
Chapter 5 

Orthogonal Polytopes Modeling  

Through the Extreme Vertices Model 

in the n-Dimensional Space (nD-EVM) 
 

The Extreme Vertices Model (3D-EVM) was originally presented by Aguilera & Ayala in [Aguilera97] (for 

representing only 2-manifold Orthogonal Polyhedra) and widely described in [Aguilera98] (considering both 

Orthogonal Polyhedra and Pseudo-Polyhedra). This model has enabled the development of simple and robust 

algorithms for performing the most usual and demanding tasks on solid modeling, such as closed and regularized 

Boolean operations, solid splitting, set membership classification operations and measure operations on 3D-OPP's 

Later on, in [Rodriguez04] was presented an Enriched-EVM. As proposed in [Aguilera98], it is natural to ask if the 

EVM can be extended for modeling nD-OPP’s. In this sense, some experiments have been made, in  

[Pérez-Aguila03b] and [Pérez-Aguila03d], where the validity of the model was assumed true in order to represent 4D 

and 5D-OPP’s. The results obtained leaded us to this chapter, where we will prove in a formal way, the Main 

Hypothesis of this work: 
 

The Extreme Vertices Model in the n-Dimensional Space (nD-EVM) is a complete scheme for the representation of 

n-Dimensional Orthogonal Pseudo-Polytopes. 
 

 In Section 5.1 we will introduce some conventions and preliminary background related directly with  

nD-OPP’s. In Section 5.2 we will establish the foundations of the nD-EVM. It will be seen how the Odd Edge 

Topological Characterization in the nD-OPP’s has a paramount role in this last aspect. As seen in the previous 

chapter, we will deal with Local and Global Analysis over the nD-OPP’s but now under the context of the nD-EVM 

(Sections 5.3 and 5.4). Finally, in Sections 5.5 to 5.7 the concepts and results originally presented by Aguilera & 

Ayala, in [Aguilera97] and [Aguilera98], will be presented and discussed under the new context of the nD-EVM. 
 

5.1. Preliminary Background 
 

Definition 5.1: Consider a lattice 
1( ,..., )n

nL γ γ
. Let p = (p1, …, pn) a point in 

1( ,..., )n

nL γ γ
. We define to the general singular 

nD hyper-box associated to p as the function: 

[ ] [ ]1 1 1

1 1 1

: [0,1] , ... ,

( ) ( ,..., )

n

n n n

n n n

c p p p p

x c x x p x p

γ γ

γ γ

→ + × × +

= + +∼

 

 

For example, consider lattice 2

(4,6)
L . Let c be the general singular rectangle associated to the point p = (4, 12) 

(See Figure 5.1): 

[ ] [ ]2

1 2

: [0,1] 4,6 12,18

( ) (4 4,6 12)

c

x c x x x

→ ×

= + +∼
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Figure 5.1. The rectangle associated to the point p = (4, 12) ∈ 2

(4,6)L . 
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Definition 5.2 [Jonas95]: Let 
( ,..., )1

n

L
n

H
γ γ

 be defined as the set of all the general singular nD hyper-boxes associated to 

the points of the lattice  
1( ,..., )n

nL γ γ
. 

 

Definition 5.3 [Jonas95]: We will say that an n-Dimensional Orthogonal Pseudo-Polytope, or just an nD-OPP, will 

be an n-chain whose hyper-boxes are in 
( ,..., )1

n

L
n

H
γ γ

. In fact, an nD-OPP is a chain whose set of hyper-boxes is an 

element of ( )( ,..., )12
n
L

n
H

γ γ , that is, the power set of 
( ,..., )1

n

L
n

H
γ γ

. 

 

 Some of the results to be presented will require dealing with the hyper-boxes that compose an nD-OPP or 

they will require to consider subsets of points in n�  which belong to the nD-OPP. In this last sense, the points that 

compose to an nD-OPP are obtained through the union of the images of the hyper-boxes in its corresponding n-chain. 

In the other hand, according to Definition 4.10, the boundary of an nD-OPP p is the (n-1)-chain ∂(p) which is 

composed by the (n-1)D cells that are not shared by two hyper-boxes of p. The vanishing of the shared (n-1)D cells 

is given when the sum of their orientations is zero.  

 

 For example, consider the 2D-OPP q shown in Figure 5.2 which is described by a set of 2D boxes under 

lattice 2

(5,2)
L . Its corresponding rectangles and their associated points in lattice 2

(5,2)
L  are described in Table 5.1.  
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Figure 5.2. A 2D-OPP q described by a set of rectangles under lattice 2

(5,2)L . 

 
Associated 

Point 
Rectangle 

Associated 

Point 
Rectangle 

p1 = (-10, -4) 
[ ] [ ]2

1

1 1 2

: [0,1] 10, 5 4, 2

( ) (5 10,2 4)

c

x c x x x

→ − − × − −

= − −∼

 
p8 = (-5, 2) 

[ ] [ ]2

8

8 1 2

: [0,1] 5,0 2, 4

( ) (5 5,2 2)

c

x c x x x

→ − ×

= − +∼

 

p2 = (-5, -4) 
[ ] [ ]2

2

2 1 2

: [0,1] 5,0 4, 2

( ) (5 5,2 4)

c

x c x x x

→ − × − −

= − −∼

 
p9 = (5, 2) 

[ ] [ ]2

9

9 1 2

: [0,1] 5,10 2,4

( ) (5 5, 2 2)

c

x c x x x

→ ×

= + +∼

 

p3 = (5, -4) 
[ ] [ ]2

3

3 1 2

: [0,1] 5,10 4, 2

( ) (5 5,2 4)

c

x c x x x

→ × − −

= + −∼

 
p10 = (10, 2) 

[ ] [ ]2

10

10 1 2

: [0,1] 10,15 2,4

( ) (5 10,2 2)

c

x c x x x

→ ×

= + +∼

 

p4 = (5, -2) 
[ ] [ ]2

4

4 1 2

: [0,1] 5,10 2,0

( ) (5 5, 2 2)

c

x c x x x

→ × −

= + −∼

 
p11 = (5, 4) 

[ ] [ ]2

11

11 1 2

: [0,1] 5,10 4,6

( ) (5 5, 2 4)

c

x c x x x

→ ×

= + +∼

 

p5 = (-10, 0) 
[ ] [ ]2

5

5 1 2

: [0,1] 10, 5 0, 2

( ) (5 10, 2 )

c

x c x x x

→ − − ×

= −∼

 
p12 = (10, 4) 

[ ] [ ]2

12

12 1 2

: [0,1] 10,15 4,6

( ) (5 10,2 4)

c

x c x x x

→ ×

= + +∼

 

p6 = (-5, 0) 
[ ] [ ]2

6

6 1 2

: [0,1] 5,0 0,2

( ) (5 5, 2 )

c

x c x x x

→ − ×

= −∼

 
p13 = (20, 4) 

[ ] [ ]2

13

13 1 2

: [0,1] 20,25 4,6

( ) (5 20, 2 4)

c

x c x x x

→ ×

= + +∼

 

p7 = (0, 0) 
[ ] [ ]2

7

7 1 2

: [0,1] 0,5 0,2

( ) (5 ,2 )

c

x c x x x

→ ×

=∼

 
  

Table 5.1. The rectangles that compose the 2D-OPP q shown in Figure 5.2. 
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Hence, the 2-chain associated to q is given by: 
 

q = (5x1 – 10, 2x2 – 4) + (5x1 – 5, 2x2 – 4) + (5x1 + 5, 2x2 – 4) + (5x1 + 5, 2x2 – 2) + 

  (5x1 – 10, 2x2) + (5x1 – 5, 2x2) + (5x1, 2x2) + (5x1 – 5, 2x2 + 2) + 

  (5x1 + 5, 2x2 + 2) + (5x1 + 10, 2x2 + 2) + (5x1 + 5, 2x2 + 4) + (5x1 + 10, 2x2 + 4) + 

  (5x1 + 20, 2x2 + 4)        
 

 The boundary edges associated to the rectangles in q are shown in the Table 5.2. 
 

Rectangle 
Boundary 

Edges 
Orientation Rectangle 

Boundary 

Edges 
Orientation 

1 1 2( ) (5 10, 2 4)c x x x= − −

 
1

1

1

1

( 10,2 4)

( 5, 2 4)

(5 10, 4)

(5 10, 2)

x

x

x

x

− −

− −

− −

− −

 
1

1

1

1

−

−

 8 1 2( ) (5 5, 2 2)c x x x= − +  1

1

1

1

( 5, 2 2)

(0,2 2)

(5 5,2)

(5 5,4)

x

x

x

x

− +

+

−

−

 
1

1

1

1

−

−

 

2 1 2( ) (5 5, 2 4)c x x x= − −

 
1

1

1

1

( 5, 2 4)

(0,2 4)

(5 5, 4)

(5 5, 2)

x

x

x

x

− −

−

− −

− −

 
1

1

1

1

−

−

 9 1 2
( ) (5 5, 2 2)c x x x= + +  1

1

1

1

(5,2 2)

(10, 2 2)

(5 5, 2)

(5 5, 4)

x

x

x

x

+

+

+

+

 
1

1

1

1

−

−

 

3 1 2( ) (5 5,2 4)c x x x= + −

 
1

1

1

1

(5,2 4)

(10, 2 4)

(5 5, 4)

(5 5, 2)

x

x

x

x

−

−

+ −

+ −

 
1

1

1

1

−

−

 10 1 2( ) (5 10, 2 2)c x x x= + +

 
1

1

1

1

(10, 2 2)

(15, 2 2)

(5 10,2)

(5 10,4)

x

x

x

x

+

+

+

+

 
1

1

1

1

−

−

 

4 1 2( ) (5 5, 2 2)c x x x= + −

 
1

1

1

1

(5,2 2)

(10, 2 2)

(5 5, 2)

(5 5,0)

x

x

x

x

−

−

+ −

+

 
1

1

1

1

−

−

 11 1 2( ) (5 5, 2 4)c x x x= + +

 
1

1

1

1

(5,2 4)

(10, 2 4)

(5 5, 4)

(5 5,6)

x

x

x

x

+

+

+

+

 
1

1

1

1

−

−

 

5 1 2( ) (5 10, 2 )c x x x= −  1

1

1

1

( 10, 2 )

( 5, 2 )

(5 10,0)

(5 10,2)

x

x

x

x

−

−

−

−

 
1

1

1

1

−

−

 12 1 2( ) (5 10, 2 4)c x x x= + +

 
1

1

1

1

(10, 2 4)

(15, 2 4)

(5 10,4)

(5 10,6)

x

x

x

x

+

+

+

+

 
1

1

1

1

−

−

 

6 1 2( ) (5 5, 2 )c x x x= −  1

1

1

1

( 5,2 )

(0,2 )

(5 5,0)

(5 5,2)

x

x

x

x

−

−

−

 
1

1

1

1

−

−

 13 1 2( ) (5 20, 2 4)c x x x= + +

 
1

1

1

1

(20, 2 4)

(25, 2 4)

(5 20,4)

(5 20,6)

x

x

x

x

+

+

+

+

 
1

1

1

1

−

−

 

7 1 2( ) (5 ,2 )c x x x=  1

1

1

1

(0, 2 )

(5, 2 )

(5 ,0)

(5 , 2)

x

x

x

x

 
1

1

1

1

−

−

    

Table 5.2. The boundary edges of the rectangles that compose the 2D-OPP q shown in Figure 5.2. 
 

Therefore, q’s boundary is given by the 1-chain: 

∂(q) = - (-10, 2x1 – 4) + (5x1 – 10, -4) - (5x1 – 10, -2) + (0, 2x1 – 4) + (5x1 - 5, -4) 

  - (5x1 – 5, -2) - (5, 2x1 – 4) + (10, 2x1 – 4) + (5x1 + 5, -4) - (5, 2x1 – 2) 

  + (10, 2x1 – 2) - (5x1 + 5, 0) - (-10, 2x1) + (5x1 – 10, 0) - (5x1 – 10, 2) 

  + (5x1 – 5, 0) + (5, 2x1) + (5x1, 0) - (5x1, 2) - (-5, 2x1 + 2) 

  + (0, 2x1 + 2) - (5x1 – 5, 4) - (5, 2x1 + 2) + (5x1 + 5, 2) + (15, 2x1 + 2) 

  + (5x1 + 10, 2) - (5, 2x1 + 4) - (5x1 + 5, 6) + (15, 2x1 + 4) - (5x1 + 10, 6) 

  - (20, 2x1 + 4) + (25, 2x1 + 4) + (5x1 + 20, 4) - (5x1 + 20, 6)   

 

By Theorem 4.1, for a given nD-OPP p we have that ∂(∂(p)) = 0. However, there is a procedure to have 

access to the kD elements on the boundary of an nD hyper-box, 0 ≤ k < (n-1). Let’s extract, as an example, the 

vertices (k = 0) of a 3D singular box (a unitary cube). 

 

Consider the following singular 1D hyper-box: 
1

1

: [0,1] [0,1]

( )

I

x I x x

→

=∼
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Its corresponding 0D-cells, its vertices, according to Definition 4.3, are given by: 
1 1

(1,0)

1 1

(1,1)

( ) (0) (0)

( ) (1) (1)

I x I

I x I

= =

= =

 

 

Now consider a singular 2D hyper-box: 
2 2 2

2

: [0,1] [0,1]

( )

I

x I x x

→

=∼

 

Whose corresponding edges, according to Definition 4.3, are given by: 
2 2

(1,0) 1 1 1

1 2

(1,1) 1 1 1

2 2

(2,0) 1 1 1

1 2

(2,1) 1 1 1

( ) (0, ) (0, )

( ) (1, ) (1, )

( ) ( ,0) ( ,0)

( ) ( ,1) ( ,1)

I x I x x

I x I x x

I x I x x

I x I x x

= =

= =

= =

= =

 

By evaluating the vertices of the 1D segment in the edges of the 2D cube we obtain the pair of vertices that define 

each edge of the 2D cube: 

 Edge 2

(1,0) 1 1
( ) (0, )I x x=  

• 2 1 2

(1,0) (1,0) (1,0)
( ( )) (0) (0,0)I I x I= =  

• 2 1 2

(1,0) (1,1) (1,0)( ( )) (1) (0,1)I I x I= =  

Edge 1

(1,1) 1 2
( ) (1, )I x x=  

• 2 1 2

(1,1) (1,0) (1,1)
( ( )) (0) (1,0)I I x I= =  

• 2 1 2

(1,1) (1,1) (1,1)( ( )) (1) (1,1)I I x I= =  

Edge 2

(2,0) 1 1( ) ( ,0)I x x=  

• 2 1 2

(2,0) (1,0) (2,0)
( ( )) (0) (0,0)I I x I= =  

• 2 1 2

(2,0) (1,1) (2,0)( ( )) (1) (1,0)I I x I= =  

Edge 1

(2,1) 1 1
( ) ( ,1)I x x=  

• 2 1 2

(2,1) (1,0) (2,1)
( ( )) (0) (0,1)I I x I= =  

• 2 1 2

(2,1) (1,1) (2,1)( ( )) (1) (1,1)I I x I= =  

 

Finally, consider the singular 3D hyper-box: 
3 3 3

3

: [0,1] [0,1]

( )

I

x I x x

→

=∼

 

Whose faces are defined by: 
3 3

(1,0) 1 2 1 2

3 3

(1,1) 1 2 1 2

3 3

(2,0) 1 2 1 2

1 3

(2,1) 1 2 1 2

3 3

(3,0) 1 2 1 2

1 3

(3,1) 1 2 1 2

( ) (0, , ) (0, , )

( ) (1, , ) (1, , )

( ) ( ,0, ) ( ,0, )

( ) ( ,1, ) ( ,1, )

( ) ( , ,0) ( , , 0)

( ) ( , ,1) ( , ,1)

I x I x x x x

I x I x x x x

I x I x x x x

I x I x x x x

I x I x x x x

I x I x x x x

= =

= =

= =

= =

= =

= =

 

By evaluating the vertices of the edges in the 2D cube we obtain the quartets of vertices that define each face of the 

3D cube: 

Face 3

(1,0) 1 2
( ) (0, , )I x x x=  

• 3

(1,0)
(0,0) (0,0,0)I =  

• 3

(1,0)
(0,1) (0,0,1)I =  

• 3

(1,0)
(1,0) (0,1,0)I =  

• 3

(1,0)
(1,1) (0,1,1)I =  

Face 3

(1,1) 1 2
( ) (1, , )I x x x=  

• 3

(1,1)
(0,0) (1,0,0)I =  

• 3

(1,1)
(0,1) (1,0,1)I =  

• 3

(1,1)
(1,0) (1,1,0)I =  

• 3

(1,1)
(1,1) (1,1,1)I =  

Face 3 3

(2,0) 1 2 1 2
( ) ( ,0, ) ( ,0, )I x I x x x x= =  

• 3

(2,0)
(0,0) (0,0,0)I =  

• 3

(2,0)
(0,1) (0,0,1)I =  

• 3

(2,0)
(1,0) (1,0,0)I =  

• 3

(2,0)
(1,1) (1,0,1)I =  

Face 1

(2,1) 1 2
( ) ( ,1, )I x x x=  

• 3

(2,1)
(0,0) (0,1,0)I =  

• 3

(2,1)
(0,1) (0,1,1)I =  

• 3

(2,1)
(1,0) (1,1,0)I =  

• 3

(2,1)
(1,1) (1,1,1)I =  

Face 3

(3,0) 1 2
( ) ( , ,0)I x x x=  

• 3

(3,0)
(0,0) (0,0,0)I =  

• 3

(3,0)
(0,1) (0,1,0)I =  

• 3

(3,0)
(1,0) (1,0,0)I =  

• 3

(3,0)
(1,1) (1,1,0)I =  

Face 1

(3,1) 1 2
( ) ( , ,1)I x x x=  

• 3

(3,1)
(0,0) (0,0,1)I =  

• 3

(3,1)
(0,1) (0,1,1)I =  

• 3

(3,1)
(1,0) (1,0,1)I =  

• 3

(3,1)
(1,1) (1,1,1)I =  
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 According to this procedure, in order to obtain the kD elements on the boundary of an nD hyper-box, we 

must extract the boundary elements of a (k+1)D hyper-box. Those boundary elements are evaluated in the boundary 

elements of a (k+2)D hyper-box and so on until we evaluate the resulting compositions of the previous evaluations 

over the boundary elements of the nD hyper-box.  

