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The Odd Edge Characterization  

and its Role in the Combinatorial  

Topology of the n-Dimensional  

Orthogonal Pseudo-Polytopes 
 

 

 In this chapter we will introduce some new concepts and frameworks and some definitions previously 

commented will be redefined. Furthermore, this chapter is related directly with Local Analysis over the nD-OPP’s. 

The results obtained eventually will lead us to the formalization of the Extreme Vertices Model in the n-Dimensional 

Space (nD-EVM) in Chapter 5. 

 

 

 Manifold edges in the 1D, 2D and 3D-OPP’s share the characteristic that they have an odd number of 

incident segments, rectangles and boxes respectively [Aguilera98]. Moreover, Extreme edges in the 4D-OPP’s have 

also an odd number of incident 4D hyper-boxes [Pérez-Aguila03b]. As a natural extension based in the previous 

observations, in Chapter 3 we defined an Odd Edge, in a combination of nD hyper-boxes, as an edge with an odd 

number of incident hyper-boxes. We will analyze how this very simple concept provides us important information 

about the combinatorial nature of the nD-OPP’s from a topological point of view. The properties we obtain will 

perform an important and essential role when we define the foundations behind the nD-EVM.  
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Figure 4.1. A 2D-OPP described by a set of rectangles. 

 

 

Consider the following 2D-OPP defined by the union of the 13 rectangles shown in Figure 4.1. Each vertex 

of that 2D-OPP defines around it a combination with 1 to 4 boxes which are incident to it. It implies that our 2D-OPP 

can be analyzed from a local point of view by considering the geometrical and topological properties around one of 

its vertices. This analysis is performed only in the context of the combination of rectangles that describe one given 

vertex. In the following sections we will analyze nD-OPP’s from a local point of view. That is, we will analyze 

vertices and its surrounding nD hyper-boxes.  

 

 

In the other hand, a key concept to consider in this chapter is the k-chain. This useful tool will provide us 

the advantage to define equivalence relations in order to classify the (n-1)D cells in the boundary of a combination of 

hyper-boxes. Our objective is to define in a precise manner and in unambiguously way which (n-1)D cells are we 

considering in our analysis. The properties we identify through such analysis will be applied in Chapter 5 where the 

nD-EVM will be defined. 
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4.1. Local Analysis Over the nD-OPP’s  
 

In Chapter 3, we gave a small introduction to k-chains in order to define equivalence relation RH. We 

established that a dimensionally homogeneous complex containing only kD hyper-boxes is called a k-chain,  

1 ≤ k ≤ n. Moreover, a chain’s boundary consists of those (k-1)D hyper-boxes that are incident to an odd number of 

kD hyper-boxes. If every (k-1)D hyper-box is shared by an even number of kD hyper-boxes, the chain has no 

boundary [Henle94]. Moreover, we introduced that the sum of two chains consists of those hyper-boxes appearing in 

either chain but not in both [Coxeter63]. In this section we reconsider some theory related to k-chains in order to 

determine in a formal way some properties related to the topology and geometry, from a local point of view, of the 

vertices and their incident kD hyper-boxes in an nD-OPP. Many authors aboard the study of k-chains with some 

slight differences according to the applications. The following examples show some important applications of  

k-chains: 

• In [Coxeter63] is described how Poincaré applied k-chains in order to give the first correct formal proof of Euler 

Characteristic for n-Dimensional Polytopes
1
. 

• Henle [Henle94] describes the way Jordan’s Theorem is generalized to n-Dimensional Space. 

• Sobczyk [Sobczyk99] shows the application of Clifford Algebras to Simplicial Calculus via k-chains. 

• Matveev & Polyak [Matveev02] expose finite type invariants of knots and homology 3-spheres from the  

“k-chains” point of view.  

• In [Hocking88], [Naber00], [Agoston05], [Crossley05], among others, is shown how an important property of  

k-chains, which we will describe in following sections, provides the foundation of an important field in 

topology: Homology Theory. 

• In texts such as [Spivak65], [Mikusinski02] or [Agoston05] is described the relation between differential forms 

and integration through the application of k-chains. This application leads to important results such as the 

generalization of Stokes Theorem to n-Dimensional Space. This generalization is sometimes called the 

Fundamental Theorem of Calculus in Higher Dimensions or Generalized Fundamental Theorem of Calculus. 

 

We will aboard our study by considering the application of k-chains according to the definitions given in 

[Spivak65] and [Agoston05]. In first place, Section 4.2 will describe some basic concepts. In Section 4.3, in some 

cases, we will give new definitions to some concepts previously discussed in Chapters 2 and 3 in order to connect 

them with the language of k-chains.  
 

4.2. Spivak’s k-chains Fundamental Concepts 
 

The definitions presented in this section are related mainly with [Spivak65] and [Agoston05].  
 

Definition 4.1: A Singular n-Dimensional Hyper-Box in n�  is the continuous function 

: [0,1] [0,1]

( )

n n n

n

I

x I x x

→

=∼

 

 

Definition 4.2: A General Singular k-Dimensional Hyper-Box in the closed set n
A ⊂ �  is the continuous function 

: [0,1]k
c A→  

 

Definition 4.3: For all i, 1 ≤ i ≤ n, the two singular (n-1)D hyper-boxes 
( ,0)

n

iI  and 
( ,1)

n

i
I  are defined as follows:  

If 1[0,1]nx −∈  then 

• 
( ,0) 1 1 1 1 1 1

( ) ( ,..., , 0, ,..., ) ( ,..., ,0, ,..., )n n

i i i n i i n
I x I x x x x x x x x− − − −= =  

• 
( ,1) 1 1 1 1 1 1

( ) ( ,..., ,1, ,..., ) ( ,..., ,1, ,..., )n n

i i i n i i n
I x I x x x x x x x x− − − −= =  

 

For example, consider the singular 2D hyper-box in 2�  defined ad 
2 2 2

2

1 2 1 2 1 2

: [0,1] [0,1]

( , ) ( , ) ( , )

I

x x I x x x x

→

=∼

 

                                                 
1 In [Sommerville58] is presented a proof of Euler Characteristic which is developed using induction over the number of dimensions. Authors 

such as Coxeter, Grümbaum or McMullen & Schulte have criticized Sommerville’s proof because it does not provide specific details about the 

way vertices, edges, …, and (n-1)D cells are connected in the polytopes’ boundary ([Coxeter63], [Grümbaum03] & [McMullen02]). 
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If [0,1]x ∈  then 

• 2 2

(1,0) 1 2 1 1
( , ) (0, ) (0, )I x x I x x= =  

• 2 2

(1,1) 1 2 1 1
( , ) (1, ) (1, )I x x I x x= =  

• 2 2

(2,0) 1 2 1 1
( , ) ( ,0) ( , 0)I x x I x x= =  

• 2 2

(2,1) 1 2 1 1
( , ) ( ,1) ( ,1)I x x I x x= =  

Such functions correspond to the set of edges of the unit square in the 2D space (see Figure 4.2). 
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Figure 4.2. A unit 2D square I2 and its 1D cells. 

 

 

Definition 4.4: In a general singular nD hyper-box c we define the (i,α)-cell as  

( , ) ( , )

n

i ic c Iα α= �  

 
 Let 

1 2 1 2
{( , ) : 1 0, 1 0}A x x x x= − ≤ ≤ − ≤ ≤ . Let a general singular 2D hyper-box in 2�  be defined as  

2

1 2 1 2 1 2

: [0,1]

( , ) ( , ) ( 1, 1)

c A

x x c x x x x

→

= − −∼

 

 
If [0,1]x∈  then 

• 2

(1,0) 1 2 1 1
( ( , )) (0, ) ( 1, 1)c I x x c x x= = − −  

• 2

(1,1) 1 2 1 1
( ( , )) (1, ) (0, 1)c I x x c x x= = −  

• 2

(2,0) 1 2 1 1
( ( , )) ( ,0) ( 1, 1)c I x x c x x= = − −  

• 2

(2,1) 1 2 1 1
( ( , )) ( ,1) ( 1,0)c I x x c x x= = −  

Such functions correspond to the edges of a square located in the third quadrant of 2D space.  

 

 For each general singular kD hyper-box c we will define the boundary of c (moreover, we will define the 

boundary of a k-chain). But, before going any further, Spivak considers more appropriate to define the boundary, for 

example, of I
2
 not as the sum of four singular 1-cubes (edges) arranged counterclockwise around I

2
 (see Figure 

4.3.a). Instead, the following definitions will indicate in a precise way what we will consider as the orientation of an 

(n-1)D cell. 

