPP

According to Theorem 5.18, in an nD-OPP p, forward differences ()
i

kFD p are the (n-1)D cells on ()i

k
pΦ

whose normal vectors point to the positive side of the coordinate axis Xi which is perpendicular to ()i

k
pΦ , while

backward differences ()i

k
BD p are the (n-1)D cells on ()i

k
pΦ whose normal vectors point to the negative side of the

coordinate axis Xi which is perpendicular to ()i

k
pΦ . Through Definition 5.25 we have that a forward difference

()
i

kFD p and a backward difference ()i

k
BD p are computed according to () ()()1

() * ()i i

i k i k
S p S pπ π− − and

() ()()1
() * ()i i

i k i k
S p S pπ π −− respectively. Hence, an algorithm for computing forward and backward differences

consists in obtaining projections of sections of the input polytope and processing them through Definition 5.25 and

Algorithm 6.4 by computing Regularized difference between two consecutive sections, in order to obtain their

corresponding forward and backward differences. Algorithm 6.7 implements the above ideas in order to compute the

forward and backward differences in an nD-OPP p represented through the nD-EVM. The output of the proposed

algorithm will consist of two sets: the first set FD contains the (n-1)D-EVM’s corresponding to forward differences

in p, that is FD = () (){ }1 1 1
() ,..., ()

i

i i

n n np
EVM FD p EVM FD p− −

; while the second set BD contains the (n-1)D-EVM’s

corresponding to backward differences in p, i.e. BD = () (){ }1 1 1
() ,..., ()

i

i i

n n np
EVM BD p EVM BD p− −

.

Input: An nD-EVM p.

 The number n of dimensions.

Output: A set FD containing the (n-1)D-EVM’s of forward differences in p.

 A set BD containing the (n-1)D-EVM’s of backward differences in p.

Procedure GetForwardBackwardDifferences(EVM p, int n)

 FD = ∅ // FD will store (n-1)D-EVM’s corresponding to forward differences.

 BD = ∅ // BD will store (n-1)D-EVM’s corresponding to backward differences.

EVM hvl // Current couplet.

 EVM Si, Sj // Previous and next sections about hvl.

 EVM FDcurr // Current forward difference.

 EVM BDcurr // Current backward difference.

hvl = InitEVM()

Si = InitEVM()

 Sj = InitEVM()

 while(Not(EndEVM(p)))

hvl = ReadHvl(p) // Read next couplet.

Sj = GetSection(Si, hvl)

 FDcurr = BooleanOperation(Si, Sj, DifferenceOperator, n-1) //Call to Algorithm 6.4.

BDcurr = BooleanOperation(Sj, Si, DifferenceOperator, n-1) //Call to Algorithm 6.4.

FD = FD ∪ FDcurr // The new computed forward difference is added to set FD.

BD = BD ∪ BDcurr // The new computed backward difference is added to set BD.

 Si = Sj

 end-of-while
 return FD, BD

end-of-procedure

Algorithm 6.7. Computing the forward and backward differences in a polytope p represented through an nD-EVM.

 Algorithm 6.7 will be useful when we describe our procedure for extracting the boundary of an nD-OPP

which is represented through the nD-EVM. Such procedure will be described in Section 6.6.

6.5.1. Performance of the Algorithm

 The following key points define the conditions under which the execution time of Algorithm 6.7 was

measured:

• Our testing consider n = 2, 3, 4, 5.

• For each n we have generated 10,000 random nD-OPP's according to the following procedures:

o Given a hypervoxelization representing nD-OPP's g we obtain their respective nD-EVM, that is EVMn(g).

o According to Theorem 5.13 () ()()1

1

()
inp

i

i n n i k

k

EVM g EVMπ π−

=

= Φ∪ , and by Theorem 5.16 such expression can

be rewritten as () ()1 1

1

() (()) * (())
inp

i i

i n n i k i k

k

EVM g EVM S g S gπ π π− −

=

= ⊗∪ . By Property 5.9 we have

() () () ()() () ()()1 1 1
() * () () * () * () * ()i i i i i i

i k i k i k i k i k i k
S g S g S g S g S g S gπ π π π π π

− − −
⊗ = − ∪ −

Orthogonal Polytopes: Study and Application

Hence, and by applying definition of backward and forward differences, we obtain:

() ()1

1

() () * ()
inp

i i

i n n k k

k

EVM g EVM FD g BD gπ −

=

= ∪∪

o We can compute the set ()()i nEVM gπ by applying our projection operator (Definition 5.10) in a

straightforward way to the set of extreme vertices in the EVM associated to polytope g. In the order hand,

the set ()1

1

() * ()
inp

i i

n k k

k

EVM FD g BD g−

=

∪∪ is computed through our algorithm for Boolean operations (Algorithm

6.4) where ()
i

kFD p and ()i

k
BD p are included in the sets FD and BD which are the output of Algorithm 6.7.

As a mechanism for identifying possible errors in our implementation of Algorithm 6.7 we verify if

()()i nEVM gπ and ()1

1

() * ()
inp

i i

n k k

k

EVM FD g BD g−

=

∪∪ contain exactly the same vertices. If this is the case then we

store the operation’s results and proceed to generate a new random nD-OPP for testing.

The Table 6.16 shows some information related to our generated data. In Chart 6.14 can be visualized the behavior

of Algorithm 6.7 with our set of nD-OPP’s. In the same chart can be also visualized the associated trendline for each

value of n whose associated equations are shown in Table 6.17.

n Max Min Mean Standard Deviation

2 5,472 0 2,788.70 1,549.56

3 5,368 0 3,148.00 1,485.30

4 5,458 0 3,210.50 1,488.60

5 5,288 0 2,743.87 1,457.05
Table 6.16. Some statistical characteristics of the set of 10,000 random nD-OPP’s for testing of Algorithm 6.7.

Chart 6.14. Comparing execution times for Algorithm 6.7 for nD-OPP’s with n = 2, 3, 4, 5.