 
 In previous sections we have defined lattices in n� , in such way that an nD-OPP is described through nD 

hyper-boxes associated to points in a lattice. Some applications can find this scheme restrictive in the sense that 

coordinates in lattices are equally spaced along their axes. Before going any further we will describe a procedure to 

define point grids in n�  given the vertices of an nD-OPP. Such grids will have their coordinates not necessarily 

equally spaced along their axes. Moreover, we will see how our definitions for lattices are applicable in this context.  

 
Definition 5.4. Consider the set of vertices V(p) of an nD-OPP. Let 

1 2( ) { , ,..., }
ii nxV p w w w=  be the set of different 

values such that wj < wj+I and wj is the coordinate associated to Xi-axis of some vertex Vk ∈ V(p) where 1 ≤ j ≤ nxi 

and 1≤ k ≤ Card(V(p)). 

 
 Consider for example the 2D-OPP’s p and q shown in Figures 5.3.a and 5.3.b respectively. We have that 

V1(p) = {1, 3, 4, 6} and V2(p) = {1, 3, 5}, while V1(q) = {1, 2, 5} and V2(q) = {1, 2, 4}. 

 

 

(1,1) (3,1)

(1,3) (3,3)

(3,5)

(4,1) (6,1)

(6,5)

X 2

X 1

1 
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5 

1 3 4 6

p 

(4,3)

 

 

(1,1)

X 1

X 2 

(5,1)

(5,2)(2,2)

(2,4)(1,4)

1 2 5 

1

2 

4

q

 
a) b) 

Figure 5.3. Two 2D-OPP’s p and q. a) 2D-OPP p and its associated point grid.  

b) 2D-OPP q and its associated point grid (See text for details).  

 
 By computing the Cartesian product V1(p) × V2(p) we obtain the finite point grid 

{(1,1), (1,3), (1,5), (3,1), (3,3), (3,5), (4,1), (4,3), (4,5), (6,1), (6,3), (6,5)} 

Through the product V1(q) × V2(q) we have 

{(1,1), (1,2), (1,4), (2,1), (2,2), (2,4), (5,1), (5,2), (5,4)} 

Figures 5.3.a and 5.3.b show the generated grids and the disposition of the exemplified 2D-OPP’s in such grids. In 

more general terms, we have that an nD-OPP p with their respective sets V1(p), V2(p), …, Vn(p) will have associated 

the finite n-dimensional point grid given by V1(p) × V2(p) × … × Vn(p). 

 
  Now, let’s proceed to describe our exemplified 2D-OPP’s as a union of general singular 2D hyper-boxes, 

i.e., rectangles whose vertices coincide with points in the associated grid to the OPP’s. According to Definition 5.1 

all points in a lattice will have associated one nD hyper-box. In our new context we can establish a similar definition: 

a point v = (v1, …, vn) in a grid associated to an nD-OPP p will have its corresponding general singular nD  

hyper-box c as follows: 

 

1 1

1 1 1 1

: [0,1] [ , '] ... [ , ']

( ) (( ' ) ,..., ( ' ) )

n

n n

n n n n

c v v v v

x c x v v x v v v x v

→ × ×

= − + − +∼
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Where vi’ is the next coordinate following to vi in Vi(p),  1 ≤ i ≤ n. We will say that the nD hyper-box c 

corresponding to point v in the grid associated to an nD-OPP p is in such OPP if and only if 

 

([0,1] )nc p⊆  

 

According to the previous definitions a subset of V(p) will define the nD hyper-boxes that describe to p under its 

associated grid. 

 

 
 For example, the 2D-OPP’s p and q shown in Figures 5.3.a and 5.3.b are now defined by the rectangles 

described in Table 5.3. The Figures 5.4.a and 5.4.b show the disposition of those rectangles in the grids associated 

to p and q respectively. 
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(1,1)
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X 2

1 2 5 
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4 

(1,2)

(2,1)

C 1

C 2

C 3 

 
a) b) 

Figure 5.4. The 2D-OPP’s from Figure 5.3 described through rectangles associated to points corresponding to their grids. 

Only the points that describe the rectangles are shown. 

 

 
2D-OPP p 2D-OPP q 

Point Rectangle Point Rectangle 

(1,1) 

2

1

1 1 2

: [0,1] [1,3] [1,3]

( ) (2 1, 2 1)

c

x c x x x

→ ×

= + +∼

 
(1,1) 

2

1

1 1 2

: [0,1] [1,2] [1,2]

( ) ( 1, 1)

c

x c x x x

→ ×

= + +∼

 

(3,3) 

2

2

2 1 2

: [0,1] [3,4] [3,5]

( ) ( 3, 2 3)

c

x c x x x

→ ×

= + +∼

 
(1,2) 

2

2

2 1 2

: [0,1] [1, 2] [2,4]

( ) ( 1, 2 2)

c

x c x x x

→ ×

= + +∼

 

(4,1) 

2

3

3 1 2

: [0,1] [4,6] [1,3]

( ) (2 4, 2 1)

c

x c x x x

→ ×

= + +∼

 
(2,1) 

2

3

3 1 2

: [0,1] [2,5] [1, 2]

( ) (3 2, 1)

c

x c x x x

→ ×

= + +∼

 

(4,3) 

2

4

4 1 2

: [0,1] [4,6] [3,5]

( ) (2 4,2 3)

c

x c x x x

→ ×

= + +∼

   

Table 5.3. The rectangles that describe the 2D-OPP’s p and q from Figure 5.3 under their respective associated grids. 

 

 
 Finally, and before to proceed to our nD-EVM’s study, we clarify that the lattices and point grids we have 

defined have the objective of describing nD-OPP’s as union of disjoint nD hyper-boxes in such way that by selecting 

a vertex, in any of these hyper-boxes, we have that such vertex is surrounded up to 2
n
 hyper-boxes. In this way, we 

can perform, as seen in previous chapter, geometrical and/or topological local analysis over such vertices. In Section 

5.6.1 we will describe the partition of nD-OPP's in disjoint nD hyper-boxes, defined by [Aguilera98], which is more 

appropriate for performing Regularized Boolean operations than our partitions. 
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5.2. Brinks and Extreme Vertices in the nD-OPP’s 
 

 

Definition 5.5: A brink or extended edge is the maximal uninterrupted segment, built out of a sequence of collinear 

and contiguous odd edges of an nD-OPP
1
. 

 

 

Property 5.1: Even edges of an nD-OPP do not belong to brinks. 

 

 

Property 5.2: Every odd edge belongs to brinks, whereas every brink consists of m edges, m ≥ 1, and contains m+1 

vertices. Two of these vertices are at either extreme of the brink and the remaining m-1 are interior vertices.  

 

 

Definition 5.6: Let p be an nD-OPP. A kD extended hypervolume of p, 1 <  k < n, denoted by φ(p), is the maximal 

set of kD cells of p that lies in a kD space, such that a kD cell e0 belongs to a kD extended hypervolume if and only if 

e0 belongs to an (n-1)D cell present in ∂(p), i.e. 

( ) ( ) ( ) ( )( )1

0 0( ) , ( ) [0,1] [0,1]k n
e p c c belongs to p e cφ −∈ ⇔ ∃ ∂ ⊆  

 

 

Definition 5.7: Let p be an nD-OPP. V(p) will denote to set of vertices of p. 

 

 

Definition 5.8: We will call Extreme Vertices of an nD-OPP p to the ending vertices of all the brinks in p. EV(p) will 

denote to the set of Extreme Vertices of p. 

 

 

     

x   

x   2   

x   3   
1   

 
Figure 5.5. Example of a 3D-OPP p and its set of Extreme Vertices  

(Continuous lines indicate odd edges while the dotted lines indicate even edges). 

 

 

 Figure 5.5 shows an example of a 3D-OPP and its set of Extreme Vertices. Consider the construction of a 

4D-OPP as the union of several 4D-OPP's in the following way (Figure 5.6.1): 

• We will have a 4D "L-shaped" polytope a in Figure 5.6.1 (See Appendix H), and 

• Three four-dimensional hyper-boxes b, c and d. 

• The polytope a will share a vertex with hyper-box c and a face with hyper-box b, hence, all the edges in the 

shared face are characterized as even edges. 

• The hyper-box b will share an edge with hyper-box d. Such edge for instance is an even edge. 

• The remaining edges in the final polytope are characterized as odd edges. 

See the final 4D-OPP in the Figure 5.6.2. The Figure 5.6.3 shows its set of extreme vertices.  

 

                                                 
1 The previous definition of brink, given in [Aguilera98], considered it as the maximal uninterrupted segment, build out of a sequence of collinear 

and contiguous manifold edges of a kD-OPP, k = 1, 2, 3. Definition 5.5 is consistent with this previous one because we have commented in 

Chapter 4 that in 1D, 2D and 3D spaces a manifold edge is equivalent to an odd edge. 
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1)

a)

b)

c)

d)

 
 

 

 

 
2) 3) 

Figure 5.6. 1) The construction of a 4D-OPP by the union of several 4D-OPP's (a 4D "L-shaped" polytope and three hyper-boxes).  

2) The wireframe model of the final polytope. b) Its set of Extreme Vertices  

(Continuous lines indicate odd edges while the dotted lines indicate even edges). 

 

Property 5.3: Let p be an nD-OPP then EV(p) ⊆  V(p). 
 

The brinks in an nD-OPP p can be classified according to the main axis to which they are parallel. Since the 

extreme vertices mark the end of brinks in the n orthogonal directions, is that any of the n possible sets of brinks 

parallel to Xi-axis, 1 ≤ i ≤ n, (see Figures 5.7 and 5.8), as it will be proved in Corollary 5.4, produce to the same set 

EV(p). 

 
 

 

x 

x 2 

x 3 
1 

 
a) 

 

 

x 

x 2 

x 3 
1 

 
b) 

 

 

x 

x 2 

x 3 
1 

 
c) 

Figure 5.7. The brinks in a 3D-OPP (the OPP presented in Figure 5.5). a) The brinks parallel to X1-axis, b) the brinks parallel to X2-axis, 

c) the brinks parallel to X3-axis (Continuous lines indicate odd edges while the dotted lines indicate even edges). 
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 For example, in Figure 5.8 are respectively shown: 

• The parallel brinks to X1-axis (5.8.a); 

• The parallel brinks to X2-axis (5.8.b); 

• The parallel brinks to X3-axis (5.8.c); 

• The parallel brinks to X4-axis (5.8.d); 

From the 4D-OPP presented in Figure 5.6.2. 

 
 

a)

 

 

 

b)

 

 

 

c)

 

 

 

d)

 

 

Figure 5.8. A 4D-OPP (from Figure 5.6.2) and its brinks parallel to X1 (a), X2 (b), X3 (c) and X4 (d) axes 

(Continuous lines indicate odd edges while the dotted lines indicate even edges). 

 

Definition 5.9: Let p be an nD-OPP. EVi(p) will denote to the set of ending or extreme vertices of the brinks of p 

which are parallel to xi-axis, 1 ≤ i ≤ n. 
 

The Parallel Projection of an nD polytope onto an (n-1)D hyperplane, or in other words, the nD – (n-1)D 

Parallel Projection consists on just removing the j-th coordinate, whose corresponding axis is Xj, from the nD 

polytope’s points [Aguilera02b]. In this work we will require a tool to project certain elements on the boundary of an 

nD-OPP under the idea behind nD – (n-1)D parallel projection. We formalize that idea with the following 
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Definition 5.10: We define the Projection Operator for (n-1)D cells, main edges, points and set of points 

respectively as follows: 

• Let 
( , ) 1( ( )) ( ,.., )n

i nc I x x xα =  be an (n-1)D cell embedded in the nD space. ( )( , )( ( ))n

j ic I xαπ  will denote the projection 

of the cell 
( , )( ( ))n

ic I xα
 onto an (n-1)D space embedded in nD space whose supporting hyperplane is perpendicular 

to Xj-axis: 

( )( , ) 1
ˆ( ( )) ( ,..., ,..., )n

j i j nc I x x x xαπ =  

• Let (1, , ) (0,...,0, ,0,...,0)i

i
c xβ =  be a main edge. The projection of such edge in the (n-1)D space, denoted by 

( )(1, , )i

j c βπ , is given by: 

( ) �
(1, , ) ˆ(0,...,0 , ,0,...,0)i

j i

j

c xβπ =  

• Let 
1

( ,..., )
n

v x x=  a point in n� . The projection of that point in the (n-1)D space, denoted by ( )j vπ , is given by: 

1
ˆ( ) ( ,..., ,..., )j j nv x x xπ =  

• Let Q be a set of points in n� . We define the projection of the points in Q, denoted by ( )j Qπ , as the set of points 

in 1n−�  such that 

{ }1( ) : ( ),n n

j jQ p p x x Qπ π−= ∈ = ∈ ⊂� �  

In all the cases ˆ
jx  is the coordinate corresponding to Xj-axis to be suppressed.  

 

It should be noted that a main edge (1, , )ic β  in nD space always has as projection, ( )(1, , )i

j c βπ , a main edge in 

(n-1)D space except when j = i. In this last case the origin of (n-1)D space is obtained, i.e., ( )(1, , ) (0,...,0)i

i c βπ = . 

 

Figure 5.9 shows the application of projection operator over some elements on the boundary of a 3D  

hyper-box. π1(c1) projects face c1 onto the plane X2X3 which is perpendicular to X1-axis. In fact, the projection of 

face c3 , π1(c3), coincides with π1(c1). These same faces projected onto plane X1X3 collapse in segments (π2(c1) and 

π2(c3)). Let Q be set of vertices in that cube. Hence, by projecting Q onto plane X1X2, π3(Q), the collinear vertices in 

direction of axis X3 have the same projection. 

 

 

x 1 x 2 

x 3

c 1 

c 2 c 3 

c 4

π 1 c 1 ( ) π 1 c 3 ( ) = π 2 c 1 ( ) 

π 2 c 3 ( ) 

π 3 Q ( ) 

 
Figure 5.9. Projecting certain elements on the boundary of a 3D cube onto the 3D space’s main planes (See text for details).  
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5.3. Local Analysis Over Extreme Vertices in the nD-OPP’s 
 

Theorem 5.1: A vertex of an nD-OPP p, n ≥ 1, when is locally described by a set of surrounding nD hyper-boxes, is 

an extreme vertex if and only if it is surrounded by an odd number of such nD hyper-boxes. 

Proof: 

⇒) 

Let v0 be an extreme vertex in p. By Definition 5.8 v0 is one of the ending vertices of a brink. Therefore, it has 

exactly one incident odd edge which lies in one of the coordinate axes of the local nD space around v0. Then, by 

Lemma 4.1, the number of nD hyper-boxes incident to v0 is odd.  

⇐) 

Let v0 a vertex of p and let c be the combination of nD hyper-boxes of p incident to v0. Then, by Theorem 4.2, there 

are n linearly independent odd edges incident to v0. Hence, v0 is the ending vertex of n brinks parallel to each one of 

the coordinate axes of the local nD space around v0. Therefore, v0 is an extreme vertex.      

 

Corollary 5.1: A vertex of an nD-OPP p, n ≥ 1, when is locally described by a set of surrounding nD hyper-boxes, is 

an non-extreme vertex or a non-valid vertex if and only if it is surrounded by an even number of such nD  

hyper-boxes. 

Proof: 

The proposition is the counterreciprocal of Theorem 5.1 (p ⇔ q ≡ ¬p ⇔ ¬q).      

 

Theorem 5.2: Any extreme vertex of an nD-OPP, n ≥ 1, when is locally described by a set of surrounding nD  

hyper-boxes, has exactly n incident linearly independent odd edges. 

Proof: 

Let v0 an extreme vertex of p and let c be the combination of nD hyper-boxes of p incident to v0. By Theorem 5.1 

we have that the number of nD hyper-boxes incident to v0 is odd. Then, by Theorem 4.2, there are n linearly 

independent odd edges incident to v0.           

 

Let c be a combination of nD hyper-boxes, n > 1, and consider the (n-1)D cells in ∂(c) embedded in each 

one of the main (n-1)D hyperplanes. By applying the projection operator to such embedded cells by suppressing the 

xj coordinate, which corresponds to the axis which is perpendicular to its corresponding (n-1)D hyperplane, we get 

an (n-1)D combination of (n-1)D hyper-boxes. 

 

Lemma 5.1: Let c be a combination of nD hyper-boxes, n > 1. If c describes an non-extreme vertex then in each one 

of the n main (n-1)D hyperplanes, the (n-1)D-OPP’s composed by the (n-1)D cells in ∂(c) embedded in such 

hyperplanes describe non-extreme vertices. 

Proof: 

If c describes a non-extreme vertex then, by Corollary 5.1, Γ(c) is an even number. By Corollary 4.1, in each axis 

Xi, 1 ≤ i ≤ n, there is a pair of collinear odd edges or there is a pair of collinear even edges. By Corollary 4.2, the 

number of (n-1)D hyper-boxes in ∂(c) embedded in each one of the n main hyperplanes is even. By applying the 

projection operator 
i

π  over the (n-1)D hyper-boxes embedded in the hyperplane perpendicular to Xi-axis we obtain 

an (n-1)D-OPP, namely an (n-1)D combination, whose (n-1)D hyper-boxes describe, by Corollary 5.1, a non 

extreme vertex in (n-1)D space.            

 

Theorem 5.3: Let c be a combination of nD hyper-boxes, n > 1. Combination c describes an extreme vertex if and 

only if in each one of the n main (n-1)D hyperplanes, the (n-1)D-OPP’s composed by the (n-1)D cells in ∂(c) 

embedded in such hyperplanes describe extreme vertices. 

Proof: 

⇒) 

If combination c describes an extreme vertex then, by Theorem 5.2, it has exactly n incident linearly independent 

odd edges. Consider an odd edge on Xi-axis, 1 ≤ i ≤ n. By Theorem 4.4 the number of (n-1)D hyper-boxes in ∂(c) 

which are perpendicular to the odd edge on Xi-axis is odd. By applying the projection operator 
i

π  over such (n-1)D 

hyper-boxes we obtain an (n-1)D-OPP, namely an (n-1)D combination, whose (n-1)D hyper-boxes describe, by 

Theorem 5.1, an extreme vertex in (n-1)D space.  
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By applying the above procedure to the remaining n-1 axes, in which lies exactly one odd edge, we will get the same 

result. Thus, we will have n extreme vertices associated to the (n-1)D-OPP’s embedded in all the main hyperplanes 

of combination c. 