 

Definition 4.5: The orientation of an (n-1)D cell 
( , )

n

ic I α�  is given by ( 1) iα +− . 

 

Definition 4.6: An (n-1)D oriented cell is given by the scalar-function product: 

( , )( 1)i n

ic I
α

α
+− ⋅ �  
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For example, the orientations of the edges in a 2D unit cube, according to Spivak considerations, are given 

by (See Figure 4.3.b): 

• 2 2

(1,0) 1 2 1 1
( , ) (0, ) (0, )I x x I x x= =   ⇒ ( 1) iα +−  = (-1)

1+0
 = -1 

• 2 2

(1,1) 1 2 1 1
( , ) (1, ) (1, )I x x I x x= =     ⇒ ( 1) iα +−  = (-1)

1+1
 = 1 

• 2 2

(2,0) 1 2 1 1
( , ) ( ,0) ( , 0)I x x I x x= =   ⇒ ( 1) iα +−  = (-1)

2+0
 = 1 

• 2 2

(2,1) 1 2 1 1
( , ) ( ,1) ( ,1)I x x I x x= =     ⇒ ( 1) iα +−  = (-1)

2+1
 = -1 
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a) b) 

Figure 4.3. A unit 2D square I2 and a) its cells oriented counterclockwise; b) its cells oriented according to its corresponding indexes. 

 

Definition 4.7: A formal linear combination of singular general kD hyper-boxes, 1 ≤  k ≤  n, for a closed set A is 

called a k-chain. 

 

 For example, consider the combination of boxes composed by the following general singular 3D cubes (See 

Figure 4.4): 

• 
3 3

1 1 2 3 1 2 3

1 1 2 3

: [0,1] {( , , ) : 0 1,0 1, 1 0}

( ) ( , , 1)

c x x x x x x

x c x x x x

→ ∈ ≤ ≤ ≤ ≤ − ≤ ≤

= −

�

∼

 

• 
3 3

2 1 2 3 1 2 3

2 1 2 3

: [0,1] {( , , ) : 1 0,0 1, 1 0}

( ) ( 1, , 1)

c x x x x x x

x c x x x x

→ ∈ − ≤ ≤ ≤ ≤ − ≤ ≤

= − −

�

∼

 

• 
3 3

3 1 2 3 1 2 3

3 1 2 3

: [0,1] {( , , ) : 1 0, 1 0, 1 0}

( ) ( 1, 1, 1)

c x x x x x x

x c x x x x

→ ∈ − ≤ ≤ − ≤ ≤ − ≤ ≤

= − − −

�

∼

 

• 
3 3

4 1 2 3 1 2 3

4 1 2 3

: [0,1] {( , , ) : 1 0, 1 0,0 1}

( ) ( 1, 1, )

c x x x x x x

x c x x x x

→ ∈ − ≤ ≤ − ≤ ≤ ≤ ≤

= − −

�

∼

 

Through these 3D boxes we can define the following 3-chain: 

C1(x) + C2(x) + C3(x) + C4(x) =  (x1, x2, x3 – 1) + (x1 – 1, x2, x3 – 1) + (x1 – 1, x2 – 1, x3 – 1) + (x1 – 1, x2 – 1, x3) 
 

-x1

x1

2x2

-x2

x3

-x3

c3

c1c2

c4

 
Figure 4.4. A combination of 3D boxes. 

 

Definition 4.8: Given a singular nD hyper-box I
n
 we define the (n-1)-chain, called the boundary of I

n
, by 

( , )

1 0,1

( ) ( 1)
n

n i n

i

i

I I
α

α
α

+

= =

 
∂ = − ⋅ 

 
∑ ∑  
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Definition 4.9: Given a singular general nD hyper-box c we define the (n-1)-chain, called the boundary of c, by 

( , )

1 0,1

( ) ( 1)
n

i n

i

i

c c I
α

α
α

+

= =

 
∂ = − ⋅ 

 
∑ ∑ �  

 

Definition 4.10: The boundary of an n-chain ic∑ , where each ci is a singular general nD hyper-box, is given by 

( ) ( )c c∂ = ∂∑ ∑  

 

At this point it is important to note that Spivak’s notion of orientation differs slightly from the definitions 

given in [Coxeter63] or [Henle94], for example. The difference arises from the fact that adding k-chains, according 

to Coxeter or Henle, is a procedure based in addition modulo 2. However, due to -1 ≡ 1 mod 2 then each coefficient 

of a Spivak’s k-chain can be rewritten as a coefficient in {0, 1}. We will preserve Spivak’s notation.  

 

 We consider again the combination of 3D cubes, shown in Figure 4.4, whose corresponding 3-chain is: 

C1(x) + C2(x) + C3(x) + C4(x) =  (x1, x2, x3 – 1) + (x1 – 1, x2, x3 – 1) + (x1 – 1, x2 – 1, x3 – 1) + (x1 – 1, x2 – 1, x3) 

We proceed to compute its corresponding boundary, i.e., ∂(C1(x) + C2(x) + C3(x) + C4(x)). It is important to observe 

that the pairs of boxes C1 and C2, C2 and C3; and C3 and C4 have common faces, i.e., there exists a face adjacency 

between them (see Figure 4.4). We will see in our computing how these faces are not present in the boundary of the 

combination. By applying Definitions 4.9 and 4.10 we have:  

1 2 3 4 1 2 3 4

3 1 3 1 3 1
3 3 3 3

1 ( , ) 2 ( , ) 3 ( , ) 4 ( , )

1 0 1 0 1 0

( ( ) ( ) ( ) ( )) ( ( )) ( ( )) ( ( )) ( ( ))

( 1) ( ( )) ( 1) ( ( )) ( 1) ( ( )) ( 1) ( (
i i i i

i i i i

i i i

c x c x c x c x c x c x c x c x

c I x c I x c I x c I x
α α α α

α α α α
α α α

+ + + +

= = = = = =

∂ + + + = ∂ + ∂ + ∂ + ∂

     
= − ⋅ + − ⋅ + − ⋅ + − ⋅     

     
∑ ∑ ∑ ∑ ∑ ∑

3 1

1 0

))
i α= =

 
 
 

∑ ∑
 

At this point we must compute the oriented 2D cells of each one of the boxes, which gives (we indicate the functions 

that correspond to the shared faces, between two cubes, in the combination): 

1

1 2 1 2 1 2 1 2 1 2 1 2

' 2

1 2 1 2 1 2 1

1 (0, , 1) 1 (1, , 1) 1 ( ,0, 1) 1 ( ,1, 1) 1 ( , , 1) 1 ( , ,0)

1 ( 1, , 1) 1 (0, , 1) 1 ( 1,0, 1) 1 ( 1,1,

c s D cells

x x x x x x x x x x x x

x x x x x x x x

 
 = − ⋅ − + ⋅ − + ⋅ − − ⋅ − − ⋅ − + ⋅ +
 
  

− ⋅ − − + ⋅ − + ⋅ − − − ⋅ −

���������������������������������������

2

3

2 1 2 1 2

' 2

1 2 1 2 1 2 1 2 1 2 1 2

'

1) 1 ( 1, , 1) 1 ( 1, ,0)

1 ( 1, 1, 1) 1 (0, 1, 1) 1 ( 1, 1, 1) 1 ( 1,0, 1) 1 ( 1, 1, 1) 1 ( 1, 1,0)

c s D cells

c

x x x x

x x x x x x x x x x x x

 
 − − ⋅ − − + ⋅ − +
 
  

− ⋅ − − − + ⋅ − − + ⋅ − − − − ⋅ − − − ⋅ − − − + ⋅ − −

�������������������������������������������

4

2

1 2 1 2 1 2 1 2 1 2 1 2

' 2

1 ( 1, 1, ) 1 (0, 1, ) 1 ( 1, 1, ) 1 ( 1,0, ) 1 ( 1, 1,0) 1 ( 1, 1,1)

s D cells

c s D cells

x x x x x x x x x x x x

 
  +
 
  

− ⋅ − − + ⋅ − + ⋅ − − − ⋅ − − ⋅ − − + ⋅ − −

�������������������������������������������������

������������������������������ �

 
 
 
  

������������

 
The shared faces have the same function but with opposite orientation, and therefore they will cancel out from the 

chain: 

1 2 2 3

1 2 1 2 1 2 1 2 1 2 1 21 (0, , 1) 1 (0, , 1) 1 ( 1,0, 1) 1 ( 1,0, 1) 1 ( 1, 1,0) 1 ( 1, 1,0)