Chapter 6 - Algorithms in the nD-EVM and their Performance

n Trendline t = ax
b
 a b R

2

2 t = 1,668.39 x
1.42

 1,668.39 1.42 0.9859

3 t = 65,377.04 x
1.09

 65,377.04 1.09 0.9584

4 t = 28,506.68 x
1.25

 28,506.68 1.25 0.9859

5 t = 54,637.82 x
1.20

 54,637.82 1.20 0.9664
Table 6.17. Equations associated to the trendlines that describe execution time of Algorithm 6.7 in the cases with n = 2, 3, 4, 5.

As we have proceeded in previous algorithms, now we determine an approximation surface for execution

time of Algorithm 6.7. The associated equation is a function from 2� to � which has as arguments the number x of

extreme vertices in the input polytope g, i.e., x = Card(EVMn(g)), and the number of dimensions n. According to our

analysis we have that the approximation surface is given by

t = 1,849.27 x
1.3

n
1.64855

In this case we have identified a coefficient of determination R
2
 = 0.9797. The Figure 6.16 shows the plotting of the

above function and shows graphically an estimation of the execution time of Algorithm 6.7 when the number of

input extreme vertices is from 0 to 10,000 and when the number of dimensions is between 0 and 10.

Figure 6.16. Plot of the approximation surface for execution time of Algorithm 6.7, 0 ≤ Card(EVMn(g)) ≤ 10,000; 0 ≤ n ≤ 10.

Through the proposed approximation surface we have obtained the new trendlines presented in Table 6.18

(the second and third columns show trendlines and coefficients of determination obtained from the data shown in

Chart 6.14). Although the new trendline obtained for the case n = 2 has a coefficient R
2
 = 0.7454, the remaining

trendlines for cases n = 3, 4, 5 have coefficients above 0.94, which lead us to expect that given estimations for cases

n = 7, 8 are good bounds for execution times of Algorithm 6.7.

Orthogonal Polytopes: Study and Application

n Trendline t = ax
b
 R

2

Trendline t = ax
b

(by fixing n in approximation surface)
R

2

2 t = 1,668.39 x
1.42

 0.9859 t = 5,797.8 x
1.3

0.7454

3 t = 65,377.04 x
1.09

 0.9584 t = 11,312.5 x
1.3

 0.9443

4 t = 28,506.68 x
1.25

 0.9859 t = 18,177.2 x
1.3

 0.9935

5 t = 54,637.82 x
1.20

 0.9664 t = 26,259.6 x
1.3

 0.9899

6 t = 35,466.8 x
1.3

7 t = 45,728.5 x
1.3

Table 6.18. Fixing the n value in surface approximation for Algorithm 6.7 in order to predict trendlines for n > 4.

6.6. Algorithms for Converting the nD-EVM To and From Other Schemes

 This section deals with the process of converting the nD-EVM to and from other schemes for representing

orthogonal polytopes. The Sections 6.6.1 and 6.6.2 deal with converting the nD-EVM to and from Boundary

Representations (Section 2.2.3), respectively. The Section 6.6.3 covers conversions from Hyperspatial Occupancy

Enumeration Models to the nD-EVM (see Sections 2.2.5 and 2.2.6). This work does not include conversions from

the nD-EVM to Hyperspatial Occupancy Enumeration Models, because a general nD-OPP does not always

decompose into identical cells arranged in a fixed regular grid.

6.6.1. The n-Dimensional Boundary Representations to nD-EVM conversion

 A boundary representation of an nD-OPP p, must be able to provide, either directly or indirectly the set of

(n-1)D cells incident to each edge of p. According to Theorem 4.7, if n is odd then an odd edge of p has an even

number of incident (n-1)D cells; in the other hand, if n is even then an odd edge of p has an odd number of incident

(n-1)D cells. Then, all those vertices that have exactly n perpendicular odd edges in p, by Theorem 5.7 (see Section

5.3) will be Extreme Vertices. Thus, a Boundary Representation to nD-EVM algorithm would be as simple as

collecting every vertex that belongs to n perpendicular odd edges, and discarding the remaining ones.

 Any way, in this conversion process, [Aguilera98] points out that we must be aware of the boundary

representation must represent a valid orthogonal pseudo-polytope p, otherwise the obtained result (if any) will not be

meaningfull at all. Moreover, once the conversion has been performed, the potential set EVMn(p) should be validated

using Theorem 5.21 [Aguilera98].

6.6.2. The nD-EVM to n-Dimensional Boundary Representation Conversion

 In Section 2.2.3 we commented that a boundary representation can be seen as a Boundary Tree

[Putnam86]. In the tree, each node is split into a component for each element that it bounds. An element (vertex,

edge, etc.) will be represented several times inside the tree, one for each boundary that it belongs to. See Figure 6.17

for a cube’s boundary tree.

Chapter 6 - Algorithms in the nD-EVM and their Performance

Figure 6.17. The boundary tree associated to a 3D cube.

 The way we convert an nD-OPP represented through the nD-EVM to a boundary representation will

consider the reconstruction of the boundary tree associated to such nD-OPP. According to Theorem 5.18, in an

nD-OPP p, forward differences ()
i

kFD p are the (n-1)D cells on ()i

k
pΦ whose normal vectors point to the positive side

of the coordinate axis Xi which is perpendicular to ()i

k
pΦ , while backward differences ()i

k
BD p are the (n-1)D cells

on ()i

k
pΦ whose normal vectors point to the negative side of the coordinate axis Xi which is perpendicular to ()i

k
pΦ .

Such forward and backward differences can be computed through Algorithm 6.7. In fact, all ()
i

kFD p and ()i

k
BD p

from an nD-OPP are (n-1)D-OPP’s embedded in (n-1)D space because by Definition 5.21

()
i

kFD p = () ()()1
() * ()i i

i k i k
S p S pπ π

−
− and ()i

k
BD p = () ()()1

() * ()i i

i k i k
S p S pπ π

−
− . If such forward and backward

differences were computed through our proposed algorithm then they are expressed as
1(())

i

n kEVM FD p−
 and

1(())
i

n kEVM BD p−
. If we apply again Algorithm 6.7 to such (n-1)D-OPP’s we will get new forward and backward

differences that correspond to the (n-2)D oriented cells on the boundary of such (n-1)D-OPP’s. These new forward

and backward differences are themselves (n-2)D-OPP’s represented through the EVM. Hence, by applying again

Algorithm 6.7 to them we obtain their associated (n-3)D oriented cells grouped as forward and backward

differences. This procedure generates a recursive process which descends in the number of dimensions. In each

recursivity level we obtain forward and backward differences associated to the input (n-k)D-OPP’s. The basic case is

present when n = 1. In this situation the boundary of a 1D-OPP is described by the beginning and ending extreme

vertices of each one of its composing segments. Forward differences in a 1D-OPP are composed by the ending

vertices while backward differences are composed by the beginning vertices. In Figure 6.18 we present the

extraction of forward and backward differences according to the procedure we have described. Because Algorithm

6.7 considers such extraction only for differences perpendicular to the first coordinate of the input EVM then in our

example we will consider such situation.