⇐) 

The reciprocal is the counterreciprocal of Lemma 5.1 (p ⇒ q ≡¬q ⇒ ¬p).      
 

 

 Table 5.4 shows three examples of 3D combinations of boxes that describe Extreme Vertices because they 

have an odd number of boxes. It can be observed in the three cases that by considering only such faces incident to the 

origin and included in the boundary of the combination, by grouping them according to its supporting main plane 

(X1X2, X2X3 or X1X3), their corresponding projections generate 2D combinations of rectangles which in turn also 

describe Extreme Vertices because they have an odd number of rectangles. 

 

 

3D combination 
Projection onto  

X1X2 plane 
3( )π  

Projection onto  

X1X3 plane 
2( )π  

Projection onto  

X2X3 plane 
1( )π  

-x1

x1

2x2

-x2

x3

-x3

 

-x1

x1

2x2

-x2

x3

-x3

 

-x1

x1

2x2

-x2

x3

-x3

 

-x1

x1

2x2

-x2

x3

-x3

 

-x1

x1

2x2

-x2

x3

 

-x1

x1

2x2

-x2

x3

 

-x1

x1

2x2

-x2

x3

-x3

 

-x1

x1

2x2

-x2

x3

-x3

 

-x1

x1

2x2

x3

-x3

 

-x1

x1

2x2

-x2

x3

-x3

 

 

-x 1 

x 1

2 x 2 

-x 2 

x 3

-x 3

 

-x1

x1

2x2

-x2

x3

-x3

 
Table 5.4. Three 3D combinations of boxes that describe Extreme Vertices. The projections of those faces included in the boundary of the 

combination and incident to the Extreme Vertex also describe Extreme Vertices in 2D space.  

 

 

Corollary 5.2: Let c be a combination of nD hyper-boxes, n > 1. Combination c describes a non-extreme vertex if 

and only if in each one of the n main (n-1)D hyperplanes, the (n-1)D-OPP’s composed by the (n-1)D cells in ∂(c) 

embedded in such hyperplanes describe non-extreme vertices. 

Proof:  

The proposition is the counterreciprocal of Theorem 5.3 (p ⇔ q ≡ ¬p ⇔ ¬q).      
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Theorem 5.4: Let c be a combination of nD hyper-boxes which describes an extreme vertex, n > 1. The number of 

(n-1)D cells in ∂(c) incident to the extreme vertex is: 

• Odd if n is odd, or 

• Even if n is even 

Proof: 

By Theorem 5.3, because combination c describes an extreme vertex then in each one of the (n-1)D hyperplanes 

there is an odd number of (n-1)D cells which are included in ∂(c). In nD space there are n main (n-1)D hyperplanes 

which pass through the origin. Hence, if n is an even number then the total sum of (n-1)D cells in ∂(c) which are 

incident to the origin is even. In the other hand, if n is an odd number then the total sum of (n-1)D cells in ∂(c) which 

are incident to the origin is odd.            

 

Theorem 5.5: Let c be a combination of nD hyper-boxes which describes a non-extreme vertex, n > 1. The number 

of (n-1)D cells in ∂(c) incident to the non-extreme vertex is even. 

Proof: 

By Corollary 5.2, because combination c describes a non-extreme vertex then in each one of the (n-1)D hyperplanes 

there is an even number of (n-1)D cells which are included in ∂(c). In nD space there are n main (n-1)D hyperplanes 

which pass through the origin. Hence, the total sum of (n-1)D cells in ∂(c) which are incident to the origin is even.   

 

 Appendix E shows the possible characterizations of Extreme Vertices in 2D, 3D and 4D-OPP’s according 

to Theorems 5.1 to 5.4. Moreover, the possible characterizations of non-extreme vertices in these same polytopes 

are also shown (which are given according to Corollaries 5.1 to 5.2).   

 

Lemma 5.2: Let c be a combination of nD hyper-boxes, n > 1, and let e0 be an edge on xi-axis, 1 ≤ i ≤ n. If e0 is an 

even edge then in each one of the n main (n-1)D hyperplanes, where e0 is embedded, πj(e0), for all  

j ≠ i, is an even edge of the (n-1)D-OPP’s composed by the (n-1)D cells in ∂(c) embedded in such hyperplanes. 

Proof: 

If e0 is an even edge then, by Corollary 4.3, the number of coplanar (n-1)D cells in ∂(c) which are incident to e0 is 

even. By applying the projection operator 
j

π , j ≠ i, over all the (n-1)D hyper-boxes embedded in the hyperplane 

perpendicular to Xj-axis we obtain an (n-1)D-OPP, namely an (n-1)D combination, in which an even number of its  

(n-1)D hyper-boxes are incident to the main edge πj(e0). Hence, πj(e0) is an even edge for all j ≠ i.   

 

 

Theorem 5.6: Let c be a combination of nD hyper-boxes, n > 1, and let e0 be an edge on xi-axis, 1 ≤ i ≤ n. Edge e0 is 

an odd edge if and only if in each one of the n main (n-1)D hyperplanes, where e0 is embedded, πj(e0), for all  

j ≠ i, is an odd edge of the (n-1)D-OPP’s composed by the (n-1)D cells in ∂(c) embedded in such hyperplanes.   

Proof: 

⇒) 

If e0 is an odd edge then, by Theorem 4.6, the number of coplanar (n-1)D cells in ∂(c) which are incident to e0 is 

odd. By applying the projection operator 
j

π , j ≠ i, over all the (n-1)D hyper-boxes embedded in the hyperplane 

perpendicular to Xj-axis we obtain an (n-1)D-OPP, namely an (n-1)D combination, in which an odd number of its  

(n-1)D hyper-boxes are incident to the main edge πj(e0). Hence, πj(e0) is an odd edge for all j ≠ i. 

 ⇐) 

The reciprocal is the counterreciprocal of Lemma 5.2 (p ⇒ q ≡¬q ⇒ ¬p).      
 

 

Corollary 5.3: Let c be a combination of nD hyper-boxes, n > 1, and let e0 be an edge on xi-axis, 1 ≤ i ≤ n. Edge e0 is 

an even edge if and only if in each one of the n main (n-1)D hyperplanes, where e0 is embedded, πj(e0), for all  

j ≠ i, is an even edge of the (n-1)D-OPP’s composed by the (n-1)D cells in ∂(c) embedded in such hyperplanes. 

Proof: 

The proposition is the counterreciprocal of Theorem 5.6 (p ⇔ q ≡ ¬p ⇔ ¬q).      
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Theorem 5.7 (Characterization of Extreme Vertices according to their incident odd and even edges): Let v0 be 

an Extreme Vertex in a combination of nD hyper-boxes. Vertex v0 has exactly n incident linearly independent odd 

edges and n incident linearly independent even edges. 

Proof: 

By Theorem 5.2, v0 has n incident odd edges embedded in each one of the main axes of the local coordinate system 

described by v0. Because there is exactly one odd edge e0 embedded in 
ix
+  or 

i
x

− , 1 ≤ i ≤ n, then the number of nD 

hyper-boxes incident to e0 is odd. Hence, there is an even edge which is collinear to e0. Therefore, for all {1,..., }i n∈ , 

Xi-axis has one odd edge and one even edge incident to v0 which yields to n incident even edges incident to v0.  
 

Theorem 5.8 (Characterization of Non-Extreme Vertices according to their incident odd and even edges): 
There are n+1 types of non-extreme vertices that can be present in a combination of nD hyper-boxes,  that is, a  

non-extreme vertex has (n-i) pairs of incident collinear odd edges and i pairs of incident collinear even edges, for 

{0,1,..., }i n∈ . 

Proof: 

By Corollary 5.1, a non-extreme vertex v0 has an even number of incident hyper-boxes. By Corollary 4.1, in each 

one of the main axes, of the local coordinate system described by v0, there are pairs of collinear odd edges or pairs of 

collinear even edges incident to v0. The n+1 types arise by considering all possible combinations of presence of pairs 

of collinear odd edges or pairs of collinear even edges.          
 

 At this point is important to consider that the notion of non-extreme vertex with two incident even edges is 

not present only in 1D space, because even edges or non-valid edges are not possible in such space. The Table 5.6 

shows the extreme and non-extreme vertices present in the 1D, 2D, 3D and 4D-OPP’s characterized according to 

their incident odd and even edges. 
 

n Extreme Vertex Non-extreme Vertices 

1  

 

     

V1,1,0      

2 

 

 

 

 

 

 

 

 

  

V2,2,0 V2,1,1 V2,0,2    

3 

 

 

 

 

 

 

 

 

 

 

 

V3,3,0 V3,2,1 V3,1,2 V3,0,3   

4 

 

 

 

 

 

 

 

 

 

 

 

 
V4,4,0 V4,3,1 V4,2,2 V4,1,3 V4,0,4  

Table 5.6. Characterization of extreme and non-extreme vertices in the nD-OPP’s, n ∈ {1, 2, 3, 4}, according to incident odd and even edges 

( : Odd edge,  : Even edge). 
 

 The Appendix F shows the correspondences between the characterizations of Extreme and non-extreme 

Vertices according to Theorems 5.7 and 5.8, with the characterizations of Extreme and non-extreme vertices 

according to the procedures described originally in [Aguilera98] (in the 1D, 2D and 3D-OPP’s) and  

[Pérez-Aguila03d] (in the 4D-OPP’s). 
 

5.4. Global Analysis Over the nD-OPP’s and the Extreme Vertices Model 
 

Definition 5.11: Let p be an nD-OPP. Let 
1 2{ , ,..., }

ii nxVX a a a=  be the set of different values such that aj < aj+1 and aj 

is the coordinate associated to Xi-axis of some extreme vertex ( )kv EV p∈  where 1 ≤ j ≤ nxi and 1 ≤ k ≤ Card(EV(p)). 
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Definition 5.12: Let p be an nD-OPP. 
,n i

V  will refer to a non-extreme vertex of p with i pairs of incident collinear 

odd edges and n-i pairs of incident collinear even edges. 
,
( )

n i
V p  will refer to the set of non-extreme vertices of type 

,n i
V  of p. 

 

Property 5.4: Let p be an nD-OPP and let V(p) the set of all the vertices of p. V(p) is described as the union of the 

following disjoint subsets 

, ,( 1) ,1 ,0( ) ( ) ( ) ( ) ... ( ) ( )n n n n n nV p EV p V p V p V p V p−= ∪ ∪ ∪ ∪ ∪  

That is 

,( )

0

( ) ( ) ( )
n

n n i

i

V p EV p V p−

=

= ∪∪  

 

Theorem 5.9 (Obtaining non-extreme vertices’ coordinates from Extreme Vertices): Let p be an nD-OPP.  

Let v = {a0, …, an} be an non-extreme vertex in p, i.e., 

,( )

0

( )
n

n n i

i

v V p−

=

∈∪  

Then 
1 1

a VX∈ , 
2 2

a VX∈ , …, 
n n

a VX∈ . 

Proof: 

The pair of Extreme Vertices of a brink, parallel to Xi-axis, share the values of (n-1) coordinates, where the 

coordinate corresponding to Xi-axis is that in where they differ. Hence the coordinates of v can be obtained directly if 

it is a vertex of type 
,n nV , 

,( 1)n nV −
, …, or 

,2nV , i.e., if v is in the interior of at least two intersecting perpendicular brinks. 

In these cases the coordinates of v can be obtained from the ending vertices’ coordinates of those brinks, then 

1 1
a VX∈ , 

2 2
a VX∈ , …, and 

n n
a VX∈ . If v is a vertex of type 

,1nV , that is, v is in the interior of only one brink, then  

(n-1) of its n coordinates can be known directly. The remaining coordinate, as well as all n coordinates of a vertex of 

type 
,0nV , can be obtained using the fact that the other end of an even edge can be either a vertex with known 

coordinates (a vertex in 
, ,( 1) ,2( ) ( ) ( ) ... ( )n n n n nEV p V p V p V p−∪ ∪ ∪ ∪ ), or again, a vertex of type 

,1nV  or 
,0nV . Therefore, in 

the last case, another even edge of the new vertex can be used to repeat this procedure until a vertex with known 

coordinates is reached.             
 

Theorem 5.10: Let p be an nD-OPP with its associated sets EV1(p), EV2(p), …, EVn-1(p), EVn(p). Then 

EV1(p) = EV2(p) = … = EVn-1(p) = EVn(p) 

Proof: 

Let EVi(p) and EVj(p), i ≠ j, 1 ≤ i, j ≤ n, be any two sets of extreme vertices of the brinks of p which are parallel to xi 

and xj axes respectively. We will show that EVi(p) = EVj(p) by proving the double inclusion. 

⊆ ) 

Let v0 be any extreme vertex in EVi(p). Then, by Theorem 5.2, n linearly independent odd edges are incident to v0. 

One of these odd edges is parallel to xj-axis. Hence, v0 ∈ EVj(p) ∴ EVi(p) ⊆ EVj(p) 

⊇ ) 

By using the previous reasoning we conclude that EVi(p) ⊇ EVj(p) because any extreme vertex in EVj(p) is  

in EVi(p) ∴ EVi(p) ⊇ EVj(p) 

 

∴ EVi(p) = EVj(p)             
 

Corollary 5.4: Let p be an nD-OPP. Then EV(p) = EVi(p), 1 ≤ i ≤ n. 

Proof: 

⊆ ) 

Any extreme vertex in EV(p) is included in EVi(p) because one of its incident n odd edges is parallel to  

xi-axis ∴ EV(p) ⊆ EVi(p) 

⊇ ) 

Any extreme vertex in EVi(p) is in EV(p) because it has n-1 incident odd edges besides of its incident odd edge 

which is parallel to xi-axis ∴ EV(p) ⊇ EVj(p) 

 

∴ EV(p) = EVj(p)             
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Lemma 5.3: Let p be an nD-OPP. Card(EVi(p)) is an even number, 1 ≤ i ≤ n. 

Proof: 

By definition, EVi(p) is composed by all the extreme vertices of the brinks of p which are parallel to xi-axis. By 

Property 5.2 every brink has two extreme (or ending) vertices. Let mi be the number of brinks of p which are 

parallel to xi-axis. Then Card(EVi(p)) = 2mi is an even number.       

 

Let Q be a finite set of points in 3� . In [Aguilera98] was defined the ABC-sorted set of Q as the set 

resulting from sorting Q according to coordinate A, then to coordinate B, and then to coordinate C. For instance, a 

set Q can be ABC-sorted is six different ways: X1X2X3, X1X3X2, X2X1X3, X2X3X1, X3X1X2 and X3X2X1. Now, let p 

be a 3D-OPP. According to [Aguilera98] the Extreme Vertices Model of p, EVM(p), denotes to the ABC-sorted set 

of the extreme vertices of p. Then EVM(p) = EV(p) except by the fact that EV(p) is not necessarily sorted. In this 

work we will assume that the coordinates of extreme vertices in the Extreme Vertices Model of an nD-OPP p, 

EVMn(p) are sorted according to coordinate X1, then to coordinate X2, and so on until coordinate Xn. That is, we are 

considering the only ordering X1…Xi…Xn such that i–1 < i, 1 < i ≤ n.  

 

Definition 5.13: Let p be an nD-OPP. We will define the Extreme Vertices Model of p, denoted by EVMn(p), as the 

model as only stores to all the extreme vertices of p. 

 

Theorem 5.11: Let p be an nD-OPP. 

1) Card(EV(p)) is an even number. 

2) Card(EVMn(p)) is an even number. 

Proof: 

1) By Corollary 5.4, EV(p) = EVi(p), 1 ≤ i ≤ n and by Lemma 5.3 Card(EV(p)) = Card(EVi(p)) is an even number. 

2) By definition EVMn(p) = EV(p) and by 1) Card(EVMn(p)) = Card(EV(p)) is an even number.   

 

5.4.1. Relating the nD-EVM with the (n-1)D-EVM of an (n-1)D-Couplet 
 

Definition 5.14: Consider an nD-OPP p: 

• Let 
i

np  be the number of distinct coordinates present in the vertices of p along Xi-axis, 1 ≤ i ≤ n. 

• Let ( )i

k
pΦ  be the k-th (n-1)D extended hypervolume of p which is perpendicular to Xi-axis, 1 ≤ k ≤ npi. 

• Let ( )( )i

kH pΦ  be the (n-1)D hyperplane where ( )i

k
pΦ  lies. 

• Let ( ) ( )i

k nEV p EVM p⊂  be the set of extreme vertices embedded in ( )( )i

kH pΦ , 1 ≤ i ≤ n, 1 ≤ k ≤ npi. 

 

In Chapter 4 we defined an (n-1)D-couplet as a set of (n-1)D-coupled cells, i.e., (n-1)D cells embedded in a 

same (n-1)D hyperplane. For the sake of the simplicity in the terminology used in this work, starting from this 

section, the set of cells in an (n-1)D extended hypervolume will be referred as an (n-1)D-couplet or just a couplet. 

 
The Figure 5.10 shows as an example the sequences of 2D-couplets, i.e. 2D extended hypervolumes, of a 

3D-OPP. Such sequences are categorized according to the 3D space main axis which is perpendicular to those  

2D-couplets. 

 

x

x2

x3

1

 
a) 

x

x2

x3

1

 
b) 

x

x2

x3

1

 
c) 

Figure 5.10. The sequences of 2D-couplets in a 3D-OPP (the OPP presented in Figure 5.5). a) The 2D-couplets perpendicular to X1-axis. 

b) The 2D-couplets perpendicular to X2-axis. c) The 2D-couplets perpendicular to X3-axis. 
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 For example, in Figure 5.11 are respectively shown (couplets): 

• The Φ's perpendicular to X1-axis (5.11.a); 

• The Φ's perpendicular to X2-axis (5.11.b); 

• The Φ's perpendicular to X3-axis (5.11.c); 

• The Φ's perpendicular to X4-axis (5.11.d); 

From the 4D-OPP presented in Figure 5.6.2. 

 
 

 
a) 

 
b) 

 

 
c) 

 
d) 

Figure 5.11. A 4D-OPP (from Figure 5.6.2) and its couplets perpendicular 

to X1 (a), X2 (b), X3 (c) and X4 (d) axes. 
 