Shared faces between c and c Shared faces between c and c Shared faces be

x x x x x x x x x x x x

  
  = − ⋅ − + ⋅ − + ⋅ − − − ⋅ − − + ⋅ − − − ⋅ − −
  

   
������������� ���������������

3 4

1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 (1, , 1) 1 ( ,0, 1) 1 ( ,1, 1) 1 ( , , 1) 1 ( , ,0) 1 ( 1, , 1) 1 ( 1,1, 1)

1 ( 1, , 1) 1 ( 1, ,0) 1 ( 1, 1, 1) 1 (0, 1, 1) 1 (

tween c and c

x x x x x x x x x x x x x x

x x x x x x x x x

 
  +
 
 

⋅ − + ⋅ − − ⋅ − − ⋅ − + ⋅ − ⋅ − − − ⋅ − −

− ⋅ − − + ⋅ − − ⋅ − − − + ⋅ − − + ⋅

���������������

1 2 1 2

1 2 1 2 1 2 1 2 1 2

1, 1, 1) 1 ( 1, 1, 1)

1 ( 1, 1, ) 1 (0, 1, ) 1 ( 1, 1, ) 1 ( 1,0, ) 1 ( 1, 1,1)

x x x

x x x x x x x x x x

− − − − ⋅ − − −

− ⋅ − − + ⋅ − + ⋅ − − − ⋅ − + ⋅ − −

 

Finally we get the final 2-chain that corresponds to the boundary of the 3-chain C1(x) + C2(x) + C3(x) + C4(x): 

1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

1 (1, , 1) 1 ( ,0, 1) 1 ( ,1, 1) 1 ( , , 1) 1 ( , ,0) 1 ( 1, , 1) 1 ( 1,1, 1)

1 ( 1, , 1) 1 ( 1, ,0) 1 ( 1, 1, 1) 1 (0, 1, 1) 1 ( 1, 1, 1) 1 ( 1, 1, 1)

1 ( 1

x x x x x x x x x x x x x x

x x x x x x x x x x x x

= ⋅ − + ⋅ − − ⋅ − − ⋅ − + ⋅ − ⋅ − − − ⋅ − −

− ⋅ − − + ⋅ − − ⋅ − − − + ⋅ − − + ⋅ − − − − ⋅ − − −

− ⋅ −
1 2 1 2 1 2 1 2 1 2

, 1, ) 1 (0, 1, ) 1 ( 1, 1, ) 1 ( 1,0, ) 1 ( 1, 1,1)x x x x x x x x x x− + ⋅ − + ⋅ − − − ⋅ − + ⋅ − −

 

 
Now, we will proceed to mention one standard property of ∂ operator. 
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Theorem 4.1 [Spivak65]: If c is an n-chain in a closed set A, then ∂(∂(c)) = 0. 
 

We will sketch the proof given in [Spivak65]. Let i ≤  j and consider 
( , ) ( , )

( )n

i j
I α β

. If 2[0,1]n
x

−∈ , then, we have 

1

( , ) ( , ) ( , ) ( , ) ( , ) 1 1 2 1 1 1 2
( ) ( ) ( ( )) ( ,..., , , ,..., ) ( ,..., , , ,..., , , ,..., )n n n n n

i j i j i j j n i i j j n
I x I I x I x x x x I x x x x x xα β α β α β α β−

− − − − −= = =  

Similarly  
1

( 1, ) ( , ) ( 1, ) ( , ) ( 1, ) 1 1 2 1 1 1 2
( ) ( ) ( ( )) ( ,..., , , ,..., ) ( ,..., , , ,..., , , ,..., )n n n n n

j i j i j i i n i i j j n
I x I I x I x x x x I x x x x x xβ α β α β α α β−

+ + + − − − − −= = =  

Thus 
( , ) ( , ) ( 1, ) ( , )

( ) ( ) ( ) ( )n n

i j j i
I x I xα β β α+=  for i ≤ j. It follows for any singular general nD hyper-box c that   

( , ) ( , ) ( 1, ) ( , )
( ) ( )

i j j i
c cα β β α+=  when i ≤  j. Hence 

1

( , ) ( , ) ( , )

1 0,1 1 0,1 1 0,1

( ( )) ( 1) ( 1) ( )
n n n

i i j

i i j

i i j

c c c
α α β

α α β
α α β

−
+ + + +

= = = = = =

      
∂ ∂ = ∂ − ⋅ = −                 

∑ ∑ ∑ ∑ ∑ ∑  

In this sum 
( , ) ( , )

( )
i j

c α β
 and 

( 1, ) ( , )( )j ic β α+
 have opposite orientations. Therefore all terms cancel out in pairs and  

∂(∂(c)) = 0. Since the Theorem is true for any singular general nD hyper-box, it is also true for any n-chain 

[Spivak65].  
 

The last Theorem is actually the foundation of an important field in topology: Homology Theory 

([Agoston05] & [Crossley05]).  
 

4.3. Linking k-chains with Topological Local Analysis of Odd Edges 
 

 Now, we will apply the definitions presented in previous section in a new direction. We will take advantage 

of the fact that we can define equivalence relations in order to classify the (n-1)D cells in the boundary of a 

combination of hyper-boxes
2
. Our objective is to define in a precise manner and in unambiguously way which (n-

1)D cells are we considering in our analysis. Some definitions previously presented in Chapter 3 will be redefined 

according our new framework. Before going any further, we start by stating the following 
 

Definition 4.11 [Jonas95]: Consider a set v1, v2, …, vn of linearly independent vectors such that 

vi = (0, …, 0, γi, 0, …, 0), γi ∈ +� , i = 1, …, n 

We define a lattice 
1( ,..., )n

nL γ γ
 in n�  as the set of points defined by v1, v2, …, vn in the following way: 

1( ,..., )

1

: , , 1,...,
n

n
n n

i i i

i

L p p p p i nγ γ
=

 
= ∈ = ∈ = 
 

∑� �v
 

 

 Consider the linearly independent vectors in 2�  v1 = (3, 0), v2 = (0, 1). Such vectors define the lattice 

{ }2 2

(3,1) 1 2 1 2( , ) : ( , ) (3,0) (0,1), ,L x y x y p p p p= ∈ = + ∈� �  

Figure 4.5 shows some of the points in it. 
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Figure 4.5. A view of the points in the lattice 2

(3,1)L  

                                                 
2 The idea for partitioning the (n-1)D cells on the boundary of a combination of hyper-boxes was originated by personal communications with 

Guillermo Romero-Meléndez, PhD. (UDLA, Mathematics and Actuarial Sciences Department). 
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Definition 4.12: Consider the lattice 

1( ,..., )n

nL γ γ
. Let a main positive edge in n�  be the function 

	

(1, ,0)

(1, ,0)

1 1 1

1

: [0,1] {(0,...,0, ,0,...,0) : [0, ], 1 }

( ) (0,...,0 , ,0,...,0)

j n

j j j

n

j

j

j

n

c x x j n

x c x x

γ

γ
−

→ ∈ ∈ ≤ ≤

= ⋅

�
�������

∼

���������

 

And let a main negative edge in n�  be the function 

	

(1, ,1)

(1, ,1)

1 1 1

1

: [0,1] {(0,...,0, ,0,...,0) : [0, ], 1 }

( ) (0,...,0 , ,0,...,0)

j n

j j j

n

j

j

j

n

c x x j n

x c x x

γ

γ
−

→ − ∈ ∈ ≤ ≤

= − ⋅

�
���������

∼

���������

 

for 1 ≤  j ≤  n. 

 
 For example, under the lattice 3

(1,1,1)
L  we have the six main edges in 3D space: 

• (1,1,0)

1 1( ) ( ,0,0)c x x=  

• (1,1,1)

1 1( ) ( ,0,0)c x x= −  

• (1,2,0)

1 1( ) (0, ,0)c x x=  

• (1,2,1)

1 1( ) (0, ,0)c x x= −  

• (1,3,0)

1 1( ) (0,0, )c x x=  

• (1,3,1)

1 1( ) (0,0, )c x x= −  

 
Consider a lattice 

1( ,..., )n

nL γ γ
. Starting from this point, when the term general singular nD hyper-box is referred, 

we will assume that we are considering one of the following 2
n
 functions: 

[ ] [ ]1 1 1 1

1 1 1

: [0,1] , ( 1) ... , ( 1)

( ) ( ( ),..., ( ))

n

n n n n

n n n

c a a a a

x c x x a x a

γ γ γ γ

γ γ

→ + × × +

= + +∼

 

Where a = (a1, …, an) such that ai ∈ {-1,0}, 1 ≤ i ≤ n. The nD hyper-boxes we are considering have one vertex in the 

origin because we will analyze the topology and geometry around that point from a local point of view (however, 

when we deal with global topology and geometry of the nD-OPP’s we will consider more general nD hyper-boxes 

that not require to be attached to the origin).   