Orthogonal Polytopes: Study and Application

X 3

X 3 X 2

X 3

X 1

X 2

X 3

X 2

X 3

X 3

X 3

n=3 n=2 n=1 n=0

BD

BD

BD

FD

FD
FD

FD
BD

FD
BD

FD
BD

FD
BD

Figure 6.18. Computing forward and backward differences for a cube and some of its boundary elements (See text for details).

 In Figure 6.18 we compute first forward and backward differences, perpendicular to X1-axis, in the 3D

cube. By assuming that such differences were computed through Algorithm 6.7 then we have that the output set BD

contains only the face whose normal points to the negative side of X1-axis, while set FD contains only the face

whose normal points to the positive side of X1-axis. By applying again Algorithm 6.7 over such pair of faces we

have in each case forward and backward differences perpendicular to X2-axis (assuming that the next coordinate in

the EVM associated to the cube is X2). As seen in Figure 6.18, the set FD contains an edge whose normal vector

points to the positive side of X2-axis and the set BD contains an edge whose normal vector points to the negative side

of X2-axis. By computing forward and backward differences associated to such edges we get the extreme vertices

shown at the right side of Figure 6.18. As seen in our example, the tree we have obtained has the characteristic that

each one of its nodes is split into a component for the elements that it bound. We say in this case that we have

obtained a Differences Tree associated to a cube originally expressed in the 3D-EVM.

 A recursive procedure can be performed in order to build the Differences Tree associated to an nD-OPP

represented through the EVM. In fact, such Differences Tree can be associated to a tree data structure where a node,

which corresponds to a boundary element, contains pointers to boundary elements that it bound. Moreover,

additional information or processing, according to the application, can be added or performed to the nodes in the tree.

For example, the normal vector could be added as a field in a node in order to indicate the orientation of the referred

boundary cell corresponding to the node. The Algorithm 6.8 implements the above proposed ideas. Input parameters

for our algorithm require the EVM associated to an nD-OPP p, the number n of dimensions, and a reference (pointer)

to the tree data structure associated to the boundary tree. By the moment, when we refer to a Differences Tree we

denote a tree generated according Algorithm 6.8. That is, as pointed previously, the new algorithm depends on

Algorithm 6.7 which performs the extraction of forward and backward differences perpendicular to the first

coordinate of the input EVM. In Section 6.6.2.2 we will discuss methodologies for the extraction of backward and

forward differences perpendicular to remaining main axes.

Chapter 6 - Algorithms in the nD-EVM and their Performance

Input: An nD-EVM p.

 The number n of dimensions.

 A pointer to Differences Tree t.

Procedure GetDifferencesTree(EVM p, int n, Tree t)

 EVM FDcurr // Current forward difference.

 EVM BDcurr // Current backward difference.

 FD = ∅ // FD stores (n-1)D-EVM’s corresponding to forward differences in p.

 BD = ∅ // BD stores (n-1)D-EVM’s corresponding to backward differences in p.

 Tree tn // A leaf to be added to Differences Tree t

if(n = 1) then

 {FD, BD} = GetForwardBackwardDifferences(p, 1) // Call to Algorithm 6.7

 for each vertex v in FD do

 Initialize(tn)

 Process(tn, v)

 Link(t, tn)

 end-of-for

 for each vertex v in BD do

 Initialize(tn)

 Process(tn, v)

 Link(t, tn)

 end-of-for
 else

 {FD, BD} = GetForwardBackwardDifferences(p, n) // Call to Algorithm 6.7

 // We process Differences Trees for each forward difference in p.

 for each forward difference in FD do

FDcurr = FD.next()

// Check if FDcurr is not empty to avoid adding empty Differences subtrees.

if(Not(EndEVM(FDcurr))) then

Initialize(tn)

 Process(tn, FDcurr)

GetDifferencesTree(FDcurr, n-1, tn) // Recursive call

 Link(t, tn)

 end-of-if

 end-of-for

 // We process Differences Trees for each backward difference in p.

for each backward difference in BD do

 BDcurr = BD.next()

// Check if BDcurr is not empty to avoid adding empty Differences subtrees.

if(Not(EndEVM(BDcurr))) then

Initialize(tn)

Process(tn, BDcurr)

 GetDifferencesTree(BDcurr, n-1, tn) // Recursive call

 Link(t, tn)

 end-of-if
 end-of-for

 end-of-else
end-of-procedure

Algorithm 6.8. Processing the Differences Tree of an nD-OPP p through forward and backward differences

(Forward and Backward differences are perpendicular to the axis associated to the first coordinate in the extreme vertices of p).

 Our algorithm proceeds as follows when n > 1:

• We compute forward and backward differences perpendicular to the axis associated to the first coordinate of the

vertices in the input EVM.

• Once the differences have been computed through Algorithm 6.7, we proceed to process each one of them. In

each iteration of the first loop, a non empty forward difference is extracted from set FD and a new leaf tn to be

added to the Differences Tree is initialized. Such leaf is associated to the current forward difference FDcurr.

According to the needs of the application, the leaf tn and the difference FDcurr are processed through a generic

process (called Process) which performs the desired actions upon tn and FDcurr. Because FDcurr is a

(n-1)D-OPP then a recursive call to the algorithm is performed in order to compute its corresponding forward

and backward differences. After returning from the recursive call we proceed to link the current node tn to the

input Differences Tree t. Depending of the recursivity level, the node tn can be pointing to the Differences

subtree associated to the current forward difference.