Lemma 5.4: Let p be an nD-OPP. Let v0 a non-extreme vertex of p embedded in the supporting hyperplane of 

( )j

k
pΦ , ( )( )i

kH pΦ , which is perpendicular to Xj-axis. If 
0 ( )

j

kv EV p∉  then ( )( )0 1( ) ( )j

j n j kv EVM pπ−Π ∉ Φ , 1 ≤ j ≤ n,  

1 ≤ k ≤ npj. 
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Proof: 

If v0 is a non-extreme vertex of p then, by Corollary 5.2, 
0( )i vΠ  is a non-extreme vertex of the (n-1)D-OPP’s 

embedded in each one of the main hyperplanes that pass through v0 seen as the origin of its local coordinate system, 

1 ≤ i ≤ n. When i = j we have the particular case when Xj-axis is perpendicular to ( )( )j

kH pΦ . Therefore 

( )( )0 1( ) ( )j

j n j kv EVM pπ π−∉ Φ .           

 

Lemma 5.5: Let p be an nD-OPP. The set of extreme vertices of the projection of an (n-1)D-couplet of p, ( )j

k
pΦ , is 

equal to the projection of the set of extreme vertices ( )j

k
EV p , i.e., 

1( ( ( ))) ( ( ))j j

n j k j kEVM p EV pπ π− Φ = ,  

1 ≤ j ≤ n, 1 ≤ k ≤  npj. 

Proof: 

⊆ ) 

Through the counterreciprocal of Lemma 5.4 we have that if ( )( )0 1( ) ( )j

j n j kv EVM pπ π−∈ Φ  then 
0 ( )

j

kv EV p∈ . Hence, 

1( ( ( ))) ( ( ))j j

n j k j kEVM p EV pπ π− Φ ⊆ . 

⊇ ) 

By Theorem 5.3 each extreme vertex v0 in ( )j

k
EV p  is an extreme vertex 

0( )j vπ  of 
1( ( ( )))j

n j kEVM pπ− Φ . Therefore, 

1( ( ( ))) ( ( ))j j

n j k j kEVM p EV pπ π− Φ ⊇ . 

 

1( ( ( ))) ( ( ))j j

n j k j kEVM p EV pπ π−∴ Φ =            

 

Theorem 5.12: Let p be an nD-OPP. The set of extreme vertices of the projection of an (n-1)D-couplet of p, ( )j

k
pΦ , 

is a subset of ( ( ))j nEVM pπ , i.e., ( )1 ( ( )) ( ( ))j

n j k j n
EVM p EVM pπ π− Φ ⊆ , where Xj-axis is perpendicular to the supporting 

hyperplane of ( )j

k
pΦ , 1 ≤ j ≤ n, 1 ≤ k ≤ npj. 

Proof: 

Let ( )j

k
EV p  be the set of extreme vertices embedded in ( )( )j

kH pΦ . Obviously ( ) ( )j

k n
EV p EVM p⊆  and 

( ( )) ( ( ))j

j k j nEV p EVM pπ π⊆ . By Lemma 5.5 we have that 
1( ( ( ))) ( ( ))j j

n j k j kEVM p EV pπ π− Φ = , therefore 

1( ( ( ))) ( ( ))j

n j k j nEVM p EVM pπ π− Φ ⊆ .           

  

Theorem 5.13: Consider the Xj-axis, 1 ≤ j ≤ n, and let p be an nD-OPP. The union of the EVMs corresponding to the 

projection of all the (n-1)D-couplets of p whose supporting hyperplane is perpendicular to Xj-axis is the projection 

of the EVM of p, i.e., 

( ) ( )( )1

1

( )
jnp

j

j n n j k

k

EVM p EVMπ π−

=

= Φ∪  

Proof: 

⊆ ) 

Let v0 an extreme vertex in EVMn(p). Then there exists a value k’, 1 ≤ k’ ≤ npj, such that v0 ∈ 
'( )

i

kEV p . By  

Lemma 5.5, if 
0 '( ) ( ( ))j

j j kv EV pπ π∈  then ( )( )0 1 ' 1

1

( ) ( ( ( )))
jnp

j j

j n j k n j k

k

v EVM p EVMπ π π− −

=

∈ Φ ⊆ Φ∪ . Hence 

( ) ( )( )1

1

( )
jnp

j

j n n j k

k

EVM p EVMπ π−

=

⊆ Φ∪ . 

⊇ ) 

Let ( )( )1 ' 1

1

( ( ( )))
jnp

j j

n j k n j k

k

EVM p EVMπ π− −

=

Φ ⊆ Φ∪ , 1 ≤ k’ ≤ npj.  By Theorem 5.12, ( )1 '
( ( )) ( ( ))j

n j k j n
EVM p EVM pπ π− Φ ⊆ . 

Therefore ( )( ) ( )1

1

( )
jnp

j

n j k j n

k

EVM EVM pπ π−

=

Φ ⊆∪ . 

 

( ) ( )( )1

1

( )
jnp

j

j n n j k

k

EVM p EVMπ π−

=

∴ = Φ∪           
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Lemma 5.6: Let p be an nD-OPP. Let ( )j

k
EV p  be the set of extreme vertices embedded in the (n-1)D hyperplane 

associated to the (n-1)D-couplet ( )j

k
pΦ , 1 ≤ j ≤ n, 1 ≤ k ≤ npj. Then, ( )( )j

k
Card EV p  is even. 

Proof: 

Those brinks of p which are embedded ( )( )j

kH pΦ  have their two extreme vertices in ( )j

k
EV p . Consider the brinks 

parallel to Xi-axis, i ≠ j. Let mi be the number of those brinks. Hence, the number of extreme vertices in ( )j

k
EV p  is 

given by ( )( ) 2j

k i
Card EV p m=  which is an even number.        

 

Theorem 5.14: The cardinality of the set of extreme vertices of the projection of an (n-1)D-couplet of p, ( )j

k
pΦ , is 

even, 1 ≤ j ≤ n, 1 ≤ k ≤ npj. 

Proof: 

Let ( )j

k
EV p  be the set of extreme vertices embedded in the (n-1)D hyperplane associated to the (n-1)D-couplet 

( )j

k
pΦ . By Lemma 5.5 

' 1 '( ( )) ( ( ( )))j j

j k n j kEV p EVM pπ π−= Φ , then we have that 

( )1 ' '
( ( ( ))) ( ( ))j j

n j k k
Card EVM p Card EV pπ− Φ =  and by Lemma 5.6, ( )1 '( ( ( )))j

n j kCard EVM pπ− Φ  is even.   

 

 It should be noted that all the Extreme Vertices in ( )i

k
EV p  have the same xi coordinate. Hence, the sets 

( )i

k
EV p , for all k ∈ [1, npi] induce a partition of the Extreme Vertices of an nD-OPP. We will proceed to formalize 

this observation through Definition 5.15, Theorem 5.15 and Property 5.5. 
 

Definition 5.15: Let p be an nD-OPP. Let x0 and y0 be vertices in EVMn(p). We define the relation 
( )

i
kEV p

R  as  

( ) ( )0 0 0 0( )
( ) ( )i

k

i i

k kEV p
x R y x EV p y EV p⇔ ∈ ∧ ∈  

 

Theorem 5.15: The relation 
( )

i
kEV p

R  is an equivalence relation on the Extreme Vertices of an nD-OPP p. 

Proof: 

Let x0, y0 and z0 be Extreme Vertices in EVMn(p). The following properties are satisfied: 

• Reflexivity: ( )( )0 00 ( )
( ) i

k
n EV p

x EVM p x R x∀ ∈  

• Symmetry: If ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0( ) ( )
( ) ( ) ( ) ( )i i

k k

i i i i

k k k kEV p EV p
x R y x EV p y EV p y EV p x EV p y R x⇒ ∈ ∧ ∈ ⇒ ∈ ∧ ∈ ⇒  

( )( )0 0 0 0 0 0( ) ( )
, ( ) i i

k k
n EV p EV p

x y EVM p x R y y R x∴ ∀ ∈ ⇒  

• Transitivity: If ( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )
0 0 0 0 0 0 0 0( ) ( )

0 0 0 0( )

( ) ( ) ( ) ( )

( ) ( )

i i
k k

i
k

i i i i

k k k kEV p EV p

i i

k k EV p

x R y y R z x EV p y EV p y EV p z EV p

x EV p z EV p x R z

∧ ⇒ ∈ ∧ ∈ ∧ ∈ ∧ ∈

⇒ ∈ ∧ ∈ ⇒

 

( ) ( ) ( )( )0 0 0 0 0 0 0 0 0( ) ( ) ( )
, , ( ) i i i

k k k
n EV p EV p EV p

x y z EVM p x R y y R z x R z∴ ∀ ∈ ∧ ⇒  

∴ 
( )

i
kEV p

R  is an equivalence relation.           

 

Property 5.5: Because ( )
i

kEV p  are equivalence classes that partition the set of Extreme Vertices of an nD-OPP p we 

have: 

• 
'( ) ( ) , ', 1 , '

i i

k k iEV p EV p k k k k np∩ = ∅ ≠ ≤ ≤  

• 

1

( ) ( )
inp

i

n k

k

EVM p EV p
=

=∪  

 

5.4.2. Sections and Slices of nD-OPP’s 
 

Definition 5.16: A Slice is the region contained in an nD-OPP p between two consecutive couplets of p. ( )i

k
Slice p  

will denote to the k-th slice of p which is bounded by ( )i

k
pΦ  and 

1
( )i

k
p+Φ , 1 ≤ k < npi. 

 

Property 5.6: Let p be an nD-OPP. Hence 
1

( )
inp

i

k

k

p Slice p
−

= ∪ . 
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 Figure 5.12 shows the slices for a 3D-OPP according to the supporting planes of its 2D-couplets 

perpendicular to X1-axis.  

 

x

x2

x3

1

 
a) 

x 1

x 2

x 3

 
 

b) 

Figure 5.12. The slices of a 3D-OPP (presented in Figure 5.5). b) There are presented the regions from the 3D-OPP between the supporting 

planes of a) the 2D-couplets perpendicular to X1-axis 

 

In the Figure 5.13.a are shown the regions between the 3D-couplets perpendicular to X1-axis of the  

4D-OPP presented in Figure 5.6.2. Finally, in the Figure 5.13.b are shown the 4D-OPP's slices. 

 

a)  

b)  
Figure 5.13. The regions of a 4D-OPP (presented in Figure 5.6.2) between its couplets perpendicular to X1-axis (a)  

and its respective slices (b). 
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Definition 5.17: A Section is the (n-1)D-OPP, n > 1, resulting from the intersection between an nD-OPP p and a  

(n-1)D hyperplane perpendicular to the coordinate axis Xi, 1 ≥ i ≥ n, which not coincide with any (n-1)D-couplet of 

p. A section will be called external or internal section of p if it is empty or not, respectively. ( )i

k
S p  will refer to the  

k-th section of p between ( )i

k
pΦ  and 

1
( )i

k
p+Φ , 1 ≤ k < npi. Moreover, 

0 ( )
i

S p  and ( )
i

i

npS p  will refer to the empty 

sections of p before 
1
( )i pΦ  and after of ( )

i

i

np
pΦ , respectively. Finally, nsi = npi + 1refers to the number of sections of 

the nD-OPP p. 
 

x

x2

x3

1

 
a) 

x

x2

x3

1

 
b) 

x

x2

x3

1

 
c) 

Figure 5.14. The sections of a 3D-OPP (the OPP presented in Figure 5.5). a) The internal sections perpendicular to X1-axis.  

b) The internal sections perpendicular to X2-axis. c) The internal sections perpendicular to X3-axis. 

 
 

a)  b)  

 

c)  d)  

Figure 5.15. A 4D-OPP (from Figure 5.6.2) and its sections perpendicular to X1 (a), X2 (b), X3 (c) and X4 (d) axes. 
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For example, in Figure 5.14 are shown the internal sections of a 3D-OPP while in Figure 5.15 are 

respectively shown: 

• The sections perpendicular to X1-axis (5.15.a); 

• The sections perpendicular to X2-axis (5.15.b); 

• The sections perpendicular to X3-axis (5.15.c); 

• The sections perpendicular to X4-axis (5.15.d); 

From the 4D-OPP presented in Figure 5.6.2. 

 
Property 5.7: Let p be an nD-OPP. All the (n-1)D hyperplanes perpendicular to Xi-axis, 1 ≤ i ≤ n, which intersect to 

( )i

k
Slice p  give the same section ( )

i

kS p . 

 

5.5. Relating Sections and Couplets 
 
 As commented in the introduction of this chapter, the following sections contain the results previously 

established by Aguilera & Ayala, in [Aguilera97] and [Aguilera98]. As seen in previous sections, the Odd Edge 

Characterization provides us a unifying classification for edges that compose brinks in the nD-OPP’s which is 

independent of other topological characterizations (See Appendices D, E and F). By this way Extreme Vertices have 

been defined under a unique framework which allows us to present Aguilera & Ayala’s results under the context of 

the nD-OPP’s, and moreover, most of them are direct extensions of the original 3D-OPP’s statements. 

 
In Section 5.1 we commented that the points that compose to an nD-OPP are obtained through the union of 

the images of the hyper-boxes in its corresponding n-chain. We have defined sets over an nD-OPP, such as the 

couplets, as sets of cells that belong to p. Starting from this section, we will require to consider these sets of cells in 

two senses: 1) when we deal with their composing cells, and 2) when we deal with the points in the images of their 

composing cells.  

 
5.5.1. The Neighborhood of a Couplet 

 
Definition 5.18: Let ε +∈�  be a value small enough so that ak + ε < ak+1, ∀ak ∈ VXi, 1 ≤ i ≤ n. 

 
Definition 5.19: For each q ∈ ( )( )i

kH pΦ  we define two points q
-
 and q

+
 having the same coordinates than q and 

whose xi coordinates are ak - ε and ak + ε respectively. 

 
Lemma 5.7: Let P be an nD-OPP. 

1( )
i

kq P q S P
− −

−∈ ⇒ ∈  and ( )
i

kq P q S P
+ +∈ ⇒ ∈ . 

Proof [Aguilera98]: 

Let Q
-
 and Q

+
 be two parallel hyperplanes to ( )( )i

kH PΦ  whose equations are xi = ak - ε and xi = ak + ε respectively, 

thus q
-
 ∈ Q

-
 and q

+
 ∈ Q

+
. From Definition 5.16, 

1
( )i

k
Slice P−

 and ( )i

k
Slice P  are the regions of P immediately before and 

after ( )( )i

kH PΦ  respectively, then, by construction of q
-
 and q

+
, it follows that 

1( )
i

kq P q Slice P
− −

−∈ ⇒ ∈  and 

( )
i

kq P q Slice P
+ +∈ ⇒ ∈ . According to Property 5.7, 

1 1
( ) ( )i i

k k
Slice P Q S P

−

− −∩ =  and ( ) ( )i i

k k
Slice P Q S P

+∩ = , therefore 

1( )
i

kq P q S P
− −

−∈ ⇒ ∈  and ( )
i

kq P q S P
+ +∈ ⇒ ∈ .         

 
Lemma 5.8: Let P be an nD-OPP. q ∈ P if and only if 

1( )
i

kq S P
−

−∈  or ( )
i

kq S P
+ ∈ . 

Proof [Aguilera98]: 

⇒ ) 

If q ∈ P then by assuming that both 
1( )

i

kq S P
−

−∉  and ( )
i

kq S P
+ ∉  we get that q is on a dangling kD element of P,  

0 ≤ k < n, and this lead us to conclude that P is not regular, that is, P is not an nD-OPP. Thus  

q ∈ P ⇒ (
1( )

i

kq S P
−

−∈  or ( )
i

kq S P
+ ∈ ). 
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⇐ ) 

Because P is an nD-OPP then P is regular, thus in the limit when ε→0, 
1( )

i

kq S P
−

−∈  ⇒ q ∈ P and ( )
i

kq S P
+ ∈  ⇒ q ∈ P. 

Hence (
1( )

i

kq S P
−

−∈  or ( )
i

kq S P
+ ∈ ) ⇒ q ∈ P.           

 

 

Definition 5.20: Consider an nD-OPP p. T(p) will denote to the set of (n-2)D cells of p such that an (n-2)D cell e0 

belongs to T(p) if and only if e0 belongs to an (n-1)D cell present in ∂(p), i.e. 

( ) ( ) ( )( )2 1

0 0( ) , ( ) [0,1] [0,1]n n
e T p c c is present in p e c

− −∈ ⇔ ∃ ∂ ⊆  

 

 

Property 5.8: Consider an nD-OPP p. ( ) ( )
i

k p T pΦ ∩  is a subset of ( )
i

k pΦ  with one dimension less that ( )
i

k pΦ . 

 

 

Lemma 5.9: Consider an nD-OPP P. The four membership combinations of q
-
 in 

1( )
i

kS P−
 and q

+
 in ( )

i

kS P  provide 

the membership characterization of q with respect to ( )
i

k PΦ  as: 

1. ( ) ( ) ( )1( ) ( ) ( ) ( ) ( )i i i i

k k k kq S P and q S P q P q P T P− +
−∈ ∈ ⇒ ∉Φ ∨ ∈Φ ∩  

2. ( )1( ) ( ) ( )i i i

k k kq S P and q S P q P− +
−∈ ∉ ⇒ ∈Φ  

3. ( )1( ) ( ) ( )i i i

k k kq S P and q S P q P− +
−∉ ∈ ⇒ ∈Φ  

4. ( )1( ) ( ) ( )i i i

k k kq S P and q S P q P− +
−∉ ∉ ⇒ ∉Φ  

Proof [Aguilera98]: 

The proof is obtained by the exhaustive characterization of all nine possible combinations of the three possible 

membership cases (in, on or out) of q
-
 respect to 

1( )
i

kS P−
 with those of q

+
 with respect to ( )

i

kS P . Cases 1, 2 and 3 will 

be subdivided (see Table 5.7). Case 4 is the counterreciprocal of Lemma 5.8, so q ∉ P and thus ( )
i

kq P∉Φ .  

 

 

Cases 1, 2 and 3 are particular cases of Lemma 5.8, therefore q ∈ P. However, case 1.1 with a small value 

of ε makes point q a interior point of P, so ( )
i

kq P∉Φ . On the other hand, cases 2.1 and 3.1 with small values of ε 

make their corresponding points q boundary points; therefore q must lie on ( )
i

k PΦ , the boundary of P between 

1( )
i

kS P−
 and ( )

i

kS P . Cases 1.2 and 1.3 correspond to the limit of cases 2.1 and 3.1 respectively, when q
+
 or q

-
 (the 

point outside P) approaches to a boundary of P other than ( )
i

k PΦ . Cases 2.2 and 3.2 correspond to the limit of cases 

2.1 and 3.1 respectively, but when q
-
 or q

+
 (the point inside P) approaches to a boundary of P other than ( )

i

k PΦ . Any 

way, in cases 1.2, 1.3, 2.1, 2.2, 3.1 and 3.2, it is verified that q ∈ ( )
i

k PΦ . Case 1.4 corresponds to the limit of case 1.1 

(also of case 4) when both q
-
 and q

+
, and thus q approach simultaneously to a boundary of P other than ( )

i

k PΦ , 

therefore ( )
i

kq P∉Φ .  