 
 For example, consider the set of linearly independent vectors in v1 = (1, 0, 0), v2 = (0, 1, 0) and v3 = (0, 0, 1) 

that define the lattice 3

(1,1,1)
L  in 3� . Under these conditions we have the well known possible eight general singular 3D 

hyper-boxes which are shown in Table 4.1. 

 
 In the propositions presented in the remaining of this section, we are assuming that our objects are defined 

under the same lattice 
1( ,..., )n

nL γ γ
. 

 
Definition 4.13: Let (1, , )jc β  be a main edge and let c be a general singular kD hyper-box, 1≤ k≤ n. We will say that 

(1, , )jc β  is adjacent c if and only if 
(1, , ) ([0,1]) ([0,1] )j k

c c
β ⊆  

 
Definition 4.14: A collection c1, c2, …, ck, 1 ≤ k ≤ 2

n
, of general singular nD hyper-boxes is a combination of nD 

hyper-boxes if and only if 

	 ( ) ( )
1

([0,1] ) (0,...,0) , , , 1 , ([0,1] ) ([0,1] )
k

n n n

i j

n

c i j i j i j k c cα
α =

 
 = ∧ ∀ ≠ ≤ ≤ ≠   

 
∩

 

 
 In the above definition the left side of the conjunction establishes that the intersection between all the nD 

general singular hyper-boxes is the origin, while the right side establishes that there are not overlapping nD  

hyper-boxes. 
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Vector a General Singular Cube  

(0,0,0) 

 

3

1

1 1 2 3 1 2 3

: [0,1] [0,1] [0,1] [0,1]

( ) (1 ( 0),1 ( 0),1 ( 0)) ( , , )

c

x c x x x x x x x

→ × ×

= ⋅ + ⋅ + ⋅ + =∼

 

-x1

x1

2x2

-x 2

x3

-x 3

 

(0,0,-1) 

 

3

2

2 1 2 3 1 2 3

: [0,1] [0,1] [0,1] [ 1,0]

( ) (1 ( 0),1 ( 0),1 ( 1)) ( , , 1)

c

x c x x x x x x x

→ × × −

= ⋅ + ⋅ + ⋅ − = −∼

 

-x1

x1

2x2

-x2

x3

-x3

 

(0,-1,0) 

 

3

3

3 1 2 3 1 2 3

: [0,1] [0,1] [ 1,0] [0,1]

( ) (1 ( 0),1 ( 1),1 ( 0)) ( , 1, )

c

x c x x x x x x x

→ × − ×

= ⋅ + ⋅ − ⋅ + = −∼

 

-x1

x1

2x2

-x2
x3

-x3

 

(0,-1,-1) 

 

3

4

4 1 2 3 1 2 3

: [0,1] [0,1] [ 1,0] [ 1,0]

( ) (1 ( 0),1 ( 1),1 ( 1)) ( , 1, 1)

c

x c x x x x x x x

→ × − × −

= ⋅ + ⋅ − ⋅ − = − −∼

 

-x1

x1

2x2

-x 2

x3

-x3

 

(-1,0,0) 

 

3

5

5 1 2 3 1 2 3

: [0,1] [ 1,0] [0,1] [0,1]

( ) (1 ( 1),1 ( 0),1 ( 0)) ( 1, , )

c

x c x x x x x x x

→ − × ×

= ⋅ − ⋅ + ⋅ + = −∼

 

-x1

x1

2x2

-x2

x3

-x3

 

(-1,0,-1) 

 

3

6

6 1 2 3 1 2 3

: [0,1] [ 1,0] [0,1] [ 1,0]

( ) (1 ( 1),1 ( 0),1 ( 1)) ( 1, , 1)

c

x c x x x x x x x

→ − × × −

= ⋅ − ⋅ + ⋅ − = − −∼

 x1

-x1

2x2

-x2

x3

-x3

 

(-1,-1,0) 

 

3

7

7 1 2 3 1 2 3

: [0,1] [ 1,0] [ 1,0] [0,1]

( ) (1 ( 1),1 ( 1),1 ( 0)) ( 1, 1, )

c

x c x x x x x x x

→ − × − ×

= ⋅ − ⋅ − ⋅ + = − −∼

 
-x1

x1

2x2

-x2

x3

-x3

 

(-1,-1,-1) 

 

3

8

8 1 2 3 1 2 3

: [0,1] [ 1,0] [ 1,0] [ 1,0]

( ) (1 ( 1),1 ( 1),1 ( 1)) ( 1, 1, 1)

c

x c x x x x x x x

→ − × − × −

= ⋅ − ⋅ − ⋅ − = − − −∼

 

-x1

x1

2x2

-x2

x3

-x3

 
Table 4.1. The eight possible general singular 3D hyper-boxes with a vertex in the origin of the lattice 3

(1,1,1)
L . 

 
Definition 4.15: Let (1, , )jc β  be a main edge. Let c1, c2, …, ck, 1 ≤ k ≤ 2

n
, be a combination of general singular nD  

hyper-boxes. We will say that (1, , )jc β  is an Odd Adjacency Edge, or just an Odd Edge, if and only if (1, , )jc β  is adjacent 

to an odd number of general singular nD hyper-boxes of c. Conversely, if (1, , )jc β  is adjacent to an even number of 

general singular nD hyper-boxes, then it will be called an Even Adjacency Edge, or just Even Edge. 
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Definition 4.16: Let (1, , )jc β  be a main edge. (1, , ')j
c

β  will denote to the collinear main edge opposed to (1, , )jc β  such that 

if β = 0 then β’ = 1, or if β = 1 then β’ = 0. 

 

 For example, under lattice 3

(1,1,1)
L , for each main edge in 3�  we will have: 

• (1,1,0)

1 1( ) ( ,0,0)c x x=   ⇒ (1,1,0) (1,1,1)

1 1 1( ) ( ) ( ,0, 0)c x c x x= = −  

• (1,1,1)

1 1( ) ( ,0,0)c x x= − ⇒ (1,1,1) (1,1,0)

1 1 1
( ) ( ) ( ,0,0)c x c x x= =  

• (1,2,0)

1 1( ) (0, ,0)c x x=  ⇒ (1,2,0) (1,2,1)

1 1 1( ) ( ) (0, ,0)c x c x x= = −  

• (1,2,1)

1 1( ) (0, ,0)c x x= −  ⇒ (1,2,1) (1,2,0)

1 1 1( ) ( ) (0, ,0)c x c x x= =  

• (1,3,0)

1 1( ) (0,0, )c x x=    ⇒ (1,3,0) (1,3,1)

1 1 1( ) ( ) (0,0, )c x c x x= = −  

• (1,3,1)

1 1( ) (0,0, )c x x= −  ⇒ (1,3,1) (1,3,0)

1 1 1( ) ( ) (0,0, )c x c x x= =  

 

 We reconsider some notation presented previously in Chapter 3. We defined to 
i

+�  as the subspace defined 

by the positive part of xi-axis and the remaining axes of the nD space; while 
i

−�  denotes to the subspace defined by 

the negative part of xi-axis and the remaining axes of the nD space. 
i

x
+  denotes to the positive part of xi-axis while 

i
x

−  

denotes to the negative part of xi-axis. Finally, in a combination of nD hyper-boxes c, Γ(c) denotes the number of 

hyper-boxes in c. 

 

Lemma 4.1: Let c be a combination of general singular nD hyper-boxes. If combination c has an axis xi, 1 ≤ i ≤ n, 

where there is exactly an odd edge, then c has an odd number of nD hyper-boxes, i.e., Γ(c) is an odd number. 

Proof: 

Let (1, , )ic β  be the referred odd edge. Hence, by definition, the number n1 of nD hyper-boxes in 
i

+�  (or 
i

−� , according 

to the value of β) is odd. Because by hypothesis (1, , )ic β  is an even edge, then the number n2 of its incident nD  

hyper-boxes is even. Therefore 

n1 + n2 = Γ(c) is an odd number. 

              
 

Theorem 4.2: Let c be a combination of general singular nD hyper-boxes. In c there are exactly n linearly 

independent odd edges, which are incident to the origin of the coordinate system in the combination, if and only if 

combination c has an odd number of nD hyper-boxes. 