Orthogonal Polytopes: Study and Application

• Once we have processed forward differences in the set FD, we proceed to process each one of the backward

differences in the set BD in the same way as the previous loop. Such processes are performed in the second loop

of the algorithm.

In the basic case, when n = 1, we call Algorithm 6.7 in order to get forward and backward differences associated to

the input 1D-OPP. Set FD contains the ending vertices of each one of the segments that compose to the input

1D-OPP. Such vertices are processed with the leaf node tn which is then added to the input Differences Tree t. The

set BD contains the beginning vertices of each one of the segments that compose to the input 1D-OPP. These

vertices are processed with their corresponding leaf node and it is added to the input tree t.

X
2

X 3

X
1

X 2

X 3

BD

X
2

X 3

BD

X
2

X 3

FD

X 2

X
3

FD

X 3

X
3

X
3

X 3

X
3

X 3

X 3

X 3

FD
BD

FD
BD

FD
BD

FD
BD

FD
BD

FD
BD

FD
BD

FD
BD

BD

BD

BD

BD

FD

FD

FD

FD

Figure 6.19. Differences tree associated to a 3D-OPP q composed by two cubes sharing a vertex (See text for details).

 When we compute the Differences Tree of a polytope through forward and backward differences some

situations should be observed. Consider the 3D-OPP q shown in Figure 6.19. Such 3D-OPP q is composed by two

cubes that share a vertex. Such shared vertex is not included in EVM3(q) because it is a

non-manifold vertex with six incident odd edges. When we compute backward differences perpendicular to X1-axis

we can observe that the EVM of the backward difference on the couplet where the vertex adjacency takes place

Chapter 6 - Algorithms in the nD-EVM and their Performance

contains precisely the projection of such shared vertex. It is indicated in Figure 6.19 by a double circle. In the same

figure, the face on that couplet but with opposite orientation is shown in dotted lines. Such face is not included in the

backward difference but in the forward difference, where also the projection of the shared vertex by the cubes is

present in the EVM associated to such forward difference. Figure 6.19 exemplifies a situation where projections of

non-manifold vertices are obtained after computing backward and forward differences, and therefore, they are

included in the Differences Tree. The reason behind this phenomenon arises from the fact that the faces on the

couplet where the non-extreme vertex in embedded have opposite orientations. In the Figure 6.20 we have a

situation where a 3D-OPP r is composed by two cubes sharing an edge.

FD

X2

X3

X2

X3

BD

X3

FD
BD

X3

FD

BD

X2

X3

X1

X3

X 3

FD
BD

FD

BD

X3

FD
BD

X3

FD

BD

X3

X 3

FD
BD

FD

BD

BD

BD

BD

BD

FD

FD

FD

FD

Figure 6.20. Differences Tree associated to a 3D-OPP r composed by two cubes sharing an edge (See text for details).

 As seen in Figure 6.20 the vertices included in the edge adjacency are not included in EVM(r). The pair of

faces on the two couplets perpendicular to X1 axis have the same orientation, hence, the 2D-EVM in the backward

difference consider both of them and the situation is the same with the 2D-EVM in the forward difference. The

projections of the vertices included in the edge adjacency between the two cubes lead to a 2D non-manifold vertex

and therefore the projected vertex is not included in both 2D-EVM’s. Consider the couplets perpendicular to X2-axis

in the 2D forward and backward differences. Edges included in such couplets have opposite orientations hence its 1D

forward and backward differences contain only one segment. The projection of the non-manifold vertex is obtained

after computing the differences, and therefore, it is included in the boundary tree. It is indicated in Figure 6.20 by a

double circle.

Orthogonal Polytopes: Study and Application

 Because of the foundations behind the nD-EVM we have that non-extreme vertices do not belong to the

EVM. However, projections of such vertices can be obtained by successively computing, as seen in the above two

examples, kD forward and backward differences, k = n-1, n-2, …, 0. By this way, the last level in the Differences

Tree contains the projections of all the vertices included in an nD-OPP, with some of them duplicated. Computing

successive forward and backward differences provides us a new methodology for obtaining non-extreme vertices

from the EVM associated to an nD-OPP. The first methodology was presented in Theorem 5.9. One of the

advantages of our new methodology is that it provides us the Differences Tree of an nD-OPP.

 Let’s consider a third case to analyze and which can be possibly present in the Differences Trees we build

according to Algorithm 6.8. See Figure 6.21.

X2

X3

X1

X2

X3

X2

X3

X2

X3

X3

FD

X3

BD

X3

FD

X3

BD

X3

FD

X3

FD

X3

BD

X3

BD

FD
BD

FD
BD

FD

BD

FD

BD

FD

BD

FD

BD

FD
BD

FD

BD

FD

FD

BD

Figure 6.21. Differences Tree associated to a 3D-OPP. One of the nodes in the structure has two disjoint faces with the same orientation

(See text for details).

 As can be observed in Figure 6.21 we have the case when one of the nodes in the tree has associated two

(or more) disjoint cells with the same orientation. This kind of situation can be present in any level of the tree. In this

work we will deal with nodes with two or more disjoint cells taking no action when they are present because our

algorithms presented in the following sections are not affected by them.

6.6.2.1. Performance of the Algorithm

 In this section we present some results related to the measured execution times for Algorithm 6.8 in the

cases for n = 2, 3, 4, 5. As previously proceeded, we generated 10,000 random nD-OPP’s for each considered value

of n. The Table 6.19 shows some statistical characteristics of the sets of generated nD-OPP’s.

Chapter 6 - Algorithms in the nD-EVM and their Performance

n Max Min Mean Standard Deviation

2 5,432 0 2,788.98 1,549.72

3 5,364 0 3,148.42 1,485.08

4 5,528 0 3,211.01 1,488.91

5 5,328 0 2,744.30 1,456.52
Table 6.19. Some statistical characteristics of the set of 10,000 random nD-OPP’s for testing of Algorithm 6.8.