 

 

Finally, case 1.5 is when q
-
 and q

+
 lie on different boundary elements of P (although they have the same 

supporting (n-2)D hyperplane), and thus q is on an (n-2)D cell, i.e., q ∈ T(P), but also inside ( )
i

k PΦ . Therefore, in 

this case ( ) ( )
i

kq P T P∈Φ ∩ . 
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Case q- vs. 
1
( )i

k
S P−

 q+ vs. ( )i

kS P  q vs. ( )i

k PΦ  

    

1.1 In In Out 

1.2 In On On 

2.1 In Out In 

    

1.3 On In On 

1.4/1.5 On On Out/In 

2.2 On Out On 

    

3.1 Out In In 

3.2 Out On On 

4 Out Out Out  

 q - q+ q Case

1.1

1.2

2.1

2.2

1.4

1.3

3.1

3.2

4 

1.5

 

q i 
k (P) ∉Φ

 
Table 5.7. The membership of q- and q+ with respect to 

1
( )i

k
S P−

 and ( )i

kS P  respectively, and the resulting membership of q with respect to ( )i

k PΦ  

(Solid vertical lines represent ( )i

k PΦ  for some k, while dashed lines on its left and right represent sections 
1
( )i

k
S P−

 and ( )i

kS P  respectively). 

 

5.5.2. Computing Couplets from Sections 
 

Theorem 5.16: The projection of the set of (n-1)D-couplets, ( )( )i

i k
Pπ Φ , 1 ≤ i ≤ n, of an nD-OPP P, can be obtained 

by computing the regularized XOR (⊗) between the projections of its previous ( )1( )i

i kS Pπ −
 and next ( )( )i

i kS Pπ  

sections, i.e., 

( ) ( ) ( )1( ) ( ) * ( ) , [1, ]i i i

i k i k i k iP S P S P k npπ π π−Φ = ⊗ ∀ ∈  

Proof [Aguilera98]: 

We will prove the double inclusion using Definition 5.19 and Lemma 5.9, and the fact that the projections of q, q
-
 

and q
+
 are all the same, i.e., ( ) ( ) ( )i i iq q qπ π π+ −= = . 

 

⊇ ) 

1
( )i

k
q S P

−

−∈  and ( ) ( )
i i

k kq S P q P
+ ∉ ⇒ ∈Φ    (case 2 of Lemma 5.9) 

( )1
( ) ( )i

i i k
q S Pπ π −∈  and ( ) ( )( ) ( ) ( ) ( )i i

i i k i i kq S P q Pπ π π π∉ ⇒ ∈ Φ  (applying the same projection to each element) 

( ) ( ) ( )1( ) ( ) ( ) ( ) ( )i i i

i i k i k i i kq S P S P q Pπ π π π π−∈ − ⇒ ∈ Φ    (by definition of the difference operator) 

( ) ( ) ( )1( ) * ( ) ( )i i i

i k i k i kS P S P Pπ π π− − ⊆ Φ   (a) (since it is valid ( ) ( )1( ) ( ) ( )i i

i i k i kq S P S Pπ π π−∀ ∈ − ) 

Similarly, case 3 of Lemma 5.9 implies that ( ) ( ) ( )1( ) * ( ) ( )i i i

i k i k i kS P S P Pπ π π−− ⊆ Φ    (b) 

Thus, by (a) and (b), ( ) ( ) ( ) ( ) ( )1 1( ) * ( ) * ( ) * ( ) ( )i i i i i

i k i k i k i k i kS P S P S P S P Pπ π π π π− −− ∪ − ⊆ Φ . 

Therefore ( ) ( ) ( )1( ) * ( ) ( ) , [1, ]i i i

i k i k i k iS P S P P k npπ π π− ⊗ ⊆ Φ ∀ ∈  

 

⊆ ) 

The contrareciprocal of case 4 of Lemma 5.9 is   
1( ) ( ) ( )

i i i

k k kq P q S P or q S P
− +

−∈Φ ⇒ ∈ ∈  

and it implies that      ( ) ( ) ( )1( ) ( ) * ( )i i i

i k i k i kP S P S Pπ π π−Φ ⊆ ∪  (c) 

with a procedure similar to the above. Similarly negation of case 1 of Lemma 5.9 is: 
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1
( ( ) ( ) ( )) ( ( ) ( ))i i i i

k k k k
q P and q P T P q S P or q S P

− +

−∈Φ ∉Φ ∩ ⇒ ∉ ∉ , i.e., 

( ) ( ) ( ) ( )1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )i i i i

i i k i k i i k i i k
q P P T P q S P or q S Pπ π π π π π π−∈ Φ − Φ ∩ ⇒ ∉ ∉  (applying projections) 

( ) ( ) ( )( ) ( )( )1(( ) ( ) ( ) ( ( ) ( ( )) ) )i i

i i k i k

C C
i i

i i k i i kqq P P S PT SP or q Pπ π ππ ππ π −∈ Φ − Φ ∈∩ ⇒ ∈  (the complement sets) 

( ) ( ) ( )( ) ( )( )1
( ) ( ) (( ) ( ) ( ) )( )

C C
i ii i

i i k i i i kk i k
q P P T P q S P S Pπ π π π π π−⇒ ∈ ∪∈ Φ − Φ ∩   (by definition of union operator) 

Thus 

( ) ( ) ( )( )1
( ) ( ) ( ) ( ) ( ) ( ) ( )

C
i i i

i i k i k i i k k
q P P T P q S P S Pπ π π π π −∈ Φ − Φ ∩ ⇒ ∈ ∩   (by DeMorgan’s law) 

This is true ( ) ( )( ) ( ) ( ) ( )i i

i i k i kq P P T Pπ π π∀ ∈ Φ − Φ ∩  

Hence ( ) ( ) ( )( )1
( ) ( ) ( ) ( ) ( )

C
i i i

i k i k i k k
P P T P S P S Pπ π π −Φ − Φ ∩ ⊆ ∩  

Now, by regularizing both sides, and observing that ( ) ( ) ( )( ) * ( ) ( ) ( )i i i

i k i k i kP P T P Pπ π πΦ − Φ ∩ = Φ  since ( ) ( )i

k
P T PΦ ∩  

is a subset of ( )i

k
PΦ  with one dimension less that ( )i

k
PΦ , see Property 5.8, then 

( ) ( )( )1( ) ( ) * ( )
C

i i i

i k i k kP S P S Pπ π −Φ ⊆ ∩     (d) Hence 

( ) ( ) ( )( )1 1( ) ( ) * ( ) * ( ) * ( )
C

i i i i i

i k i k k i k kP S P S P S P S Pπ π π− −Φ ⊆ ∪ ∩ ∩   (by (c) and (d)) 

( ) ( ) ( )1 1( ) ( ) * ( ) * ( ) * ( )i i i i i

i k i k k i k kP S P S P S P S Pπ π π− −Φ ⊆ ∪ − ∩    (by definition of difference operator) 

( ) ( ) ( )1( ) ( ) * ( ) , [1, ]i i i

i k i k i k iP S P S P k npπ π π−Φ ⊆ ⊗ ∀ ∈     (by definition of XOR operator) 

 

( ) ( ) ( )1
( ) ( ) * ( ) , [1, ]i i

i k i k i k i
P S P S P k npπ π π−∴ Φ = ⊗ ∀ ∈         

 

5.5.3. Computing Sections from Couplets 
 

Theorem 5.17: The projection of any section, ( )( )i

i kS pπ , of an nD-OPP p, can be obtained by computing the 

regularized XOR between the projection of its previous section, ( )1( )i

i kS pπ −
, and the projection of its previous couplet 

( )( )i

i k pπ Φ . Or, equivalently, by computing the regularized XOR of the projections of all the previous couplets, i.e. 

( ) ( ) ( )
0

1

( )

( ) ( ) * ( ) , [1, ]

i

i i i

i k i k i k i

S p

S p S p p k npπ π π−

 = ∅


= ⊗ Φ ∀ ∈

  that is   ( ) ( )
1

( ) ( )*
k

i i

i k i j
j

S p pπ π
=

= Φ⊗  

Proof [Aguilera98]: 

By Definition 5.17, 
0
( )i

S p = ∅ . The resulting equation of Theorem 5.16 can be solved for ( )( )i

i kS pπ , giving the 

recursive equation of this theorem.           

 

Corollary 5.5: The projection of the first and last couplets of any nD-OPP p, must coincide with the projection of 

the first and last internal section of p, that is 

( ) ( ) ( ) ( )1 1 1( ) ( ) ( ) ( )
i i

i i i i

i i i np i npS p p and S p pπ π π π−= Φ = Φ  

Proof [Aguilera98]: 

Since 
0
( )i

S p = ∅  then by Theorem 5.17, ( ) ( )1 1( ) ( )i i

i iS p pπ π= Φ . Similarly, since ( )
i

i

npS p = ∅  then 

( ) ( )1( ) ( ) * ( )
i i i

i i i

np i np i np
S p S p pπ π−= ⊗ Φ = ∅  if and only if ( ) ( )1( ) ( )

i i

i i

i np i npS p pπ π− = Φ       

 

 Lets to consider an example where we will apply the Theorems 5.16 and 5.17. Consider a 3D-OPP which is 

the union of four 3D-OPP’s as shown in Figure 5.16.a. The faces parallel to X3-axis are the same in each one of 

these 3D-OPP’s (hence, these OPP’s can be seen as extrusions towards 3D space of 2D-OPP’s). Figure 5.16.b shows 

the final 3D-OPP.  
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X 1 

X 2 

X 3 

 
a) 

 

b) 

 

X 1 

X 2

X 3

  
 

Figure 5.16. a) Composing a 3D-OPP as the union of four 3D-OPP’s. b) The Final 3D-OPP. 

 

 

We can identify, through Figure 5.16.a, that there are five distinct coordinates in X3-axis, hence, we have to 

expect five 2D-couplets, i.e., Extended Faces, which are shown in Figure 5.17. Such couplets are embedded in 

planes (referenced in the figure through dotted squares) which are also perpendicular to X3-axis. Figure 5.18 shows 

the application of the projection operator over these couplets. The projection takes place in a 2D space whose normal 

vector is perpendicular to X3-axis. 
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X 1

X 2 

X 3

 
Figure 5.17. Disposition in the 3D space of couplets perpendicular to X3-axis of the 3D-OPP shown in Figure 5.16.a. 

 

 

 

X 1 

X 2 

 
 

 

X 1 

X 2 

 

 

X 1 

X 2 

 

( )3

3 1 ( )pπ Φ  ( )3

3 2 ( )pπ Φ  ( )3

3 3 ( )pπ Φ  

 

 

X 1

X 2 

 
 

X 1

X2

 

 

( )3

3 4 ( )pπ Φ  ( )3

3 5 ( )pπ Φ   

Figure 5.18. The Projections of couplets of the 3D-OPP shown in Figure 5.16.a. 

 

 Table 5.8 shows the application of Theorem 5.17 in order to get the set of the projections of sections 

perpendicular to X3-axis. Once we have obtained sections from couplets, we can apply Theorem 5.16 in order to 

obtain the 3D-OPP’s couplets from the sections. The obtained results in Table 5.9 coincide with Figure 5.18. 



Chapter 5 - Orthogonal Polytopes Modeling Through  
the Extreme Vertices Model in the n-Dimensional Space (nD-EVM) 

  

( )3

3 1( )kS pπ −  ( )3

3 ( )k pπ Φ  
( )

( ) ( )

3

3 3

1

( )

( ) * ( )

k

k k

S p

S p p

π

π π−

=

⊗ Φ
 

3

0 ( )S p = ∅  

 
 

 

( )3

3 1 ( )pπ Φ  

 
 

 

( ) ( ) ( )3 3 3

1 0 1( ) ( ) * ( )S p S p pπ π π= ⊗ Φ  

 
 

 

( )3

1 ( )S pπ  

 

 

 

( )3

3 2 ( )pπ Φ  

 
 

 

( ) ( ) ( )3 3 3

2 1 2( ) ( ) * ( )S p S p pπ π π= ⊗ Φ  

 
 

 

( )3

2 ( )S pπ  

 

 

 

( )3

3 3 ( )pπ Φ  

 
 

 

( ) ( ) ( )3 3 3

3 2 3( ) ( ) * ( )S p S p pπ π π= ⊗ Φ  

 
 

 

( )3

3 ( )S pπ  

 

 

 

( )3

3 4 ( )pπ Φ  

 

 

 

( ) ( ) ( )3 3 3

4 3 4( ) ( ) * ( )S p S p pπ π π= ⊗ Φ  

 

 

 

( )3

4 ( )S pπ  

 
 

 

( )3

3 5 ( )pπ Φ  

( )

( ) ( )

3

5

3 3

4 5

( )

( ) * ( )

S p

S p p

π

π π

=

⊗ Φ = ∅

 

Table 5.8. Computing sections from couplets of the 3D-OPP shown in Figure 5.16.a. 
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( )3

3 1( )kS pπ −  ( )3

3 ( )kS pπ  
( )

( ) ( )

3

3

3 3

3 1 3

( )

( ) * ( )

k

k k

p

S p S p

π

π π−

Φ =

⊗
 

3

0 ( )S p = ∅  

 
 

 

( )3

3 1 ( )S pπ  

 
 

 

( ) ( )3 3 3

3 1 0 3 1( ) ( ) * ( )p S p S pπ πΦ = ⊗  

 
 

 

( )3

3 1 ( )S pπ  

 
 

 

( )3

3 2 ( )S pπ  

 

 

 

( ) ( ) ( )3 3 3

3 2 3 1 3 2( ) ( ) * ( )p S p S pπ π πΦ = ⊗  

 
 

 

( )3

3 2 ( )S pπ  

 
 

 

( )3

3 3 ( )S pπ  

 

 

 

( ) ( ) ( )3 3 3

3 3 3 2 3 3( ) ( ) * ( )p S p S pπ π πΦ = ⊗  

 
 

 

( )3

3 3 ( )S pπ  

 

 

 

( )3

3 4 ( )S pπ  

 

 

 

( ) ( ) ( )3 3 3

3 4 3 3 3 4( ) ( ) * ( )p S p S pπ π πΦ = ⊗  

 

 

 

( )3

3 4 ( )S pπ  

3

5 ( )S p = ∅  

 

 

 

( ) ( ) ( )3 3 3

3 5 3 4 3 5( ) ( ) * ( )p S p S pπ π πΦ = ⊗  

Table 5.9. Computing couplets from sections of the 3D-OPP shown in Figure 5.16.a. 



Chapter 5 - Orthogonal Polytopes Modeling Through  
the Extreme Vertices Model in the n-Dimensional Space (nD-EVM) 

  

5.5.4. Forward and Backward Differences 
 

 According to Theorem 5.16, the projection of any couplet, ( )( )i

i k pπ Φ , of an nD-OPP p, can be obtained by 

computing a regularized XOR between the projections of its previous ( )1( )i

i kS pπ −
 and next ( )( )i

i kS pπ  sections, that is 

1( ( )) ( ( )) * ( ( )), [1, ]i i i

i k i k i k i
p S p S p k npπ π π−Φ = ⊗ ∀ ∈  

Where ( )i

k
pΦ  is an (n-1)D-OPP representing the set of coupled (n-1)D cells, included in ∂(p), which are embedded in 

the hyperplane ( )( )i

kH pΦ  . Moreover, according to the well known definition of the XOR operator, we have the 

following 
 

Property 5.9: Let p be an nD-OPP. Hence 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 1
( ) ( ) * ( ) ( ) * ( ) * ( ) * ( )i i i i i i i

i k i k i k i k i k i k i k
p S p S p S p S p S p S pπ π π π π π π− − −Φ = ⊗ = − ∪ −  

 

Definition 5.21: Consider an nD-OPP p. ( ) ( )( )1
( ) * ( )i i

i k i k
S p S pπ π− −  and ( ) ( )( )1

( ) * ( )i i

i k i k
S p S pπ π −−  will be called 

Forward and Backward Differences of the projection of two consecutive sections ( )1( )i

i kS pπ −
 and ( )( )i

i kS pπ  and they 

will be denoted by ( )
i

kFD p  and ( )i

k
BD p  where Xi-axis is perpendicular to them. 

 

Property 5.10 [Aguilera97]: Forward and Backward differences are quasi-disjoint sets to each other, i.e., 

( ) * ( )
i i

k kFD p BD p∩ = ∅ . Hence, they define a partition for the set of (n-1)D cells lying on the given couplet ( )i

k
pΦ . 

 

 One interesting characteristic, described in [Aguilera98], of forward and backward differences of a 3D-OPP, 

is that forward differences are the sets of faces, on an couplet, whose normal vectors point to the positive side of the 

coordinate axis perpendicular to such couplet. Similarly, backward differences are the sets of faces, on a couplet, 

whose normal vectors point to the negative side of the coordinate axis perpendicular to such couplet. By this way, it 

is provided a procedure for obtaining the correct orientation of faces in a 3D-OPP when it is converted from  

3D-EVM to a boundary representation.  
 

 In the context of an nD-OPP’s p there are methods to identify normal vectors in the (n-1)D cells included in 

∂(p). For example, simplicial combinatorial topology provides methodologies assuming a polytope is represented 

under a simplexation (see Section 2.2.4). Such methods operate under the fact the n+1 vertices of an nD simplex are 

labeled and sorted. Such sorting corresponds to an odd or an even permutation. By taking n vertices from the n+1 

vertices of the nD simplex we get the vertices corresponding to one of its (n-1)D-cells. In this point, usually a set of 

entirely arbitrary rules are given to determine the normal vector to such (n-1)D cells, see for example [Hocking88] & 

[Naber00]. Such rules establish, according to the parity of the permutation, if the assigned normal vector points 

towards the interior of the polytope or outside of it.  

 

On the other hand, there are works that consider the determination of normal vectors by taking in account 

properties of the vectors that compose the basis of nD space. Let’s describe the procedure presented in [Kolcun04]. 