Proof:  

⇒)  

Consider xi-axis, 1 ≤ i ≤ n, in which one of the odd edges, namely (1, , )ic β , is embedded. By hypothesis (1, , )ic β  has an 

odd number 
1

i
n  of nD hyper-boxes which are incident to it. Such nD hyper-boxes will be embedded in 

i

+�  or 
i

−�  

according to the referred odd edge. Let 
2

i
n  be the even number of nD hyper-boxes that are incident to the even edge 

(1, , )ic β . Hence, by Lemma 4.1, 
1

i
n  + 

2

i
n  = Γ(c) is an odd number. By applying the same procedure to the remaining  

n-1 axes we obtain the same result. 

∴ 
1

i
n  + 

2

i
n  = Γ(c) is an odd number ∀i, 1 ≤ i ≤ n. 

⇐)  

Consider xi-axis, 1 ≤ i ≤ n. Because Γ(c) is an odd number, the hyper-boxes in the combination c are distributed in 

such way that in 
i

+�  (or 
i

−� ) there are an odd number of hyper-boxes while in 
i

−�  (or 
i

+� ) there are an even number 

of nD hyper-boxes. Therefore, by definition, there is an odd edge incident to the origin in 
i

+�  (or 
i

−� ). By applying 

this reasoning to the remaining n-1 axes we identify in each one an odd edge incident to the origin. By this way we 

have identified n linearly independent odd edges incident to the origin in the combination c.   

              
 

Corollary 4.1:  Let c be a combination of general singular nD hyper-boxes. In c there are n pairs of collinear odd 

edges or collinear even edges, incident to the origin, if and only if combination c has an even number of hyper-boxes.  

Proof:  

This proposition is the counterreciprocal of Theorem 4.2 (p ⇔ q ≡ ¬p ⇔ ¬q).      
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Definition 4.17: Let (1, , )jc β  be a main edge and let 
( , )( 1)i n

ic I
α

α
+− ⋅ �  be an oriented cell of the general singular nD 

hyper-box c. We will say that (1, , )jc β  is perpendicular to 
( , )

n

i
c I α�  if and only if (1, , )jc β  is adjacent to c and if the 

intersection between (1, , )jc β  and 
( , )

n

i
c I α�  is the origin, i.e.,  

	
(1, , ) (1, , )

( , )( ([0,1]) ([0,1] )) ( ([0,1]) ( ([0,1] )) (0,...,0))
j n j n n

i

n

c c c c I
β β

α⊆ ∧ ∩ =  

 

Definition 4.18: Let (1, , )jc β  be a main edge. Let c1, c2, …, ck, 1 ≤ k ≤ 2
n
, be a combination of general singular nD 

hyper-boxes with oriented cells 
1 ( , )( 1)i n

ic I
α

α
+− ⋅ � , …, 

( , )( 1)i n

k ic I
α

α
+− ⋅ �  respectively, 1≤ i ≤ n, {0,1}α ∈ . We define the 

relation 
(1, , )j

c

P
R

β

 as: 

(1, , )

( , ) ' ( ', ')

jn c n

k i P k i
c I R c I

β

α α� � ⇔ ([ (1, , )jc β  is perpendicular to 
( , )

n

k i
c I α� ] ∧ [ (1, , )jc β  is perpendicular to 

' ( ', ')

n

k ic I α� ]) 

where 1 ≤ k’≤ k, 1 ≤ i’≤ n, ' {0,1}α ∈ . 

 

Theorem 4.3: Relation 
(1, , )j

c

P
R

β

 is an equivalence relation. 

Proof: 

Let 
( , )

( 1)i n

k i
c Iα

α
+− ⋅ � , 

' ( ', ')
( 1)i n

k i
c Iα

α
+− ⋅ �  and 

'' ( '', '')( 1)i n

k ic I
α

α
+− ⋅ �  be oriented cells of general singular nD hyper-boxes, 

1≤i,i’,i’’≤ n, , ', '' {0,1}α α α ∈ . 

The following properties are satisfied: 

• Reflexivity: 
(1, , )

( , ) ( , ) ( , )
( ( 1) ,1 , {0,1})( )

ji n n c n

i i P i
c I i n c I R c I

βα
α α αα+∀ − ⋅ ≤ ≤ ∈� � �  

• Symmetry: 

If 
(1, , )

( , ) ' ( ', ')

jn c n

k i P k i
c I R c I

β

α α� �  

⇒ ([ (1, , )jc β  is perpendicular to 
( , )

n

k i
c I α� ] ∧ [ (1, , )jc β  is perpendicular to 

' ( ', ')

n

k ic I α� ]) 

⇒ ([ (1, , )jc β  is perpendicular to 
' ( ', ')

n

k ic I α� ] ∧ [ (1, , )jc β  is perpendicular to 
( , )

n

k i
c I α� ]) 

(1, , )

' ( ', ') ( , )

jn c n

k i P k i
c I R c I

β

α α⇒ � �  

(1, , ) (1, , )

( , ) ' ( ', ')

( , ) ' ( ', ') ' ( ', ') ( , )

( ( 1) , 1 , {0,1})( ( 1) , 1 ' , ' {0,1})

( )
j j

i n i n

k i k i

n c n n c n

k i P k i k i P k i

c I i n c I i n

c I R c I c I R c I
β β

α α
α α

α α α α

α α+ +∴ ∀ − ⋅ ≤ ≤ ∈ ∀ − ⋅ ≤ ≤ ∈

⇒

� �

� � � �

 

• Transitivity: 

If 
(1, , ) (1, , )

( , ) ' ( ', ') ' ( ', ') '' ( '', '')

j jn c n n c n

k i P k i k i P k i
c I R c I c I R c I

β β

α α α α∧� � � �  

⇒([ (1, , )jc β  is perpendicular to 
( , )

n

k i
c I α� ] ∧ [ (1, , )jc β  is perpendicular to 

' ( ', ')

n

k ic I α� ]) ∧ 

([ (1, , )jc β is perpendicular to 
' ( ', ')

n

k ic I α� ] ∧ [ (1, , )jc β  is perpendicular to 
'' ( '', '')

n

k ic I α� ]) 

⇒([ (1, , )jc β  is perpendicular to 
( , )

n

k i
c I α� ] ∧ [ (1, , )jc β  is perpendicular to 

'' ( '', '')

n

k ic I α� ]) 

(1, , )

( , ) '' ( '', '')

jn c n

k i P k i
c I R c I

β

α α⇒ � �  

(1, , ) (1, , )

( , ) ' ( ', ')

'' ( '', '')

( , ) ' ( ', ') ' ( ', ') '' ( '', '')

( ( 1) , 1 , {0,1})( ( 1) , 1 ' , ' {0,1})

( ( 1) , 1 '' , '' {0,1})

(
j j

i n i n

k i k i

i n

k i

n c n n c n

k i P k i k i P k i k

c I i n c I i n

c I i n

c I R c I c I R c I c I
β β

α α
α α

α
α

α α α α

α α

α

+ +

+

∴ ∀ − ⋅ ≤ ≤ ∈ ∀ − ⋅ ≤ ≤ ∈

∀ − ⋅ ≤ ≤ ∈

∧ ⇒

� �

�

� � � � �
(1, , )

( , ) '' ( '', '') )
jn c n

i P k iR c I
β

α α�

 

∴ Relation 
(1, , )j

c

P
R

β

 is an equivalence relation.         

 

Definition 4.19: Consider equivalence relation 
(1, , )j

c

P
R

β

. The set  
(1, , )

(1, , )

' '

( , ) ' ( ', ') ' ( ', ') ( , )[( 1) ] {( 1) : }
j

P
j

Ri n i n n c n

k i k i k i P k ic
c I c I c I R c I

β

β

α α
α α α α

+ +− ⋅ = − ⋅� � � �  

is the equivalence class under 
(1, , )j

c

P
R

β

 of the oriented cell 
( , )( 1)i n

k ic I
α

α
+− ⋅ �  induced by the main edge (1, , )jc β  and whose 

representative is 
( , )( 1)i n

k ic I
α

α
+− ⋅ � . 
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For example, consider the following combination of 3D boxes under lattice 3

(1,1,1)
L  (see Figure 4.6): 

• 
3 3

1 1 2 3 1 2 3

1 1 2 3

: [0,1] {( , , ) : 0 1,0 1,0 1}

( ) ( , , )

c x x x x x x

x c x x x x

→ ∈ ≤ ≤ ≤ ≤ ≤ ≤

=

�

∼

 

• 
3 3

2 1 2 3 1 2 3

2 1 2 3

: [0,1] {( , , ) : 0 1, 1 0,0 1}

( ) ( , 1, )

c x x x x x x

x c x x x x

→ ∈ ≤ ≤ − ≤ ≤ ≤ ≤

= −

�

∼

 

• 
3 3

3 1 2 3 1 2 3

3 1 2 3

: [0,1] {( , , ) : 1 0, 1 0, 1 0}

( ) ( 1, 1, 1)

c x x x x x x

x c x x x x

→ ∈ − ≤ ≤ − ≤ ≤ − ≤ ≤

= − − −

�

∼

 

Whose corresponding oriented cells are shown in Table 4.2.  