In Chart 6.15 can be visualized the behavior of Algorithm 6.8 with our set of nD-OPP’s. In the same chart

can be also visualized the associated trendline for each value of n whose associated equations are shown in

Table 6.20.

n Trendline t = ax
b
 a b R

2

2 t = 2,065.31 x
1.39

 2,065.31 1.39 0.9623

3 t = 92,413.80 x
1.09

 92,413.80 1.09 0.9693

4 t = 23,904.62 x
1.35

 23,904.62 1.35 0.9715

5 t = 65,509.94 x
1.28

 65,509.94 1.28 0.9644
Table 6.20. Equations associated to the trendlines that describe execution time of Algorithm 6.8 in the cases with n = 2, 3, 4, 5.

Chart 6.15. Comparing execution times for Algorithm 6.8 for nD-OPP’s with n = 2, 3, 4, 5.

As we have proceeded in previous algorithms, we now determine an approximation surface for execution

time of Algorithm 6.8. The associated equation is a function from 2� to � which has as arguments the number x of

extreme vertices in the input polytope g, i.e., x = Card(EVMn(g)) and the number of dimensions n. According to our

analysis we have that the approximation surface is given by

t = 1,160.7 x
1.3189

n
2.3720

In this case we have identified a coefficient of determination R
2
 = 0.9871. The Figure 6.22 shows the plotting of the

above function and shows graphically an estimation of the execution time of Algorithm 6.8 when the number of

input extreme vertices is from 0 to 10,000 and when the number of dimensions is between 0 and 10. Through the

Orthogonal Polytopes: Study and Application

proposed approximation surface we have obtained the new trendlines presented in Table 6.21 (the second and third

columns show trendlines and coefficients of determination obtained from the data shown in Chart 6.15). Although

the new trendline obtained for the case n = 2 has a coefficient R
2
 = 0.2566, the remaining trendlines for cases n = 3,

4, 5 have coefficients above 0.95, which lead us to expect that given estimations for cases n = 7, 8 are good bounds

for execution times of Algorithm 6.8 (when we analyzed execution times for Algorithm 6.7 we had a similar

situation with the new trendline for n = 2).

n Trendline t = ax
b
 R

2

Trendline t = ax
b

(by fixing n in approximation surface)
R

2

2 t = 1,668.39 x
1.42

 0.9859 t = 6,008.46 x
1.3189

0.2566

3 t = 65,377.04 x
1.09

 0.9584 t = 15,719.96 x
1.3189

 0.9501

4 t = 28,506.68 x
1.25

 0.9859 t = 31,103.28 x
1.3189

 0.9731

5 t = 54,637.82 x
1.20

 0.9664 t = 52,805.21 x
1.3189

 0.9844

6 t = 81,375.70 x
1.3189

7 t = 117,298.52 x
1.3189

Table 6.21. Fixing the n value in surface approximation for Algorithm 6.8 in order to predict trendlines for n > 4.

Figure 6.22. Plot of the approximation surface for execution time of Algorithm 6.8, 0 ≤ Card(EVMn(g)) ≤ 10,000; 0 ≤ n ≤ 10.

6.6.2.2. Computing the Complete Differences Tree of an nD-OPP in the nD-EVM

 Algorithm 6.8 extracts, from an nD-OPP p, the (n-1)D backward/forward differences perpendicular to

X1-axis, by assuming the coordinates of extreme vertices have the ordering X1X2�Xn-1Xn. Then, for all 1
()kFD p and

1
()KBD p , it extracts their (n-2)D forward/backward differences perpendicular from X2-axis, then the (n-3)D

forward/backward differences perpendicular from X3-axis, and so on until the basic case is reached. As pointed out

in Section 6.6.2, the Algorithm 6.8 provides a Differences Tree whose nodes refer to forward/backward differences

perpendicular to the first coordinate in the input EVM’s (See Figures 6.18, 6.19, 6.20 and 6.21). Consider the cube

shown in Figure 6.18. Its EVM has the ordering X1X2X3, hence, Algorithm 6.8 provides at the main call 2D

forward/backward differences perpendicular to X1-axis. In the first recursive call it computes 1D forward/backward

Chapter 6 - Algorithms in the nD-EVM and their Performance

differences perpendicular to X2-axis. In the second recursive call, where it reaches the basic case, returns vertices

along X3-axis. Now, by sorting coordinates in the cube’s vertices as X2X3X1 and applying Algorithm 6.8 we have

the Differences Tree shown in Figure 6.23.

X
2

X 3

X
1

BD

X 3

X
1

FD

X 3

X
1

FD

X 1

X
1

BD

FD

X
1

X 1

BD

FD

BD

FD

BD

FD

BD

FD

BD

Figure 6.23. Computing the Differences Tree for a cube whose extreme vertices have the coordinates ordering X2X3X1 (See text for details).

 Through the ordering X2X3X1 we have access, according to Figure 6.23, to forward/backward differences

perpendicular to X2-axis. Then, we have access to 1D forward/backward differences perpendicular to X3-axis, and

finally, in the basic case of Algorithm 6.8, we found vertices along X1-axis. Now consider coordinates ordering

X3X1X2, hence, we have the Differences Tree in Figure 6.24. In this sense, we have access to the cube’s oriented

faces perpendicular to X3-axis, edges perpendicular to X1-axis and finally to vertices along X2-axis.

X 2

X 3

X 1 BD
X

2

X
1

FD

X
2

X
1

BD
X

2

FD

X 2

BD
X 2

FD

X
2

FD

BD

FD

BD

FD

BD

FD

BD

Figure 6.24. Computing the Differences Tree for a cube whose extreme vertices have the coordinates ordering X3X1X2 (See text for details).

As seen in Figures 6.18, 6.23 and 6.24, the three Differences Trees have the same root, but their associated

subtrees differ according to the coordinates ordering. Now, we will define the Cube’s Complete Differences Tree as

the union of the boundary trees each one obtained through the coordinates ordering X1X2X3, X2X3X1 and X3X1X2

and the respective application of Algorithm 6.8. See Figure 6.25.

Orthogonal Polytopes: Study and Application

X2

X3

X1

BD

X3

X1

FD

X3

X1

FD

X1

X1

BD

FD

X1

X1

BD

FD
BD

FD

BD

FD

BD

FD

BD

BD

X2

X1

FD

X2

X1

BD
X2

FD

X2

BD
X2

FD

X2

FD
BD

FD
BD

FD
BD

FD
BD

X3

X3

X2

X3

X2

X3

X3

X3

BD

BD

BD

FD

FD

FD

FD

BD

FD
BD

FD

BD

FD

BD

Figure 6.25. The Complete Differences Tree for a 3D cube (See text for details).