Consider the 3D simplex s3, i.e. a tetrahedron, embedded in 3D space, defined by vertices a0 = (0,0,0), a1 = (1,0,0),  

a2 = (0,1,0) and a3 = (0,0,1). Let 
1e
��

, 
2e
���

 and 
3e
��

 be the vectors in the well known canonical base for 3� . By applying 

the definition of cross product we have the following relationships: 

 

1e
��

 × 
2e
���

 = 
3e
��

   
3e
��

 × 
1e
��

 = 
2e
���

   
2e
���

 × 
3e
��

 = 
1e
��

 

 

Such identities define the right-orientation of the canonical basis of 3�  [Kolcun04]. The orientation of the cross 

products of these vectors is expressed in Figures 5.19.a, b and c as an oriented edge on the boundary of the 

tetrahedron s3. So we obtain the right-oriented faces a0a1a2, a0a2a3 and a0a3a1. Because 
ie
��

×
je
���

= -
je
���

×
ie
��

 then we have 

the left-oriented faces [Kolcun04] shown in Figures 5.19.d, e and f. Under this orientation, it is well known that 

faces’ normal vectors point outside tetrahedron s3. 
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a 1 

a 2 

a 3 

a 0 X 1 

X 2 

X 3

N 

 

 

a 1 

a 2 

a 3 

a 0 
X 1 

X 2 

X 3 

N 

 

 

a 1 

a 2

a 3 

a 0 X 1 

X 2 

X 3 

N 

 
a) b) c) 

 

a 1 

a 2 

a 3 

a 0 X 1 

X 2 

X 3

N  

 

a 1 

a 2 

a3 

a 0
X 1 

X 2 

X 3 

N 

 

 

a 1 

a 2 

a 3 

a 0 
X 1

X 2 

X 3 

N 

 

d) e) f) 

Figure 5.19. a), b) and c) Right-oriented faces a0a1a2, a0a2a3 and a0a3a1 on the boundary of the tetrahedron. In this orientation, normal vector N
���

 

point towards the tetrahedron’s interior. d), e) and f) Left-oriented faces on the boundary of the tetrahedron. In this case, normal vector N
���

 point 

outside the tetrahedron. 

 

[Kolcun04] extends the previous idea in order to define orientations for volumes on the boundary of a 4D 

simplex s4 embedded in 4D space and defined by vertices a0 = (0,0,0,0), a1 = (1,0,0,0), a2 = (0,1,0,0), a3 = (0,0,1,0) 

and a4 = (0,0,0,1). Consider the definition of cross product in four-dimensional space ([Banchoff92] & 

[Hollasch91]): 

 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

e e e e

u u u u
u v w

v v v v

w w w w

 
 
 × × =
 
 
  

�� ��� �� ���

� � ��  

 

Where 
1e
��

, 
2e
���

, 
3e
��

 and 
4e
���

 are the vectors in the canonical base for 4� . Analogously to 3D case the following 

relationships are fulfilled [Kolcun04]: 

 

1e
��

 × 
3e
��

 × 
2e
���

 = 
4e
���

   
1e
��

 × 
2e
���

 × 
4e
���

 = 
3e
��

 

1e
��

 × 
4e
���

 × 
3e
��

 = 
2e
���

   
2e
���

 × 
3e
��

 × 
4e
���

 = 
1e
��

 

 

Such relations define the right-orientation of the canonical basis of 4�  [Kolcun04]. The orientation of the cross 

products of these vectors is expressed in Figures 5.20.a, b, c and d as an oriented face. In this way we obtain the  

right-oriented volumes a0a1a3a2, a0a1a2a4, a0a1a4a3 and a0a2a3a4. In this orientation, volumes’ normal vector point 

towards the 4D simplex’s interior. Because 
ie
��

 × 
je
���

 × 
k

e
���

 = - 
ke
���

 × 
je
���

 × 
ie
��

 [Hollasch91] then we have the  

left-oriented volumes [Kolcun04] shown in Figure 5.20.e, f, g and h. Under this orientation, we have that volumes’ 

normal vectors point outside simplex s4. 
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a)

 

a 1 

a 2 
a 

3 

a 0 

a 4 

X 4 

X 2 

X 1 

X 3 

N 

 b)

 

a 1 

a 2 
a3 

a 0 

a 4 

X 2 

X 1 

X 3 X 4 

N 

 

c)

 

a 1 

a 2 
a 3

a 0 

a 
4 

X 1 

X 2 

X 3 
X 4 N 

 d)

 

a 1 

a 2 
a 3 

a 0 

a 
4 

X 1 

X 2 

X 3 
X 4 

N 

 

e)

 

a 
1 

a 2 
a 3 

a 0 

a 
4 

X 1 

X 2 

X 3 
X 4 

N 
 f)

a1

a2

a3

a0

a4

X 1

X 2

X 3
X 4

N

 

g)

 

a 1 

a 2 
a 3 

a 0 

a 
4 

X 1 

X 2 

X 3 
X 4 

N  

 

a 1 

a 2 
a 3

a 0 

a 4 

X 1 

X 2 

X 3 X 4 

N

 
 

 

 

 

 

           h)                                                                       

Figure 5.20. a), b), c) and d) Right-oriented volumes on the boundary of the 4D simplex. In this orientation, normal vector N
���

 point towards 

simplex’s interior. e), f), g) and h) Left-oriented volumes on the boundary of the simplex. In this case, normal vector N
���

 point outside the simplex. 

 

The above methods, allows us to interpret the direction of the vector product as a direction of the internal 

normal vector of right-oriented boundary face or volume [Kolcun04]. In our context we will require that normal 

vectors point outside the polytope, hence, by identities 
ie
��

 × 
je
���

  = - 
je
���

 × 
ie
��

, in 3� , and 
ie
��

 × 
je
���

 × 
k

e
���

 = - 
ke
���

 × 
je
���

 × 
ie
��

, 

in 4� , we have access to normal vectors pointing outside 3D and 4D simplexes respectively. [Kolcun04] applies this 

simplicial procedure in order to define normal vectors in the 3D cells of a 4D hypercube. Although Kolcun’s method 

can be extended for nD-OPP’s, under the appropriate definitions of cross product in nD space, it is dependent of 

polytopes are represented through a simplexation. In this last sense, forward and backward differences will provide 

us a powerful tool.  
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Sections Forward Differences Backward Differences 

 

S1 
1
(p) 

S1 
2 (p) 

S1

3
(p) 

S1

4
(p) 

 

 
S1 

1 (p) -S1 
2 (p) 

S1 
2 (p) - S1 

3 (p)

S1 
3 (p)- S1

4
(p) 

S 1
4
(p) - S1 

5 (p)

 

 

S1 
1 (p) -S 1

0
(p) 

S1 
2 (p) - S 1

1
(p) 

S1 
3
(p) - S1 

2 (p) 

S1 
4
(p) -S1 

3 (p) 

 
 

S2 
3 (p) 

S2 
2 (p)

S 2
1 (p) 

 

 

 

S2 
1
(p) -S2 

2 (p) 
S2 

2 (p) - S 2 
3 (p) 

S2 
3 (p) - S2 

4 (p) 

 

 

S 2 
2
(p) -S 2 

1 (p)=

S2 
3 (p) - S 2

2
(p) 

S2 
1 (p)- S2 

0
(p) 

 
 

 

S3 
1 (p) 

S 3 
2 (p) 

S3 
3 (p) 

 
 

 S3 
1 (p)- S3 

2 (p) 

S 3
2
(p)- S3 

3 (p) 

S3

3 (p) -S3 
4 (p)

 

 

S 3 
1 (p)- S3

0
(p) 

S3 
3 (p) -S3

2
(p) 

S3 
2 (p) -S3

1
(p) 

 
 

 S4

1
(p) 

S 4 
2 (p) 

S4

3 (p)

 
 

 S4 
1 (p)-S4 

2 (p) 

S4 
2 (p)-S4 

3 (p) 

S4 
3 (p) -S4 

4 (p) 

 

 S4 
1 (p) - S4

0 (p) 

S4 
2 (p) - S4

1 (p) 

S4 
3 (p) -S4 

2 (p) 

 

Table 5.10. Computing the Backward and Forward Differences for the 4D-OPP shown in Figure 5.6.2 (see text for details). 

 

Theorem 5.18: In an nD-OPP P, forward differences ( )
i

kFD P  are the sets of (n-1)D cells on ( )i

k
PΦ  whose normal 

vectors point to the positive side of the coordinate axis Xi which is perpendicular to ( )i

k
PΦ , while backward 

differences ( )i

k
BD P  are the sets of (n-1)D cells on ( )i

k
PΦ  whose normal vectors point to the negative side of the 

coordinate axis Xi which is perpendicular to ( )i

k
PΦ . 
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Proof [Aguilera98]: 

From Definition 5.21, forward differences ( ) ( )( )1
( ) * ( )i i

i k i k
S P S Pπ π− −  correspond to the set of points q, such that its 

corresponding points q
-
 and q

+
 satisfy 

1( )
i

kq S P
−

−∈  and ( )
i

kq S P
+ ∉ , i.e., q

-
 is inside, and q

+
 is outside P. Moreover, q, q

-
 

and q
+
 are collinear and perpendicular to ( )k

i
PΦ , with q

+
 to the farther positive side. Since (n-1)D cells’ normal 

vectors point to the polytope’s exterior, then the normal vector of ( )k

i
PΦ  at ( )

i

kq FD P∈  points towards q
+
, i.e., to the 

positive side of the coordinate Xi-axis which is perpendicular to ( )k

i
PΦ . In a similar way, backward differences 

( ) ( )( )1
( ) * ( )i i

i k i k
S P S Pπ π −−  correspond to the set of points q such that its corresponding points q

-
 and q

+
 satisfy 

1( )
i

kq S P
−

−∉  and ( )
i

kq S P
+ ∈ . Thus the normal vector of ( )k

i
PΦ  at ( )

i

kq BD P∈  points towards q
-
, i.e., to the negative side 

of the coordinate Xi-axis which is perpendicular to ( )k

i
PΦ .        

 

 Table 5.10 shows the extraction of volumes and their correct orientation through forward and backward 

differences. In this example we work with the 4D-OPP p shown in Figure 5.6.2. The first row shows sections 

perpendicular to X1-axis. Through them we compute forward differences 1

1 ( )FD p  to 1

4( )FD p  in order to obtain the 

3D-cells whose normal vector points towards the positive side of X1-axis. On the other hand, these same sections 

share us to compute backward differences 1

1 ( )BD p  to 1

4( )BD p  which are composed by the set of 3D-cells whose 

normal vector points towards the negative side of X1-axis. In a similar way, the remaining rows of Table 5.10 shows 

sections perpendicular to X2, X3 and X4-axes and the way their respective forward and backward differences are 

computed. 

 

5.5.5. Virtual Couplets 
 

Definition 5.22 [Aguilera98]: An empty couplet will be called virtual couplet. Let p be an nD-OPP. We will say that 

p has a virtual couplet ( )i

k
pΦ  perpendicular to Xi-axis if no vertex of p lies on ( ( ))i

k
H pΦ . 

 

 It must be noted that 
1( )

i

kS p−
 and ( )i

k
S p  in Theorem 5.16 must be two consecutive sections of an nD-OPP p, 

but they (and thus, their projections) must not necessarily be different. Therefore if  
1( ( )) ( ( ))

i i

i k i kS p S pπ π− =  then, by 

Theorem 5.16, ( )i

k
pΦ = ∅ . This means that any number of virtual couplets may be considered wherever they are 

needed, without altering p. 

 

5.6. Regularized Boolean Operations on the nD-EVM 
 

5.6.1. Unifying Operands’ Grids 
 

Definition 5.23: Let p be an nD-OPP. ( ) ( ) ( ){ }1 2( ) ( ) , ( ) ,..., ( )
i

i i i

i npSpl p H p H p H p= Φ Φ Φ  will be the ordered sequence of 

the supporting (n-1)D hyperplanes, perpendicular to Xi-axis, where the couplets 
1( )
i

pΦ , 
2 ( )i

pΦ ,…, ( )
i

i

np pΦ  lie. 

 

Definition 5.24: Let p and q be two nD-OPP’s. Let ( | )
i

Spl p q  be the ordered sequence of supporting (n-1)D 

hyperplanes from p extended with those from q, defined as the ordered merge of ( )
i

Spl p  and ( )
i

Spl q . Let 
,i pq

n  be the 

number of elements in ( | )
i

Spl p q . An (n-1)D hyperplane in the sequence will be labeled as ( | )
i

kH p q , 
,[1, ]i pqk n∈ . 

 

Property 5.11: Let p and q be two nD-OPP’s and r = p op* q where op* is in { }*, *, *, *∪ ∩ − ⊗ . The following 

relations hold: 

• ( | ) ( | )
i i

Spl p q Spl q p=  

• ( ), ( ), ( ) ( | )
i i i i

Spl p Spl q Spl r Spl p q⊆  
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Definition 5.25: Let p and b be two nD-OPP’s and r = p op* q where op* is in { }*, *, *, *∪ ∩ − ⊗ . Let ( | )ipart p q  be 

the Sequential Spatial Partition of n�  by means of ( | )
i

Spl p q  into 
, 1i pqn +  regions (

0

i
region  to 

,i pq

i

nregion ). Let 

( | )
i

kSlice p q  and ( | )
i

kS p q  as the k-th slice and section of p inside i

k
region  respectively (Note that 

( | ) ( | )
i i

k kSlice p q Slice q p≠  because the first one belongs to p while the second one belongs to q). The corresponding 

slice of the result r will be specified as ( | | )
i

kSlice r p q  which also can be written as ( | | )
i

kSlice r q p . Let ( | )
i

k p qΦ  be the 

corresponding couplet of p lying on ( | )
i

kH p q .  

 

 Figure 5.21 shows two 2D-OPP’s p (in white color) and q (in light gray color). The intersection between p 

and q is shown in dark gray. By definition 
1
( | )Spl p q ={ 1

1 ( | )H p q , 1

2 ( | )H p q , 1

5 ( | )H p q , 1

3 ( | )H p q , 1

4 ( | )H p q , 1

6 ( | )H p q } 

where 1

1 ( | )H p q , 1

2 ( | )H p q  & 1

5 ( | )H p q  belong to p, and 1

3 ( | )H p q , 1

4 ( | )H p q  & 1

6 ( | )H p q  belong to q. 
1
( | )Spl p q  

induces the partition of the 2D space in 7 regions, namely 1

0region  to 1

6region . And finally, 1

1
( | )Slice p q  to 1

5 ( | )Slice p q  

are the result of the partition of p induced by 
1
( | )Spl p q  ( 1

5 ( | )Slice p q = ∅ ). Similarly, 1

1
( | )Slice q p  to 1

5 ( | )Slice q p  are 

the result of the partition of q induced by 
1
( | )Spl p q  ( 1 1

1 2( | ) ( | )Slice q p Slice q p= = ∅ ). 

  

 x 2 

x 1

region 
0

1 region 
1

1 region 
2

1 region 
3

1 region
4 
1 region 

5

1 region 
6

1

p 

q 

slice  (p|q) 1 
1 slice  (p|q) 1 

2 slice  (p|q) 1 
3 slice  (p|q) 1 

4 

slice  (q|p) 1 
3 

slice  (q|p) 1 
4 slice  (q|p) 1 

5 

H  (p|q) 1 
1 H  (p|q) 1 

2 H  (p|q) 1 
3 H  (p|q) 1 

4 H  (p|q) 1 
5 H  (p|q) 1 

6 

 
Figure 5.21. The partition of 2D space and of the 2D-OPP’s p and q induced by 

1( | )Spl p q  (see text for details). 

 

Lemma 5.10: Let p and b be two nD-OPP’s and r = p op* q where op* is in { }*, *, *, *∪ ∩ − ⊗ . For each i

kregion  

( | | ) ( | ) * ( | )i i i

k k k
Slice r p q Slice p q op Slice q p=  

Proof [Aguilera98]: 

Since r = p op* q and we are applying the same partition ( | )
i

part p q  to all three nD-OPP’s p, q and r, then the 

proposition is proved by applying the procedures described for the Hyperspatial Partitioning Representations (see 

Section 2.2. Figure 5.21 also shows an example).         
 

Corollary 5.6: Let p and b be two nD-OPP’s and r = p op* q where op* is in { }*, *, *, *∪ ∩ − ⊗ . For each i

kregion ,  

( ) ( ) ( )( | | ) ( | ) * ( | )i i i

i k i k i k
S r p q S p q op S q pπ π π=  

Moreover, if all these sections lie in the same (n-1)D hyperplane (within i

kregion ), then 

( | | ) ( | ) * ( | )
i i i

k k kS r p q S p q op S q p=  
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Proof [Aguilera98]: 

The proof comes directly from Lemma 5.10 and from the fact that ( | | )
i

kS r p q , ( | )
i

kS p q  and ( | )i

k
S q p  are the sections 

of ( | | )
i

kSlice r p q , ( | )
i

kSlice p q  and ( | )i

k
Slice q p  respectively. The corresponding projections need to be used only if 

those sections do not lie on the same (n-1)D hyperplane.         

 

 From now on, ( )i

k
pΦ , ( )

i

k qΦ  and ( )
i

k rΦ  are to be written instead of ( | )
i

k p qΦ , ( | )
i

k q pΦ  and ( | | )
i

k r p qΦ  

respectively, even though p, q and r are involved as in r = p op* q. It is to be understood, however that partition 

( | )ipart p q  must be applied to them, with the intrinsic addition of some virtual couplets to them. 

 

5.6.2. The Regularized XOR operation on the nD-EVM 
 

 This section shows that the Regularized Exclusive OR (XOR) operation, *⊗ , over two nD-OPP’s, p and q, 

can be easily carried out using the nD-EVM. Let p, q and r be nD-OPP’s such that r = p *⊗  q. Specifically, it will be 

shown that 

( * ) ( ) ( )n n nEVM p q EVM p EVM q⊗ = ⊗  

  

 We will reproduce the proof given in [Aguilera98] which is by induction over the number of dimensions. 

We will describe the 1D case first, which in turn is subdivided into the single shell case (Lemma 5.11) and the 

general multiple shell case (Lemma 5.12), both Lemmas were also proved in [Aguilera98]. Finally the inductive 

case is presented in Theorem 5.19. It should be noted that while nD-OPP’s p, q and r are infinite sets of points, 

while ( )nEVM p , ( )
n

EVM q  and ( * )
n

EVM p r⊗  are finite sets of points, because they only contain the Extreme 

Vertices of p, q and p *⊗  q respectively. 