 

 

-x1

x1

2x2

-x2 x3

-x3

c1

c2

c3

 
Figure 4.6. A 3D combination of general singular cubes (see text for details). 

 

 
c1’s oriented cells c2’s oriented cells c3’s oriented cells 

1 0 3

1 (1,0) 1 2( 1) ( ( )) 1 (0, , )c I x x x+− ⋅ = − ⋅  

1 1 3

1 (1,1) 1 2( 1) ( ( )) 1 (1, , )c I x x x+− ⋅ = ⋅  

2 0 3

1 (2,0) 1 2( 1) ( ( )) 1 ( ,0, )c I x x x+− ⋅ = ⋅  

2 1 3

1 (2,1) 1 2( 1) ( ( )) 1 ( ,1, )c I x x x
+− ⋅ = − ⋅  

3 0 3

1 (3,0) 1 2( 1) ( ( )) 1 ( , ,0)c I x x x+− ⋅ = − ⋅  

3 1 3

1 (3,1) 1 2( 1) ( ( )) 1 ( , ,1)c I x x x+− ⋅ = ⋅  

1 0 3

2 (1,0) 1 2( 1) ( ( )) 1 (0, 1, )c I x x x+− ⋅ = − ⋅ −  

1 1 3

2 (1,1) 1 2( 1) ( ( )) 1 (1, 1, )c I x x x+− ⋅ = ⋅ −  

2 0 3

2 (2,0) 1 2( 1) ( ( )) 1 ( , 1, )c I x x x+− ⋅ = ⋅ −  

2 1 3

2 (2,1) 1 2( 1) ( ( )) 1 ( ,0, )c I x x x+− ⋅ = − ⋅  

3 0 3

2 (3,0) 1 2( 1) ( ( )) 1 ( , 1,0)c I x x x+− ⋅ = − ⋅ −  

3 1 3

2 (3,1) 1 2( 1) ( ( )) 1 ( , 1,1)c I x x x
+− ⋅ = ⋅ −  

1 0 3

3 (1,0) 1 2( 1) ( ( )) 1 ( 1, 1, 1)c I x x x+− ⋅ = − ⋅ − − −  

1 1 3

3 (1,1) 1 2( 1) ( ( )) 1 (0, 1, 1)c I x x x+− ⋅ = ⋅ − −  

2 0 3

3 (2,0) 1 2( 1) ( ( )) 1 ( 1, 1, 1)c I x x x+− ⋅ = ⋅ − − −  

2 1 3

3 (2,1) 1 2( 1) ( ( )) 1 ( 1,0, 1)c I x x x+− ⋅ = − ⋅ − −  

3 0 3

2 (3,0) 1 2( 1) ( ( )) 1 ( 1, 1, 1)c I x x x+− ⋅ = − ⋅ − − −  

3 1 3

3 (3,1) 1 2( 1) ( ( )) 1 ( 1, 1,0)c I x x x+− ⋅ = ⋅ − −  

Table 4.2. Oriented cells of a 3D combination of hyper-boxes (see text for details). 

 

 

 Now, we identify the cells that are perpendicular to each main edge in 3� . Based in this information we 

build the equivalence classes induced by these edges and cells. See Table 4.3. 

 

 

Definition 4.20: Consider equivalence class 
(1, , )( , )[( 1) ] P

j

Ri n

i c
c I β

α
α

+− ⋅ � . We define the set 
(1, , )jc β

η  as follows: 

(1, , )(1, , )

(1, , )

( , ) ( , )

' ' ' ' ' '

( , ) ( ', ') ( ', ') ( ', ')

( 1) [( 1) ] :

( 1) ( 1) 0, ( 1) [( 1) ]

P
jj

P

j

Ri n i n

i i cc

Ri n i n i n i n

i i i i c

c I c I

c I c I c I c I

ββ

β

α α
α α

α α α α
α α α α

η

+ +

+ + + +

 − ⋅ ∈ − ⋅ 
=  

− ⋅ + − ⋅ = − ⋅ ∈ − ⋅  

� �

� � � �

 

 

 

The set 
(1, , )j

c
β

η  contains the cells of 
(1, , )( , )[( 1) ] P

j

Ri n

i c
c I β

α
α

+− ⋅ �  that are included also in 
(1, , )

' '

( ', ')[( 1) ] P

j

Ri n

i c
c I

β

α
α

+− ⋅ �  (the set 

of cells that are perpendicular to the collinear opposite edge of (1, , )jc β ) but with opposite orientation. Such cells are 

not included in ∂(c). 

 

 

Definition 4.21: Consider equivalence class 
(1, , )( , )

[( 1) ] P
j

Ri n

i c
c I β

α
α

+− ⋅ � . We define the set 
(1, , )jc β

℘  as follows:  

(1, , ) (1, , )

(1, , )( , )
[( 1) ] \

j j
P

j

Rc i n c

i c
c I

β β

β

α
α η+℘ = − ⋅ �  
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Main Edge Perpendicular 2DCells Equivalence Class  

(1,1,0)

1 1
( ) ( ,0,0)c x x=  

3

1 (1,0) 1 2( ( )) (0, , )c I x x x=  

3

2 (1,0) 1 2( ( )) (0, 1, )c I x x x= −  { }

(1,1,0)

3

1 (1,0)

1 2 1 2

1 ( ( ))

1 (0, , ), 1 (0, 1, )

PR

c
c I x

x x x x

 − ⋅ 

= − ⋅ − ⋅ −

 

-x1

x1

2x2

-x2 x3

-x3

c1

c2c3

 

(1,1,1)

1 1( ) ( ,0,0)c x x= −  3

3 (1,1) 1 2( ( )) (0, 1, 1)c I x x x= − −  

{ }

(1,1,1)

3

3 (1,1)

1 2

1 ( ( ))

1 (0, 1, 1)

PR

c
c I x

x x

 ⋅ 

= ⋅ − −

 

-x1

x1

2x2

-x2 x3

-x3
c1

c2c3

 

(1,2,0)

1 1( ) (0, ,0)c x x=  3

1 (2,0) 1 2( ( )) ( ,0, )c I x x x=  

{ }

(1,2,0 )

3

1 (2,0)

1 2

1 ( ( ))

1 ( ,0, )

PR

c
c I x

x x

 ⋅ 

= ⋅

 

-x1

x1

2x2

-x2 x3

-x3
c1

c2
c3

 

(1,2,1)

1 1( ) (0, ,0)c x x= −  
3

2 (2,1) 1 2( ( )) ( ,0, )c I x x x=  

3

3 (2,1) 1 2( ( )) ( 1,0, 1)c I x x x= − −  { }

(1,2,1)

3

2 (2,1)

1 2 1 2

1 ( ( ))

1 ( ,0, ), 1 ( 1,0, 1)

PR

c
c I x

x x x x

 − ⋅ 

= − ⋅ − ⋅ − −

 

-x1

x1

2x2

-x2 x3

-x3 c1

c2
c3

 

(1,3,0)

1 1( ) (0,0, )c x x=  
3

1 (3,0) 1 2( ( )) ( , ,0)c I x x x=  

3

2 (3,0) 1 2( ( )) ( , 1,0)c I x x x= −  { }

(1,3,0)

3

2 (3,0)

1 2 1 2

1 ( ( ))

1 ( , ,0), 1 ( , 1,0)

PR

c
c I x

x x x x

 − ⋅ 

= − ⋅ − ⋅ −

 

-x1

x1

2x2

-x2 x3

-x 3
c1

c2
c3

 

(1,3,1)

1 1( ) (0,0, )c x x= −  3

3 (3,1) 1 2( ( )) ( 1, 1,0)c I x x x= − −  

{ }

(1,3,1)

3

3 (3,1)

1 2

1 ( ( ))

1 ( 1, 1,0)

PR

c
c I x

x x

 ⋅ 

= ⋅ − −

 

-x1

x1

2x2

-x2 x3

-x3
c1

c2

c3

 
Table 4.3. Computing the Equivalence Classes under relation RP of the 3D combination whose cells are described in Table 4.2. 