Chapter 6 - Algorithms in the nD-EVM and their Performance

 Let p be an nD-OPP. We assume the coordinates ordering in EVMn(p) is given by X1X2�Xn-1Xn, hence,

starting from that permutation we have the following n-1 permutations given by

X2X3�XnX1

X3X4�X1X2

�
Xn-1Xn�Xn-3Xn-2

XnX1�Xn-2Xn-1

The Algorithm 6.9 computes the Complete Differences Tree associated to p. The way it works is simple:

• A pointer t to a tree data structure is initialized and it, together with EVMn(p), is manipulated through a generic

process (called Process) according to the needs of the application. Such pointer t is in fact the root of the

Complete Differences Tree associated to p.

• A main loop is maintained while each one of the orderings, that is permutations, in the set

{X1X2�Xn-1Xn, X2X3�XnX1, X3X4�X1X2, …, Xn-1Xn�Xn-3Xn-2, XnX1�Xn-2Xn-1} is used for sorting

EVMn(p). Such sorting is performed by calling procedure SortEVM. Given a permutation
i 2 n-1 nα α α α

X X X X�

SortEVM sorts the extreme vertices of p first according to the coordinate
iα

X , after according to the coordinate

2α
X , and so on until p is sorted according to coordinate

nα
X . Following the calling to SortEVM, it is performed

the calling to Algorithm 6.8. Through the procedure GetDifferencesTree we obtain the subtree that contains

(n-1)D forward/backward differences perpendicular to
iα

X -axis, then the (n-2)D forward/backward differences

perpendicular to
nα

X -axis, and so on until the level than contains their leaves is composed by vertices along

nα
X -axis. Such subtree is attached to the pointer t which performs the role of root node in the Complete

Differences Tree of p (the linking takes place in Algorithm 6.8).

Input: An nD-EVM p.

 The number n of dimensions.

Output: A pointer to the Complete Differences Tree associated to p.

procedure GetCompleteDifferencesTree(EVM p, int n)

Tree t // The root of the Complete Differences Tree associated to p

Initialize(t)

Process(t, p)

for sorting in {X1X2�Xn-1Xn, X2X3�XnX1, X3X4�X1X2, …, Xn-1Xn�Xn-3Xn-2, XnX1�Xn-2Xn-1} do

 SortEVM(p, n, sorting)

/* We call Algorithm 6.8 and get the Differences Tree according to the current

sorting of p. */

 GetDifferencesTree(p, n, t)

 end-of-for

 return t

end-of-procedure

Algorithm 6.9. Computing the Complete Differences Tree of an nD-OPP expressed through the nD-EVM.

 By comparing our Complete Differences Tree for the cube, which is shown in Figure 6.26.b, with its

Boundary Tree, as defined in Section 2.2.3, as seen in Figure 6.26.a, it seems that the first one is incomplete respect

to the second one. Although both trees coincide in the description of faces in the cube, the level corresponding to

description of edges is bounded in the Complete Differences Tree because the way we have obtained Forward and

Backward differences. However, each edge in the cube is present in our Complete Differences Tree because if one of

them was not obtained through a given face under certain coordinates ordering, it was obtained by means of one of

the 2 remaining permutations of coordinates. Speaking in a more general way, if an specific kD cell in an nD-OPP

was not obtained through computing forward and backward differences of a (k+1)D cell under a coordinates

ordering, it can be obtained by means of the n-1 remaining permutations of coordinates. Such kD cell in our

Complete Differences Tree will be linked to the (k+1)D cell that generated it.

Some applications can find our Complete Differences Tree useful in the sense that it provides access to all

the oriented boundary cells of an nD-OPP. However other applications can find that some information about the

connectivity between boundary elements can be lost or hidden. For example, according to Figure 6.26.b, the

Complete Differences Tree does not explicitly provide information about all the boundary edges in the face whose

normal points towards the negative side of X1-axis, because our tree presents explicitly two of the four edges. Such

specific pair of edges was obtained starting from the coordinates ordering of the 2D-EVM associated to the face

when its forward and backward differences were computed using Algorithm 6.8. A possible solution in order to

Orthogonal Polytopes: Study and Application

have access to those two “hidden” edges is to consider the two possible coordinates sortings of the 2D-EVM

associated to the current face in the cube. The first ordering will provide the original pair of edges in the tree and the

new sorting will provide the remaining two which will generate new subtrees which can be linked to the structure

and processed in order to obtain its boundary elements. This process of sorting coordinates should be added to

Algorithm 6.8 with the objective to take in account the processing of all boundary elements on an OPP expressed

through the EVM. Hence, the final obtained tree will correspond to a boundary tree as defined in Section 2.2.3.

X2

X3

X1

BD

X3

X1

FD

X3

X1

FD

X1

X1

BD

FD

X1

X1

BD

FD
BD

FD

BD

FD

BD

FD

BD

BD

X2

X1

FD

X2

X1

BD
X2

FD

X2

BD
X2

FD

X2

FD
BD

FD
BD

FD
BD

FD
BD

X3

X3

X2

X3

X2

X3

X3

X3

BD

BD

BD

FD

FD

FD

FD

BD

FD
BD

FD

BD

FD

BD

a) b)

Figure 6.26. a) The boundary tree associated to a 3D cube as defined in Section 1.2.3.

b) The Complete Differences Tree associated to a 3D cube as computed through Algorithm 6.9.

6.6.3. Hyperspatial Occupancy Enumeration Models to the nD-EVM

 This section deals with the process of converting other schemes for the modeling of nD-OPP’s to the

nD-EVM. We will consider particularly two conversions:

• nD Hypervoxelizations to the nD-EVM.

• 2
n
-trees to the nD-EVM.

Both considered schemes correspond to the category of the Hyperspatial Occupancy Enumerations. A model in this

category is a set of black and white cells or nodes where each cell is a convex orthogonal polytope. The set of black

cells represents an nD-OPP p whose vertices coincide with some of the black cells’ vertices. A hyperspatial

occupancy enumeration model should provide means for generating a list of all 2
n
 vertices of each black cell.