 

Lemma 5.11 [Aguilera98]: Let p ab=  and q cd=  be two 1D-OPP’s, each consisting of only one shell (i.e., one 

segment) and having 
1
( ) { , }EVM p a b=  and 

1( ) { , }EVM q c d=  as their respective Extreme Vertices Models in the 1D 

space, with , , ,a b c d ∈�  and a < b and c < d. Then 

1 1 1( * ) ( ) ( )EVM p q EVM p EVM q⊗ = ⊗  

Proof: 

Two collinear segments p and q can be disjoint, contiguous, totally coincident, one contained in other, or partially 

overlapping to each other. Then p *⊗  q will be a 1D-OPP consisting of zero, one or two shells (i.e., segments). The 

proposition is proved by exhaustive characterization of all possible cases, then applying the regularized formula 

* ( * ) *( * )p q p q p q⊗ = ∪ − ∩ . These cases are shown in Table 5.11, showing that all these cases hold that   

1 1 1( * ) { , } { , } ( ) ( )EVM p q a b c d EVM p EVM q⊗ = ⊗ = ⊗  

 
 

Lemma 5.12 [Aguilera98]: Let p and q be two 1D-OPP’s of any number of shells, having EVM1(p) and EVM1(q) as 

their respective models, then 

1 1 1( * ) ( ) ( )EVM p q EVM p EVM q⊗ = ⊗  

Proof: 

Let 
i

i

p p=∪ , 
j

j

q q=∪
 and * k

k

r p q r= ⊗ =∪  where 
i i i

p a b= , 
j j jq c d=  and 

k k k
r e f=  are all the shells of p, q and r 

respectively, with 
1 1i i i ia b a b+ +< < < , similarly 

1 1j j j jc d c d+ +< < <  and 
1 1k k k k

e f e f+ +< < <  where 

, , , , , , , ,i i j j k ka b c d e f i j k∈ ∀� . Then 
1 1 1 2 2( ) { , , , ,...}EVM p a b a b= , 

1 1 1 2 2( ) { , , , ,...}EVM q c d c d=  and 
1 1 1 2 2( ) { , , , ,...}EVM r e f e f= . 

 

 A point 
1 1
( ) ( * )x EVM r EVM p q∈ = ⊗  is one of the two Extreme Vertices of a segment 

k
r r⊂ , that is, 

kx e=  or 

kx f=  for some k. On the other hand, each segment in r is the result of the XOR operation between segments from p 

and/or q as shown in Lemma 5.11. Thus, each Extreme Vertex of any segment rk must also be an Extreme Vertex of 

either p or q, that is, 
1
( )x EVM p∈  or 

1
( )x EVM q∈ . Therefore, 

1 1 1( * ) ( ) ( )EVM p q EVM p EVM q⊗ ⊆ ∪ . 
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 Furthermore, 
1 1 1( ) ( ) ( * )x EVM p EVM q x EVM p q∈ ∩ ⇔ ∉ ⊗ , as shown in the cases 2.1, 2.2, 3 and 4.1 to 4.6 

from Lemma 5.11 (Table 5.11). Thus ( ) ( )1 1 1 1 1( * ) ( ) ( ) ( ) ( )EVM p q EVM p EVM q EVM p EVM q⊗ = ∪ − ∩ . 

 

 Therefore, 
1 1 1( * ) ( ) ( )EVM p q EVM p EVM q⊗ = ⊗ .        

 

Case: If ab  & cd are: 
1 1

{ , } { , }

( ) ( )

a b c d

EVM p EVM q

⊗ =

⊗
  *p q∪  *p q∩  

*

( * ) *( * )

p q

p q p q

⊗ =

∪ − ∩
 *

1( )EVM ab cd⊗  

 a b

c d  
    

 
 

1.1 

Disjoint: 

b < c 
{a, b, c, d}  ab cd∪  ∅ ab cd∪  {a, b, c, d} 

 c d

a b

 
      

1.2 

Disjoint 

d < a 
{c, d, a, b}  ab cd∪  ∅ ab cd∪  {c, d, a, b} 

 

a b

c d  
      

2.1 

Contiguous: 

b = c 
{a, d}  ad  ∅ ad  {a, d} 

 

a b

c d  
      

2.2 

Contiguous: 

a = d 
{c, b}  cb  ∅ cb  {c, b} 

 

a b

c d  
      

3 

Coincident: 

a = c and b = d 
∅  ab cd≡  ab cd≡  ∅ ∅ 

 a b

c d  
      

4.1 

4.2 

4.3 

Inclusive  

( cdab ⊃ ): 

a < c < d < b 

a = c < d < b 

a < c < d = b 

{a, c, d, b} 

{d, b} 

{a, c}  

ab  

ab cb≡  

ab ad≡  

cd  

ad cd≡  

cb cd≡  

ac db∪  

db  

ac  

 

{a, c, d, b} 

{d, b} 

{a, c} 

 
c d

a b

 

 
 

  
 

 

4.4 

4.5 

4.6 

Inclusive 

( cdab ⊂ ): 

c < a < b < d 

c = a < b < d 

c < a < b = d 

{c, a, b, d} 

{b, d} 

{c, a}  

cd  

ad cd≡  

cb cd≡  

ab  

ab cb≡  

ab ad≡  

ca bd∪  

bd  

ca  

{c, a, b, d} 

{b, d} 

{c, a} 

 a b

c d  
    

 
 

5.1 

Overlapping: 

a < c < b < d 
{a, c, b, d}  ad  cb  ac bd∪  {a, c, b, d} 

 a b

c d  
    

 
 

5.2 

Overlapping: 

c < a < d < b 
{c, a, d, b}  cb  ad  ca db∪  {c, a, d, b} 

Table 5.11. Case analysis for computing 
1( * )EVM p q⊗ of two segments. 

 

Before going any further, according to Lemma 5.5 we have that 
1( ( ( ))) ( ( ))j j

n j k j kEVM p EV pπ π− Φ =  where 

( )
j

kEV p  is the set of Extreme Vertices that lies on the supporting hyperplane ( )( )j

kH pΦ  of the couplet ( )j

k
pΦ . It is 

easy to observe that 
1( ( ( )))j

n j kEVM pπ− Φ  and ( )
j

kEV p  have exactly the same vertices except by the fact that vertices in 
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( )
j

kEV p  share the additional same xj coordinate. Hence, 
1( ( ( ))) ( )j j

n j k kEVM p EV pπ− Φ =  by adding to the vertices in 

1( ( ( )))j

n j kEVM pπ− Φ  the corresponding xj coordinate which is common to the vertices in ( )
j

kEV p . Starting from this 

point, when we refer to ( ( ))j

n k
EVM pΦ  we denote to the set of extreme vertices according to the following 

 

Definition 5.26: ( ( ))j

n k
EVM pΦ  denotes to the extreme vertices in 

1( ( ( )))j

n j kEVM pπ− Φ  with an additional common xj 

coordinate which has been taken from the vertices in ( )
j

kEV p . 

 

Theorem 5.19 [Aguilera98]: Let p and q be two nD-OPP’s having ( )
n

EVM p  and ( )
n

EVM q  as their respective 

Extreme Vertices Models in nD space, then  

( * ) ( ) ( )n n nEVM p q EVM p EVM q⊗ = ⊗  

Proof: 

The approach to prove the proposition is by induction over the number of dimensions. The 1D case has already been 

proved in Lemmas 5.11 and 5.12 for the single shell case and for the general multiple shell case respectively. They 

represent the base cases. 
 

 For the inductive case, let *r p q= ⊗  be the resulting nD-OPP and assume that the same partition 

( | )ipart p q  has been applied to p, q and r, with the intrinsic addition of some virtual couplets. Finally, let us suppose 

that the relation ( * ) ( ) ( )n n nEVM p q EVM p EVM q⊗ = ⊗  holds for (n-1)D space. Then: 

( * ) ( ) ( ) ( ( ))i i

n n k n k

k k

EVM p q EVM r EV r EVM r⊗ = = = Φ∪ ∪  
(by Property 5.5 and Definition 5.26) 

( )( ) ( )i

n n k

k

EVM r EVM r⇒ = Φ⊗  (since every ( )
i

k pΦ  lies on distinct (n-1)D 

hyperplanes) 

For each k,  

( ) ( ) ( )1( ) ( ) * ( )i i i

i k i k i kr S r S rπ π π−Φ = ⊗  (by Theorem 5.16) 

( ) ( )1 1( ) * ( ) * ( ) * ( )i i i i

i k k i k kS p S q S p S qπ π− −= ⊗ ⊗ ⊗  (by Corollary 5.6) 

( ) ( )( ) ( ) ( )( )1 1
( ) * ( ) * ( ) * ( )i i i i

i k i k i k i k
S p S p S q S qπ π π π− −= ⊗ ⊗ ⊗  (by associativity) 

Therefore, ( ) ( ) ( )( ) ( ) * ( )i i i

i k i k i kr p qπ π πΦ = Φ ⊗ Φ  (by Theorem 5.16) 

Moreover, ( ) ( ) * ( )
i i i

k k kr p qΦ = Φ ⊗ Φ  
(since all three lie in the same (n-1)D 

space, thus they do not need to be 

projected) 
 

Furthermore, ( )
i

k pΦ , ( )i

k
qΦ  and ( )i

k
rΦ  are all (n-1)D-OPP’s, thus, by applying the inductive hypothesis 

1 1 1( ( )) ( ( )) ( ( ))i i i

n k n k n k
EVM r EVM p EVM q− − −Φ = Φ ⊗ Φ  

Also observe that regularized XOR is nor longer needed, since now these are finite and discrete sets of points. 
 

 Now, by considering that ( )( ) ( )i

n n k

k

EVM r EVM r= Φ⊗  at the beginning of this proof, we have 

( ) ( ) ( )( ) ( ) ( )
i i i

n k n k n k

k k

EVM r EVM p EVM q Φ = Φ ⊗ Φ ⊗ ⊗  
(By applying Definition 5.26) 

( ) ( )( ) ( ) ( ) ( )i i

n k n k n n

k k

EVM p EVM q EVM p EVM q
   

= Φ ⊗ Φ = ⊗   
   
⊗ ⊗

 
(by Property 5.5) 

 

( * ) ( ) ( )n n nEVM p q EVM p EVM q∴ ⊗ = ⊗           

 

 This result allows expressing a formula for computing nD-OPP’s sections from couplets and vice-versa, by 

means of their corresponding Extreme Vertices Models. These formulae are obtained by combining Theorem 5.19 

with Theorem 5.16; and Theorem 5.19 with Theorem 5.17, respectively: 
 

Corollary 5.7 [Aguilera98]: ( ) ( ) ( )1 1 1 1( ( )) ( ( )) ( ( ))i i i

n i k n i k n i kEVM p EVM S p EVM S pπ π π− − − −Φ = ⊗     

 

Corollary 5.8 [Aguilera98]: ( ) ( ) ( )1 1 1 1( ( )) ( ( )) ( ( ))i i i

n i k n i k n i kEVM S p EVM S p EVM pπ π π− − − −= ⊗ Φ     



Orthogonal Polytopes: Study and Application 

  

 Finally, the following two corollaries can be stated, which correspond to specific situations of the XOR 

operands. They allow computing, respectively, the union and difference of two nD-OPP’s when those specific 

situations are met.  

 

Corollary 5.9 [Aguilera98]: Let p and q be two disjoint or quasi disjoint nD-OPP’s having EVMn(p) and EVMn(q) 

as their respective Extreme Vertices Models, then ( ) ( ) ( )
n n n

EVM p q EVM p EVM q∪ = ⊗ . 

Proof: 

If p and q are two disjoint or quasi disjoint nD-OPP’s then *p q∩ = ∅ , therefore * ( )p q p q p q⊗ = ∪ − ∅ = ∪ , thus, by 

Theorem 5.19, ( ) ( ) ( )
n n n

EVM p q EVM p EVM q∪ = ⊗ .         

 

Corollary 5.10 [Aguilera98]: Let p and q be nD-OPP’s such that p q⊇  having EVMn(p) and EVMn(q) as their res-

pective Extreme Vertices Models, then ( * ) ( ) ( )
n n n

EVM p q EVM p EVM q− = ⊗  ( the complement of q with respect to p). 

Proof: 

If p q⊇  then *q p− = ∅ , thus ( * ) *p q p q p q⊗ = − ∪∅ = − ; then by Theorem 5.19, 

( * ) ( ) ( )
n n n

EVM p q EVM p EVM q− = ⊗ .          

 

5.6.3. The Regularized Union, Intersection and Difference operations on the nD-EVM 
 

 Before to proceed to the Boolean operations main theorem let’s to describe the way a Boolean operation 

should be performed recursively between two nD-OPP’s by taking in account the relations between their respective 

sections. In order to express the main idea behind regularized Boolean operations under the nD-EVM lets to consider 

an example. Let A and B the two 4D-OPP's operands of the Table 5.12. The 4D-OPP A can be seen as a  

four-dimensional "cross-shaped" polytope and the 4D-OPP B can be considered as a four-dimensional "L-shaped" 

polytope (see Table 5.12, first column). The operand A has three sections while operand B has only two (see Table 

5.12, second column). Each 3D section will have only one 2D section (since they are only rectangular prisms; third 

column). Finally, each 2D section will have only one 1D section: a segment with their respective pair of extreme 

vertices (fourth column). The 1D sections' extreme vertices for operand A are labeled as ai and bi while the 1D 

sections' extreme vertices for operand B are labeled as ci and di. At this point it is important to consider that 3D 

sections, 2D sections and 1D sections are projected, and thus embedded, into 3D, 2D and 1D spaces respectively, in 

order to appropriately have access to their corresponding EVM’s. 
 

4D-OPP's 
Sections 

(3D-OPP's) 

Sections 

(2D-OPP's) 

Sections 

(1D-OPP's) 

 

 
A 

  

a
1

a
2

a
3

b
1

b
2

b
3

 

 

 
B 

  c
1

c
2

d
1

d
2

 

Table 5.12. Two 4D-OPP's A & B and their corresponding sections since the 3D case until the 1D case (see text for details). 

 

 The relative position for the Boolean operation is shown in Figure 5.22.a (the Boolean operation between 

the two 4D-OPP's). In the Figure 5.22.b is shown how interact the 3D sections for operands A and B (the Boolean 

operation between the 3D sections). In Figure 5.22.c are shown the interactions between the 2D sections (the 
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Boolean operation between the 2D sections). Finally, in Figure 5.22.d are shown the interactions between the 1D 

sections (the basic case for the Boolean operations). 

 

 

a)  b)  c)  d)

a
1

a
2

a
3

b
1

b
2

b
3

c
1

c
2

d
1

d
2

 
Figure 5.22. Two 4D-OPP's (presented in Table 5.12) with common interior regions (a).  

b) Their 3D sections (two of them have common interiors). c) The 2D sections from the 3D sections. d) The 1D sections from the 2D sections. 

 

 

BA *∪  BA *∩  BA *−  

a
1

=a
2

b
1

b
2

=b
3

c
1 c

2

d
2

 
=a

2

a
3

=b
3

c
1

d
1

d
2

 
 

a
1

b
1

b
2

d
1  

         
 

 

 

 

 
 

 
 

 

 

 

 
 

 
 

 

 

Table 5.13. Boolean Operations Between 1D Sections of two 4D-OPP's  

(whose relative positions are shown in Figure 5.22.a) and the resultant 4D-OPP's (see text for details). 
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 Since the segments in Figure 5.22.d represent the basic case for the regularized Boolean operations between 

the 4D-OPP's A and B (of Figure 5.22.a), it must be applied the corresponding operator. We will exemplify the 

operations of union, intersection and difference. In the Table 5.13 are shown the results of these operations. Table 

5.13, columns 1, 2 and 3, correspond to BA *∪ , BA *∩  and BA *−  respectively. The Boolean operations between 1D 

sections are performed through a straightforward method. The resultant 1D sections will define 2D rectangular 

sections, through Theorems 5.16 and 5.17, which in turn define, again through Theorems 5.16 and 5.17, the three or 

two (according to the Boolean operation) 3D sections of the resultant 4D-OPP.  

 

 

 

If ab  & cd are: *

1( )EVM ab cd∪  *

1( )EVM ab cd∩  *

1( )EVM ab cd−  *

1( )EVM ab cd⊗  

a b

c d  
    

Disjoint: 

b < c 
{a, b, c, d} ∅ {a, b} {a, b, c, d} 

c d

a b

 
    

Disjoint 

d < a 
{c, d, a, b} ∅ {a, b} {c, d, a, b} 

a b

c d  
    

Contiguous: 

b = c 
{a, d} ∅ {a, b} {a, d} 

a b

c d  
    

Contiguous: 

a = d 
{c, b} ∅ {a, b} {c, b} 

a b

c d  
    

Coincident: 

a = c and b = d 
{a = c, b = d} {a = c, b = d} ∅ ∅ 

a b

c d  
    

Inclusive  

( cdab ⊃ ): 

a < c < d < b 

a = c < d < b 

a < c < d = b 

 

{a, b} 

{a = c, b} 

{a, d = b} 

 

{c, d} 

{a = c, d} 

{c, d = b} 

{a, c, d, b} 

{d, b} 

{a, c} 

 

{a, c, d, b} 

{d, b} 

{a, c} 

c d

a b

 

 
 

  

Inclusive 

( cdab ⊂ ): 

c < a < b < d 

c = a < b < d 

c < a < b = d 

 

{c, d} 

{c = a, d} 

{c, b = d} 

 

{a, b} 

{c = a, b} 

{a, b = d} 

∅ 

∅ 

∅ 

{c, a, b, d} 

{b, d} 

{c, a} 
a b

c d  
    

Overlapping: 

a < c < b < d 
{a, d} {c, b} {a, c} {a, c, b, d} 

a b

c d  
    

Overlapping: 

c < a < d < b 
{c, b} {a, d} {d, b} {c, a, d, b} 

Table 5.14. The Boolean regularized operations between two 1D-OPP's under the 1D-EVM and their possible cases. 
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 Now we present the following 

 

Theorem 5.20 [Aguilera98]: A regularized Boolean operation, op*, where op* ∈ { *, *, *, *}∪ ∩ − ⊗ , over two  

nD-OPP’s p and q, both expressed in the nD-EVM, can be carried out by means of the same op* applied over their 

own sections, expressed through their Extreme Vertices Models, which are (n-1)D-OPP’s. 