 

 

 The set 
(1, , )jc β

℘  contains all the cells in 
(1, , )( , )[( 1) ] P

j

Ri n

i c
c I β

α
α

+− ⋅ �  except those such that are included, with opposite 

orientation, in 
(1, , )

' '

( ', ')[( 1) ] P

j

Ri n

i c
c I

β

α
α

+− ⋅ � . Consider for example the 3D combination whose cells are described in Table 

4.2. For each one of its equivalence classes we have its corresponding sets 
(1, , )jc β

℘  which are described in Table 4.4. 
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(1, , )( , )
[( 1) ] P

j

Ri n

i c
c I β

α
α

+− ⋅ �  (1, , )j
c

β

η  
(1, , )jc β

℘ =
(1, , )( , )

[( 1) ] P
j

Ri n

i c
c I β

α
α

+− ⋅ � \
(1, , )j

c
β

η   

{ }

(1,1,0)

3

1 (1,0)

1 2 1 2

1 ( ( ))

1 (0, , ), 1 (0, 1, )

PR

c
c I x

x x x x

 − ⋅ 

= − ⋅ − ⋅ −

 
(1,1,0 )cη = ∅  

{ }

(1,1,0 )

(1,1,0)

3

1 (1,0)

1 2 1 2

1 ( ( )) \

1 (0, , ), 1 (0, 1, )

PR
c

c
c I x

x x x x

 ℘ = − ⋅ ∅ 

= − ⋅ − ⋅ −

 

-x1

x1

2x2

-x2 x3

-x3

c1

c2c3

 

{ }

(1,1,1)

3

3 (1,1)

1 2

1 ( ( ))

1 (0, 1, 1)

PR

c
c I x

x x

 ⋅ 

= ⋅ − −

 
(1,1,1)

cη = ∅  
( ){ }

(1,1,1)

(1,1,1)

3

3 (1,1)

1 2

1 ( ( )) \

1 0, 1, 1

PR
c

c
c I x

x x

 ℘ = ⋅ ∅ 

= ⋅ − −

 

-x1

x1

2x2

-x2 x3

-x3
c1

c2c3

 

{ }

(1,2,0)

3

1 (2,0)

1 2

1 ( ( ))

1 ( ,0, )

PR

c
c I x

x x

 ⋅ 

= ⋅

 
{ }

(1,2,0)

1 21 ( ,0, )c x xη = ⋅  { }
(1,2,0 )

(1,2,0 )

3

1 (2,0) 1 21 ( ( )) \ 1 ( ,0, )
PR

c

c
c I x x x ℘ = ⋅ ⋅ 

= ∅

 

-x1

x1

2x2

-x2 x3

-x3
c1

c2
c3

 

{ }

(1,2,1)

3

2 (2,1)

1 2 1 2

1 ( ( ))

1 ( ,0, ), 1 ( 1,0, 1)

PR

c
c I x

x x x x

 − ⋅ 

= − ⋅ − ⋅ − −

 
{ }

(1,2,1)

1 21 ( ,0, )c x xη = − ⋅  { }

{ }

(1,2,1)

(1,2,1)

3

2 (2,1) 1 2

1 2

1 ( ( )) \ 1 ( , 0, )

1 ( 1,0, 1)

PR
c

c
c I x x x

x x

 ℘ = − ⋅ − ⋅ 

= − ⋅ − −

 

-x1

x1

2x2

-x2 x3

-x3 c1

c2
c3

 

{ }

(1,3,0)

3

2 (3,0)

1 2 1 2

1 ( ( ))

1 ( , ,0), 1 ( , 1,0)

PR

c
c I x

x x x x

 − ⋅ 

= − ⋅ − ⋅ −

 
(1,3,0 )cη = ∅  

{ }

(1,3,0)

(1,3,0)

3

2 (3,0)

1 2 1 2

1 ( ( )) \

1 ( , ,0), 1 ( , 1,0)

PR
c

c
c I x

x x x x

 ℘ = − ⋅ ∅ 

= − ⋅ − ⋅ −

 

-x1

x1

2x2

-x2 x3

-x 3
c1

c2
c3

 

{ }

(1,3,1)

3

3 (3,1)

1 2

1 ( ( ))

1 ( 1, 1,0)

PR

c
c I x

x x

 ⋅ 

= ⋅ − −

 
(1,3,1)cη = ∅  

{ }

(1,3,1)

(1,3,1)

3

1 (3,0)

1 2

1 ( ( )) \

1 ( 1, 1,0)

PR
c

c
c I x

x x

 ℘ = − ⋅ ∅ 

= ⋅ − −

 

-x1

x1

2x2

-x2 x3

-x3
c1

c2

c3

 
Table 4.4. Computing the sets 

(1, , )jc β

℘  for the 3D combination of cells described in Table 4.2. 

 

 Although the following three propositions we will list are obvious, we present them as Properties because 

they will be very useful in proving some next results. It is easy to see that the sets 
(1, , )jc β

℘  and 
(1, , )j

c
β

℘  do not have 

common cells (even ignoring orientations), hence 

 

Property 4.1: Sets 
(1, , )jc β

℘  and 
(1, , )j

c
β

℘  are disjoint sets, i.e., 
(1, , ) (1, , )j j

c c
β β

℘ ∩℘ = ∅ . 

 

 By ignoring orientations we have that the sets 
(1, , )j

c
β

η  and 
(1, , )j

c
β

η  have exactly the same (n-1)D cells. 

Therefore 

 

Property 4.2: ( ) ( )(1, , ) (1, , )j j
c cCard Card

β β

η η=  
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 Finally, from the definition of 
(1, , )jc β

℘  we have that (1, , )

(1, , )( , )[( 1) ]
j

P
j

Rc i n

i c
c I

β

β

α
αη +⊆ − ⋅ � . Hence 

 

Property 4.3: ( ) ( )(1, , ) (1, , )

(1, , )( , )[( 1) ]
j j

P
j

Ri n c c

i c
Card c I Card

β β

β

α
α η η+− ⋅ ∩ =�  

 

Lemma 4.2: Consider a combination of nD hyper-boxes c. Let (1, , )jc β  be a main edge on axis xj, 1 ≤ j ≤ n, and let 
(1, , )jc β  be its corresponding opposite collinear edge. Then, the total number of (n-1)D cells in ∂(c) which are 

perpendicular to (1, , )jc β  is given by 

( ) ( ) ( )(1, , )

(1, , ) (1, , )

' '

( , ) ( ', ')
[( 1) ] [( 1) ] 2

j
P P

j j

R Ri n i n c

i ic c
Card c I Card c I Card

β

β β

α α
α α η+ +− ⋅ + − ⋅ − ⋅� �  

Proof: 

 

Consider the following sets associated to (1, , )jc β : 

• 
(1, , )( , )

[( 1) ] P
j

Ri n

i c
c I β

α
α

+− ⋅ �  

• 
(1, , )jc β

η  

• 
(1, , )jc β

℘  

The sets associated to (1, , )jc β  are: 

• 
(1, , )( , )[( 1) ] P

j

Ri n

i c
c I

β

α
α

+− ⋅ �  

• 
(1, , )j

c
β

η  

• 
(1, , )j

c
β

℘  

The set of all the cells included in ∂(c) which are perpendicular to (1, , )jc β  is given by 
(1, , ) (1, , )j j

c c
β β

℘ ∪℘ . 

We will show that  

( ) ( ) ( ) ( )(1, , ) (1, , ) (1, , )

(1, , ) (1, , )

' '

( , ) ( ', ')
[( 1) ] [( 1) ] 2

j j j
P P

j j

R Rc c i n i n c

i ic c
Card Card c I Card c I Card

β β β

β β

α α
α α η+ +℘ ∪℘ = − ⋅ + − ⋅ − ⋅� �  

 

( )(1, , ) (1, , )j j
c cCard

β β

℘ ∪℘  

( ) ( ) ( )(1, , ) (1, , ) (1, , ) (1, , )j j j j
c c c cCard Card Card

β β β β

= ℘ + ℘ − ℘ ∩℘  

Because 
(1, , )jc β

℘  and 
(1, , )j

c
β

℘  are disjoint sets (Property 4.1): 

( ) ( )(1, , ) (1, , )

0
j j

c cCard Card
β β

= ℘ + ℘ −    

By definition of 
(1, , )jc β

℘  and 
(1, , )j

c
β

℘  we have that: 

( ) ( )(1, , ) (1, , )

(1, , ) (1, , )

' '

( , ) ( ', ')
[( 1) ] \ [( 1) ] \

j j
P P

j j

R Ri n c i n c

i ic c
Card c I Card c I

β β

β β

α α
α αη η+ += − ⋅ + − ⋅� �  

By a well known result in Set Theory (Card(A \ B) = Card(A) – Card(A ∩ B)): 

( ) ( )

( ) ( )

(1, , )

(1, , ) (1, , )

(1, , )

(1, , ) (1, , )