Chapter 6 - Algorithms in the nD-EVM and their Performance

 Each of these vertices may be common to (surrounded by) up to 2
n
 black cells. So, according to Theorem

5.1, if a vertex is surrounded by an odd number of black cells (hyper-octants of a classical 2
n
-tree) then it is an

Extreme Vertex. Thus, a hyperspatial occupancy enumeration model to nD-EVM conversion algorithm would be as

simple as collecting every vertex that belongs to and odd number of cells, and discarding the remaining vertices

[Aguilera98].

Since black nodes in a hyperspatial occupancy enumeration model are quasi-disjoint convex orthogonal

polytopes, then ∪
λ

λBlackNodep = , thus, by the expression (*) () ()n n nEVM p q EVM p EVM q∪ = ⊗ if ∅=∩ qp *

(Corollary 5.9), we have [Aguilera98]:

() ()
n n n

EVM p EVM BlackNode EVM BlackNodeλ λ
λ

λ

 
= = 

 
⊗∪

Since all 2
n
 vertices of a box are Extreme Vertices, then all we have to do is list all 2

n
 vertices of every black

node and collect (because of the XOR) every vertex that appears in an odd number of times in such a list, and

discarding the remaining ones.

 This provides a method for converting hyperspatial occupancy enumeration models to the nD-EVM.

However, as stated before, a hyperspatial occupancy enumeration model should provide means for generating a list

of all 2
n
 vertices for each black cell. The following sections will provide some clues which are related to the last

comment.

6.6.3.1. Listing Vertices’ Coordinates for the nD Hypercube

[Coxeter63] establishes that the coordinates for an nD hypercube with edges of length 2 can be described in

general as:

(1,..., 1)

n

± ±����	

For example, using the above description, the coordinates for a square (n = 2) are:

)1,1(

)1,1(

)1,1(

)1,1(

−−

+−

−+

++

If we apply the translation (1,…,1), and the scaling 1 1
,...,

2 2

 
 
 

 we obtain the general set of coordinates for a

unit n-Dimensional hypercube:

(0,0,...0,0),...,

n

����	

1

1

(1 ,0,...,0,0),...,

n−

����	

(1,...,1, 0,...,0),...,
i n i−

11

(1,1,...,1, 0),

n−

��	 (1,1,...,1,1)

n

=����	

)0,1(),0,1(...,),0,1(...,),0,1(),0,1(011110 nnininn −−−

where the coordinates must be permuted according the following distribution:

, , ..., , ..., ,
0 1 1

n n n n n

i n n

         
         

−         

where !

!()!

n n

i i n i

 
= 

− 

 defines the number of those coordinates that have i ones and n-i zeros. Then we can evaluate

and relate the previous distribution with the number of vertices in the n-Dimensional hypercube

[Pérez-Aguila03d]:

0

!
1 1 2

!()!

n
n

i

nn
n n

ii n i =

 
+ + + + + + = = 

−  
∑

Orthogonal Polytopes: Study and Application

Table 6.22 shows the application of the procedure on the 4D hypercube.

Value of i Number of Combinations Coordinates

0 1 (0,0,0,0)

1
4

4
1

 
= 

 

(1,0,0,0)

(0,1,0,0)

(0,0,1,0)

(0,0,0,1)

2
4

6
2

 
= 

 

(1,1,0,0)

(1,0,1,0)

(0,1,1,0)

(1,0,0,1)

(0,1,01)

(0,0,1,1)

3
4

4
3

 
= 

 

(1,1,1,0)

(1,1,0,1)

(1,0,1,1)

(0,1,1,1)

4 1 (1,1,1,1)

Table 6.22. Defining the 4D hypercube’s vertices coordinates.

6.6.3.2. Listing Hypervoxels Vertices

 The procedure commented in previous section can be extended in a straightforward way in order to list the

2
n
 vertices of an nD hypervoxel. Consider an n-dimensional grid where

0,...,0

n

C is the origin and the dimensions of each

hypervoxel are given by x1Side, ..., xnSide. By applying to the general set of coordinates corresponding to a unit

n-Dimensional hypercube the translation (x1, …, xn) and the scaling (x1Side, ..., xnSide) we obtain the set of

coordinates for an n-dimensional hypervoxel
nxxC ,...,1

. For example, in Table 6.23 is presented the listing of the 16

vertices from a rexel (a 4D hypervoxel)
1 2 3 4, , ,x x x x

C .

Vertex X1 coordinate X2 coordinate X3 coordinate X4 coordinate

0 x1 ⋅ x1Side x2 ⋅ x2Side x3 ⋅ x3Side x4 ⋅ x4Side

1 x1 ⋅ x1Side x2 ⋅ x2Side x3 ⋅ x3Side (x4+1) ⋅ x4Side

2 x1 ⋅ x1Side x2 ⋅ x2Side (x3+1) ⋅ x3Side x4 ⋅ x4Side

3 x1 ⋅ x1Side x2 ⋅ x2Side (x3+1) ⋅ x3Side (x4+1) ⋅ x4Side

4 x1 ⋅ x1Side (x2+1) ⋅ x2Side x3 ⋅ x3Side x4 ⋅ x4Side

5 x1 ⋅ x1Side (x2+1) ⋅ x2Side x3 ⋅ x3Side (x4+1) ⋅ x4Side

6 x1 ⋅ x1Side (x2+1) ⋅ x2Side (x3+1) ⋅ x3Side x4 ⋅ x4Side

7 x1 ⋅ x1Side (x2+1) ⋅ x2Side (x3+1) ⋅ x3Side (x4+1) ⋅ x4Side

8 (x1+1) ⋅ x1Side x2 ⋅ x2Side x3 ⋅ x3Side x4 ⋅ x4Side

9 (x1+1) ⋅ x1Side x2 ⋅ x2Side x3 ⋅ x3Side (x4+1) ⋅ x4Side

10 (x1+1) ⋅ x1Side x2 ⋅ x2Side (x3+1) ⋅ x3Side x4 ⋅ x4Side

11 (x1+1) ⋅ x1Side x2 ⋅ x2Side (x3+1) ⋅ x3Side (x4+1) ⋅ x4Side

12 (x1+1) ⋅ x1Side (x2+1) ⋅ x2Side x3 ⋅ x3Side x4 ⋅ x4Side

13 (x1+1) ⋅ x1Side (x2+1) ⋅ x2Side x3 ⋅ x3Side (x4+1) ⋅ x4Side

14 (x1+1) ⋅ x1Side (x2+1) ⋅ x2Side (x3+1) ⋅ x3Side x4 ⋅ x4Side

15 (x1+1) ⋅ x1Side (x2+1) ⋅ x2Side (x3+1) ⋅ x3Side (x4+1) ⋅ x4Side

Table 6.23. Listing a rexel's sixteen vertices.