Proof: 

By applying the same partition ( | )
i

part p q  to p and q, let r = p op* q, we have: 

( ) ( ) ( )( )1( * ) ( ) ( )
i

i n i n n i k

k

EVM p op q EVM r EVM rπ π π−= = Φ∪  (by Theorem 5.13) 

( )( ) ( )( )1 1 1
( ) ( )i i

n i k n i k

k

EVM S r EVM S rπ π− − −
 = ⊗
 ∪  (by Corollary 5.7) 

( ) ( )( )
( ) ( )( )

1 1 1

1

( ) * ( )

( ) * ( )

i i

n i k i k

i i
k

n i k i k

EVM S p op S q

EVM S p op S q

π π

π π

− − −

−

 ⊗
 =
 
  

∪
 

(by Corollary 5.6) 

( )

( )
1 1 1

1

( ) * ( )

( ) * ( )

i i

n k k

i i
k

n k k

EVM S p op S q

EVM S p op S q

− − −

−

 ⊗
 =
 
 
∪

 (Because the sections lie in the same (n-1)D space 

we remove the projections) 

( ) ( ) ( )1 1 1 1( * ) ( ) * ( ) ( ) * ( )i i i i

i n n k k n k k

k

EVM p op q EVM S p op S q EVM S p op S qπ − − − −
 ⇒ = ⊗ ∪      

  

 Thus, for two nD-OPP’s, p and q, ( * )nEVM p op q  is expressed in terms of the same op* applied over their 

own sections, which are (n-1)D-OPP’s.           

 

 This result leads into a recursive process for computing the Regularized Boolean operations using the  

nD-EVM, which descends on the number of dimensions. The base or trivial case of the recursion is the 1D-Boolean 

operations which can be performed using direct methods (see Table 5.14).   

 

Once each term in ( ) ( )1 1 1 1
( ) * ( ) ( ) * ( )i i i i

n k k n k k

k

EVM S p op S q EVM S p op S q− − − −
 ⊗ ∪  has been computed 

recursively, we apply Corollary 5.7 in order to get ( )( )1 ( * )
i

n i k

k

EVM p op qπ− Φ∪ . By applying Definition 5.26 to each 

one of its terms we finally get  ( )( * ) ( * )i

n n k

k

EVM p op q EVM p op q= Φ∪ . 

 

 The regularized XOR, as a Boolean operation, can also be carried out using the method described by 

Theorem 5.20, although there is a much simpler and faster method, as pointed out in Theorem 5.19.   

 

5.7. nD-EVM Properties 
 

In order to prove our Main Hypothesis we have to consider a metric that indicates that the EMV-nD is a 

complete representation scheme, i.e., that all the geometry, topology and correct boundary orientation of an nD-OPP 

can be unambiguously obtained from its EVM. In this aspect, Requicha defines a set of formal criterions that every 

scheme for representing solids must have rigorously defined [Requicha80]: 

• Domain: The set of entities which are represented by the scheme. The domain's size must be enough to allow 

the representation of a useful set of objects, and therefore, it characterizes the scheme's power. 

• Completeness: The representation can not be ambiguous. There are no doubts about what is represented.  A 

representation must correspond to one and only one solid. 

• Uniqueness: A representation is unique if it can be used to codify a certain solid in just one way. 

• Validity: A representation scheme must disable the creation of an invalid representation, or in other words, a 

representation that does not correspond to a solid. Additionally, the object must keep the closure under rotation, 

translation and other operations. In this way, the operations between valid solids must return valid solids. 
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Although Requicha’s formal criterions were defined for the Theory of Solid Modeling, we consider that 

they can be applied in our study under the context of Polytopes Modeling. We will call to the nD-EVM a complete 

scheme if it satisfies these four formal criterions. 

 

 In the following sections we will show how the Extreme Vertices Model in the n-Dimensional space, as a 

representation scheme for nD-OPP’s, is characterized by the above formal properties: Domain, Validity, 

Completeness and Uniqueness. 

 

5.7.1. Domain 
 

 The set of objects which are represented in the nD-EVM is clearly the complete set of n-Dimensional 

Orthogonal Pseudo-Polytopes. 

 

5.7.2. Validity 
 

 The nD-EVM is cleary a very easy-to-validate set of points [Aguilera98]. This section presents a Theorem 

that provides a necessary and sufficient condition for a finite set of points to be a valid nD-EVM. Let n
Q ⊂ �  be a set 

of points, then every point q ∈ Q defines n possible orthogonal extended edges incident to q. 

 

Definition 5.27 [Aguilera98]: n
Q ⊂ �  is an all-even set of points if and only if every possible extended edge, in each 

dimension of Q, holds an even number of points of Q. 
 

Theorem 5.21 [Aguilera98]: Let Q be a finite set of points in n� , then 

Q is a valid nD-EVM for some n-Dimensional Orthogonal Pseudo-Polytope p, i.e., Q = EVMn(p) 

if and only if 

Q is an all-even set of points. 

Proof: 

⇒ ) 

By Lemma 5.3 Card(EVi(p)) is an even number for all i ∈ {1,…, n}. 
 

⇐ ) 

We will prove the reciprocal by induction over the number of dimensions n. 
 

For d = 1. If Q ⊂ �  is an all-even set of points, i.e., Q has an even number of points q1, q2, … q2k in the only 

possible extended edge, then the 1D-OPP p, composed by the k segments 
1 2 2 1 2,...,

k k
q q q q−

 is a valid 1D-OPP holding 

that EVM1(p) = Q. 
 

 Now, for the inductive step, let us assume the following: 
 

• The Proposition is valid in 1n−� , with n > 1, as our inductive hypothesis. 

• Q is an all-even set of points in n� . 

• 
1 2{ , ,..., }

ii npVX a a a=  is the set of all xi-coordinate values of points in Q with ak < ak+1. 

• Let { }: ,
k i k k i

Q q Q q x a a VX= ∈ ⋅ = ∈ , i.e., 

1

inp

k

k

Q Q
=

=∪ , with 
j kQ Q∩ = ∅ , for j k≠ . 

 

The following statements that lead to the construction of p, so that EVMn(p) = Q, can be deducted: 
 

1) Since Q is an all-even set of points in n�  then Qk is an all-even set of points in 1n−� . Thus, Qk is, by our 

inductive hypothesis, the EVM of some (n-1)D-OPP pk with Qk = EVMn-1(pk). 

2) If an nD-OPP p exists, such that EVMn(p) = Q, then, for all k, 

• ( )i

k k
p pΦ =  and therefore 

1( ( )) ( )
i

n k n k kEVM p EVM p Q−Φ = = . Therefore, ( )i

k
pΦ  are valid (n-1)D-OPP’s 

embedded in n� . 

• 
0( )i

S p = ∅  is a valid OPP. 

• ( ) ( )
1

( ) * ( )
k

i i

i k i j

j

S p pπ π
=

= Φ⊗  by Theorem 5.17. Thus ( )
i

kS p  are also valid (n-1)D-OPP’s. 
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3) Finally, the last (and external) section ( )
i

i

npS p  perpendicular to Xi-axis, which is supposed to be empty, and 

whose EVM is computed (according to Theorem 5.17 and Theorem 5.19) as: 

( )( ) ( )( )1 1
1

( ) ( )
i

i

np
i i

n i np n i k
k

EVM S p EVM pπ π− −
=

= Φ⊗  

will indeed be empty due to the fact that Q is an all-even set of points in n� . Therefore, p will be a valid  

nD-OPP with EVMn(p) = Q.            

 
5.7.3. Completeness 

 
 The following Theorem proves that every valid nD-OPP representation on the nD-EVM is unambiguous.  

 
Theorem 5.22 [Aguilera98]: The Extreme Vertices Model in the n-Dimensional Space is a complete Boundary 

Representation for nD-OPP’s. 

Proof: 

To prove the Proposition we must show that all the geometry, topology and correct boundary orientation of a  

nD-OPP can be unambiguously obtained from its EVM. 

 
 Concerning geometry, from Theorem 5.9, all coordinate of non-extreme vertices appear as coordinate of 

the Extreme Vertices. Then, although non-extreme vertices do not appear in the nD-EVM, they can be inferred from 

this model. Concerning orientation and topology, according to Theorem 5.18, (n-1)D cells can be extracted with 

their correct orientation by using the forward and backward differences techniques.      

 
5.7.4. Uniqueness 

 
 By Theorem 5.10 and by the fact we are considering only one ordering for the coordinates of the Extreme 

Vertices we conclude that for an nD-OPP p its EVMn(p) is unique. 

 

5.8. Conclusions 
 
 We have now the elements to conclude that our initial and main claim is true: 

 
Theorem 5.23:  

 
The Extreme Vertices Model in the n-Dimensional Space (nD-EVM) is a complete scheme for the representation of 

n-Dimensional Orthogonal Pseudo-Polytopes. 

 
Proof: 

 
There are satisfied the following properties: 

 
• Domain: See Section 5.7.1. 

• Validity: By Theorem 5.21. 

• Completeness: By Theorem 5.22. 

• Uniqueness: See Section 5.7.4.           

 
5.8.1. Putting the nD-EVM Concepts Together: An Example 

 
 We will describe an example where all the concepts related to the nD-EVM are considered together. The 

objective is to show how starting from a valid EVM we get a boundary representation for a given polytope. In our 

case we exemplify by considering an all-even set in four dimensional space. In Appendix G, the reader can find 

explicit details about the specific coordinates of the considered set. Let p be the 4D-OPP to be obtained. Tables 5.15 

to 5.19 show each one of the steps behind the conversion EVM-Boundary Representation. 
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x1

x2

x3x4

 

 

x1

x2

x3x4

 

 

x1

x2

x3x4

 
 

x 1

x2

x3
x4

 

 

x1

x2

x 3
x 4

 

 

x1

x2

x 3x 4

 
 

x1

x2

x3x4

 

 

x1

x2

x 3x 4

 

 

x1

x2

x 3x4

 

Table 5.15. Determining a 4D-OPP p from its 4D-EVM (Part 1, See text for details). 

 

 The considered all-even set is presented in Table 5.15 and it is a valid 4D-EVM for p. We have that 

Card(EVM4(p)) = 80. Brinks parallel to X1, X2, X3, and X4-axes can be found by matching up contiguous vertices on 

the appropriate extended edges (Brinks1(p), Brinks2(p), Brinks3(p) and Brinks4(p)). Couplets perpendicular to X1-axis 
1

1( )pΦ , 1

2 ( )pΦ , 1

3( )pΦ  and 1

4 ( )pΦ  can be found by linking Brinks2(p), Brinks3(p) and Brinks4(p) together. In 

Appendix G can be seen the coordinates of the Extreme Vertices associated to each set in Table 5.15.  

 

3( )Brinks p 4 ( )Brinks p

4 ( )EVM p
1( )Brinks p 2 ( )Brinks p

1

1( )pΦ

1

2 ( )pΦ 1

3( )pΦ 1

4 ( )pΦ
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x1

x2

x3
x4

 

 

x1

x2

x 3
x4

 

 

x1

x2

x 3
x 4

 
 

x1

x2

x3
x4

 

 

x1

x2

x3x4

 

 

x1

x2

x 3
x 4

 

 

x1

x2

x3
x4

 

 

x1

x2

x3x 4

 

 

x1

x2

x3
x 4

 

Table 5.16. Determining a 4D-OPP p from its 4D-EVM (Part 2, See text for details). 
 

Couplets, in Table 5.16, perpendicular to X2-axis 2

1 ( )pΦ  to 2

4 ( )pΦ  can be found by linking Brinks1(p), 

Brinks3(p) and Brinks4(p) together. Couplets perpendicular to X3-axis ( 3

1 ( )pΦ  to 3

4 ( )pΦ ) and X4-axis ( 4

1 ( )pΦ  and in 

Table 5.17 4

2 ( )pΦ , 4

3 ( )pΦ  and 4

4 ( )pΦ ) are obtained in similar way. Because of the obtained couplets we can be infer 

some symmetries to be present in the final 4D polytope. The 3D-EVM’s for each  
1( )
i

pΦ  and 
4 ( )
i

pΦ , for all 1 ≤ i ≤ 4, 

correspond to 3D boxes while the 3D-EVM’s for each 
2 ( )
i

pΦ  and 
3( )
i

pΦ , for all 1 ≤ i ≤ 4, correspond to 3D “crosses” 

not completely solid in the sense shown in Figure 5.23.b.   

2

1 ( )pΦ 2

2 ( )pΦ
2

3 ( )pΦ

2

4 ( )pΦ 3

1 ( )pΦ 3

2 ( )pΦ

3

3( )pΦ 3

4 ( )pΦ
4

1 ( )pΦ
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x1

x2

x3
x 4

 

 

x1

x2

x 3
x 4

 

 

x1

x2

x3
x 4

 
 

x 1

x2

x 3
x4

 

 

x1

x2

x 3
x 4

 

 

x1

x2

x3x4

 
 

x1

x2

x 3
x 4

 

 

x1

x2

x3
x4

 

 

x1

x2

x3
x 4

 

Table 5.17. Determining a 4D-OPP p from its 4D-EVM (Part 3, See text for details). 

 

 Table 5.17 shows how linking all brinks together leads to a wireframe model of the 4D-OPP p represented. 

By applying Corollary 5.8 we obtain internal Sections 1

1 ( )S p  to 1

3 ( )S p  perpendicular to X1-axis through 

( ) ( ) ( )1 1 1

3 1 3 1 1 3 1( ( )) ( ( )) ( ( ))k k kEVM S p EVM S p EVM pπ π π−= ⊗ Φ  for all 1 ≤ k ≤ 3. Appendix G shows the coordinates of the 

Extreme Vertices associated to each set in Table 5.17. 

 

 

4

2 ( )pΦ 4

3 ( )pΦ 4

4 ( )pΦ

Wireframe

Model of p 1

1 ( )S p
1

2 ( )S p

1

3 ( )S p
2

1 ( )S p
2

2 ( )S p
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x1

x2

x3
x 4

 

 

x1

x2

x3x 4

 

 

x1

x2

x 3
x 4

 
 

x1

x 2

x3x 4

 

 

x1
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Table 5.18. Determining a 4D-OPP p from its 4D-EVM (Part 4, See text for details). 

 
 By applying Corollary 5.8 we obtain internal Sections 2

1 ( )S p , 2

2 ( )S p  (Table 5.17)  and 2

3 ( )S p  (Table 5.18) 

perpendicular to X2-axis. In the same manner we obtain internal Sections perpendicular to X3-axis ( 3

1 ( )S p  to 3

3 ( )S p ) 

and the internal Sections perpendicular to X4-axis ( 4

1 ( )S p  to 4

3 ( )S p ). The 3D-EVM’s for each  
1 ( )
i

S p  and 
3( )
i

S p , for 

all 1 ≤ i ≤ 4, corresponds to 3D boxes while the 3D-EVM’s for each 
2( )
i

S p , for all 1 ≤ i ≤ 4, corresponds to  

solid 3D-crosses, i.e., tesseracts [Aguilera02b], as shown in Figure 5.23.a. 
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b) 

Figure 5.23. a) Composing a tesseract as the union of seven 3D-boxes; six of them share a face with a central box. In this case all its vertices are 

extreme except those present in the central box. This case corresponds to internal Sections 
2 ( )i

S p , for all 1 ≤ i ≤ 4, in Tables 5.17 and 5.18.  

b) Composing a 3D “cross” by removing the central box but maintaining the original dispositions of the remaining boxes. Because each vertex in 

the final 3D-OPP is surrounded by an odd number of boxes, each one of its vertices is extreme. This case corresponds to couplets 
2 ( )i

pΦ  and 

3( )
i

pΦ , for all 1 ≤ i ≤ 4, in Tables 5.15, 16 and 17. 
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Table 5.19. Determining a 4D-OPP p from its 4D-EVM (Part 5, See text for details). 

 

 We obtain the correct orientation of each couplet by computing Forward and Backward differences as 

shown in Table 5.19. 1
( )kFD p  shows the couplets whose normal vector points towards the negative side of X1-axis. 

1
( )kBD p  shows the couplets whose normal vector points towards the positive side of X1-axis. In similar manner we 
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have that 2
( )kFD p , 3

( )kFD p  and 4
( )kFD p  are the couplets whose normal vector points towards the negative side of X2, 

X3 and X4-axes respectively, while 2
( )kBD p , 3

( )kBD p  and 4
( )kBD p  are the couplets whose normal vector points 

towards the positive side of X2, X3 and X4-axes respectively.  

 

 Through all the information obtained in Tables 5.15 to 5.19, and Appendix G, we can conclude that the 

represented 4D polytope corresponds to a 4D hyper-tesseract (a polytope that can be seen as the result of the 

unraveling of a 5D hypercube. See [Aguilera01] & [Aguilera02c] for more details). 

 

 At this point is interesting to consider an aspect that can be exemplified through Figure 5.23. According to 

Property 5.1 even edges do not belong to brinks. An uninterrupted mixture of even and odd collinear contiguous 

edges can not be considered as a single brink. Figure 5.23.a shows the tesseract and due to the way it can be 

assembled all its edges are odd edges. Hence, all its extended edges contain only one brink. By removing the central 

box, in Figure 5.23.b, those edges which were previously adjacent to the removed central box are now characterized 

as even edges. Those extended edges passing through those even edges are now composed by two brinks. 

 

5.8.2. Final Comments 
 

 In this chapter we have presented and analyzed the Extreme Vertices Model in the n-Dimensional Space 

(nD-EVM). The Extreme Vertices Model allows representing nD-OPP’s by means of a single subset of their 

vertices: the Extreme Vertices. As commented in the beginning of this chapter itself, the new concept of Odd Edge 

has a paramount role in the fundamentals of the model. Since the works of Aguilera & Ayala, it is well known that 

although the EVM of an nD-OPP p has been defined as a subset of the nD-OPP’s vertices, there is much more 

information about p hidden within this subset of vertices. This chapter has extended Aguilera & Ayala’s techniques 

to the nD case in order to obtain this information: 

• Computing sections from couplets. 

• Computing couplets from sections. 

• Computing forward and backward differences of consecutive sections. 

• Computing the regularized XOR between two nD-OPP’s represented through the nD-EVM. 

• The conditions for a set of points in nD space to be a valid nD-EVM. 

 

 At this point it should be natural to ask about the behavior of the nD-EVM in the “real world”. Next 

chapters will deal with the conversion of the nD-EVM from and to other polytopes representation schemes and with 

the development of efficient algorithms and their associated complexity. 

 

 

 

 

 

 

 

 

 

 