6.6.3.3. Listing Black Nodes’ Vertices for 2
n
-trees

 The Algorithm 6.10 is an extension of a procedure originally described in [Aguilera97b]. Its objective is to

list all 2
n
 vertices for each black node in a 2

n
-tree. Q is a reference (pointer) to the tree; width is the length of the

node under consideration whose minimum coordinates are given by the point p = (x1, …, xn).

Chapter 6 - Algorithms in the nD-EVM and their Performance

Input: A pointer Q to a 2n-tree.

 The width of the current node in the tree.

 The point p = (x1, …, xn) whose coordinates are the minimum in the current node.

 The number n of dimensions.

Procedure ListHyperocttreeVertices(Tree Q, real width, Point p, int n)
 if(NodeType(Q) = Black) then

 for k = 0 until 2n - 1 do

 offset_p = OffsetVertex(p, k, width);

 Write(offset_p); // We list the k-th point in the current black node.

 end-of-for
 else

 If(NodeType(Q) = Gray) then
 for k = 0 until 2n – 1 do

 offset_p = OffsetVertex(p, k, width/2);

 ListOctreeVertices(son(Q, k), width/2, offset_p); // Recursive call

 end-of-for
 end-of-if

 end-of-else
end-of-procedure

Algorithm 6.10. Listing all 2n vertices for each black node in a 2n-tree.

 The Algorithm 6.11 shows, as an example, the offset of a vertex in nD space towards the k-th direction,

where k ∈ {0, …, 2
n
-1}, or equivalently k ∈ {

2 20...0 ,...,1...1

n n

} where each bit determines whether or not the vertex

will be displaced by distance dist along each one of the coordinate axes.

Input: The point p=(x1, …, xn) to be ‘offseted’.

 An integer k which indicates the direction along which p will be ‘offseted’.

 The distance dist which defines the amount of translation to be applied to point p.

Output: The point p1 which corresponds to the offset of input point p=(x1, …, xn)

Procedure OffsetVertex(Point p, int k, real dist)

 p1 = p;

 for i = 1 until 2n do
 if Odd(k) then

 p1.xi = p.xi + dist

 end-of-if

 k = Int(k/2) // We update k by performing integer division of k by 2.

 end-of-for

 return p1

end-of-procedure

Algorithm 611. Computing the offset of a vertex.

6.7. Conclusions

 In this chapter we have experienced the development and performance of some algorithms designed under

the context of the Extreme Vertices Model in the n-Dimensional space. Summarizing, we have shown the efficiency

of our algorithms under the following tasks:

• Regularized Boolean Operations (Algorithm 6.4).

• nD-OPP’s measures (Algorithms 6.5 and 6.6).

• Extraction of boundary elements of nD-OPP’s (Algorithms 6.7, 6.8 and 6.9).

As mentioned above, the efficiency of such algorithms was evaluated from a statistical point of view. In such

statistical analyses we have proposed approximation surfaces that fit as good as possible to the measures we obtained

from the execution times of these algorithms. Such surfaces depend on two parameters: the number of input extreme

vertices and the number of dimensions. The quality of the approximations is given by the coefficient of

determination R
2
 which reveals how closely the estimated values for the approximation surfaces correspond to our

time measures. Table 6.24 summarizes the execution times of the algorithms that were analyzed in this chapter.

Orthogonal Polytopes: Study and Application

Algorithm Operation Approximation Surface
x’s

exponent
R

2

6.4 Regularized Intersection t = 4,271.11 x
1.1737

n
1.0862

 1.1737 0.9234

6.4 Regularized Union t = 16,698.63 x
1.0821

n
1.0607

 1.0821 0.9221

6.4 Regularized Xor t = 483.17 x
1.4161

n
1.4161

 + 108,263,080 1.4161 0.9260

6.5 Computing Content t = 4,763.939 x
1.1894

n
0.8390

 1.1894 0.9803

6.6 Computing

Boundary Content
3 2

12921.02 x + 1454430 n - 7196150
t =

0.0212336 n - 0.247936 n + 0.92776 n - 1

1.0000 0.9963

6.7 Extracting Forward and

Backward Differences
t = 1,849.27 x

1.3
n

1.64855
 1.3000 0.9797

6.8 Building Differences Tree t = 1,160.7 x
1.3189

n
2.3720

 1.3189 0.9871
Table 6.24. Summarizing execution times of algorithms under the nD-EVM (x: Number of input extreme vertices, n: number of dimensions).

 In all the equations associated to our approximation surfaces we have that by fixing the number of

dimensions our functions become dependent only of one variable: the number of input extreme vertices. By this way

we can then identify, as shown in Table 6.24, that the exponents associated to the number of vertices varies between

1 and 1.5. This experimentally identified complexity for our algorithms provides us elements to determine the

temporal efficiency when we perform some operations between nD-OPP’s represented through the nD-EVM.

 Respect to conversion from and to other schemes for representing polytopes, we have presented algorithms

to convert Hyperspatial Occupancy Enumeration Models to the nD-EVM which are generalizations of algorithms

originally presented in [Aguilera98]. On the other hand, our Algorithms 6.7, 6.8 and 6.9 provide elements to have

access to boundary elements in an nD-OPP represented through the nD-EVM. Moreover, some clues have been

proposed in order to modify Algorithm 6.8, if the application requires, for obtaining, in combination with

Algorithm 6.9 the boundary tree of an nD-OPP as defined in Section 2.2.3 leading to a conversion process for

nD-EVM to an n-Dimensional Boundary Representation.