( , ) ( , )

' ' ' '

( ', ') ( ', ')

[( 1) ] [( 1) ]

[( 1) ] [( 1) ]

j
P P

j j

j
P P

j j

R Ri n i n c

i ic c

R Ri n i n c

i ic c

Card c I Card c I

Card c I Card c I

β

β β

β

β β

α α
α α

α α
α α

η

η

+ +

+ +

 = − ⋅ − − ⋅ ∩ +
 

 − ⋅ − − ⋅ ∩
  

� �

� �

 

By Property 4.3: 

  ( ) ( ) ( ) ( )(1, , ) (1, , )

(1, , ) (1, , )

' '

( , ) ( ', ')[( 1) ] [( 1) ]
j j

P P
j j

R Ri n c i n c

i ic c
Card c I Card Card c I Card

β β

β β

α α
α αη η+ +  = − ⋅ − + − ⋅ −

    
� �  

Because Property 4.2 states that ( ) ( )(1, , ) (1, , )j j
c cCard Card

β β

η η=  then: 

( ) ( ) ( )(1, , )

(1, , ) (1, , )

' '

( , ) ( ', ')
[( 1) ] [( 1) ] 2

j
P P

j j

R Ri n i n c

i ic c
Card c I Card c I Card

β

β β

α α
α α η+ += − ⋅ + − ⋅ − ⋅� �  

Finally we have: 

( ) ( ) ( ) ( )(1, , ) (1, , ) (1, , )

(1, , ) (1, , )

' '

( , ) ( ', ')
[( 1) ] [( 1) ] 2

j j j
P P

j j

R Rc c i n i n c

i ic c
Card Card c I Card c I Card

β β β

β β

α α
α α η+ +℘ ∪℘ = − ⋅ + − ⋅ − ⋅� �  
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Lemma 4.3: Consider a combination of nD hyper-boxes c where there is an odd (even) edge e0 on axis xj, 1 ≤ j ≤ n, 

such that its corresponding collinear edge is also odd (even). Then, the total number of (n-1)D cells in ∂(c) which 

are perpendicular to e0 is even. 

Proof: 

The odd (even) edge e0 will be denoted by main edge (1, , )jc β  while (1, , )jc β  will denote to its collinear odd (even) edge. 

Consider the following sets associated to (1, , )jc β : 

• 
(1, , )( , )

[( 1) ] P
j

Ri n

i c
c I β

α
α

+− ⋅ �  

• 
(1, , )jc β

η  

• 
(1, , )jc β

℘  

The sets associated to (1, , )jc β  are: 

• 
(1, , )( , )[( 1) ] P

j

Ri n

i c
c I

β

α
α

+− ⋅ �  

• 
(1, , )j

c
β

η  

• 
(1, , )j

c
β

℘  

We will show that ( )(1, , ) (1, , )j j
c cCard

β β

℘ ∪℘  is even.  

 

By Lemma 4.2 we have that  

( ) ( ) ( ) ( )(1, , ) (1, , ) (1, , )

(1, , ) (1, , )

' '

( , ) ( ', ')
[( 1) ] [( 1) ] 2

j j j
P P

j j

R Rc c i n i n c

i ic c
Card Card c I Card c I Card

β β β

β β

α α
α α η+ +℘ ∪℘ = − ⋅ + − ⋅ − ⋅� �  

 

If (1, , )jc β  and (1, , )jc β  are both odd edges then: 

• ( )(1, , )( , )[( 1) ] P
j

Ri n

i c
Card c I β

α
α

+− ⋅ �  is an odd number. 

• ( )(1, , )( , )
[( 1) ] P

j

Ri n

i c
Card c I

β

α
α

+− ⋅ �  is an odd number. 

• ( )(1, , )

2
j

cCard
β

η⋅  is an even number. 

 

If (1, , )jc β  and (1, , )jc β  are both even edges then: 

• ( )(1, , )( , )[( 1) ] P
j

Ri n

i c
Card c I β

α
α

+− ⋅ �  is an odd number. 

• ( )(1, , )( , )
[( 1) ] P

j

Ri n

i c
Card c I

β

α
α

+− ⋅ �  is an odd number. 

• ( )(1, , )

2
j

cCard
β

η⋅  is an even number. 

 

In both cases we conclude that ( )(1, , ) (1, , )j j
c cCard

β β

℘ ∪℘  is an even number.      

 

Theorem 4.4: Let c be a combination of nD hyper-boxes. In c exists exactly one odd edge e0 on axis xj, 1 ≤ j ≤ n, if 

and only if the total number of (n-1)D cells in ∂(c) which are perpendicular to e0 is odd. 

Proof: 

⇒) 

Let the odd edge e0 be denoted by main edge (1, , )jc β , while (1, , )jc β  will denote to its corresponding collinear even 

edge. Consider the following sets associated to (1, , )jc β : 

• 
(1, , )( , )

[( 1) ] P
j

Ri n

i c
c I β

α
α

+− ⋅ �  

• 
(1, , )jc β

η  

• 
(1, , )jc β

℘  

The sets associated to (1, , )jc β  are: 

• 
(1, , )( , )[( 1) ] P

j

Ri n

i c
c I

β

α
α

+− ⋅ �  

• 
(1, , )j

c
β

η  

• 
(1, , )j

c
β

℘  
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We will show that ( )(1, , ) (1, , )j j
c cCard

β β

℘ ∪℘  is an odd number.  

 
By Lemma 4.2 we have that  

( ) ( ) ( ) ( )(1, , ) (1, , ) (1, , )

(1, , ) (1, , )

' '

( , ) ( ', ')
[( 1) ] [( 1) ] 2

j j j
P P

j j

R Rc c i n i n c

i ic c
Card Card c I Card c I Card

β β β

β β

α α
α α η+ +℘ ∪℘ = − ⋅ + − ⋅ − ⋅� �  

 
Now, we will analyze the right side of the previous equation: 

• Because (1, , )jc β  is an odd edge then ( )(1, , )( , )[( 1) ] P
j

Ri n

i c
Card c I β

α
α

+− ⋅ �  is an odd number. 

• Because (1, , )jc β  is an even number then ( )(1, , )( , )
[( 1) ] P

j

Ri n

i c
Card c I

β

α
α

+− ⋅ �  is an even number. 

• Obviously ( )(1, , )

2
j

cCard
β

η⋅  is an even number. 

 

( )(1, , ) (1, , )j j
c cCard

β β

∴ ℘ ∪℘  is an odd number. 

 

⇐) 

The reciprocal is the counterreciprocal of Lemma 4.3 (p ⇒ q ≡¬q ⇒ ¬p).      
 
Corollary 4.2: Let c be a combination of nD hyper-boxes. In c exists a pair of collinear odd edges, or a pair of 

collinear even edges, both on axis xj, 1 ≤ j ≤ n, if and only if the total number of (n-1)D cells in ∂(c) which are 

perpendicular to such edges is even. 

Proof:  

The proposition is the counterreciprocal of Theorem 4.4 (p ⇔ q ≡ ¬p ⇔ ¬q).      

 
Definition 4.22: Let (1, , )jc β  be a main edge and let c1, c2, …, ck a combination of nD hyper-boxes with oriented cells 

1 ( , )
( 1)i n

i
c Iα

α
+− ⋅ � , …, 

( , )
( 1)i n

k i
c Iα

α
+− ⋅ �  respectively, 1 ≤ i ≤ n, {0,1}α ∈ . We define the relation 

(1, , )j
c

AR
β

 as: 

(1, , )

( , ) ' ( ', ')

jn c n

k i A k i
c I R c I

β

α α� �  ⇔  ([ (1, , )jc β  is adjacent to 
( , )

n

k i
c I α� ] ∧ [ (1, , )jc β  is adjacent to 

' ( ', ')

n

k ic I α� ]) 

where 1 ≤ k’≤ k, 1 ≤ i’≤ n, ' {0,1}α ∈ . 

 
Theorem 4.5: Relation 

(1, , )j
c

A
R

β

 is an equivalence relation. 

Proof: 

 
Let 

( , )
( 1)i n

k i
c Iα

α
+− ⋅ � , 

' ( ', ')( 1)i n

k ic I
α

α
+− ⋅ � , 

'' ( '', '')( 1)i n

k ic I
α

α
+− ⋅ �  be oriented cells of general singular nD hyper-boxes,  

1 ≤ i,i’,i’’ ≤ n, , ', '' {0,1}α α α ∈ . 

 
The following properties are satisfied: 

• Reflexivity: 
(1, , )

( , ) ( , ) ( , )
( ( 1) ,1 , {0,1})( )

ji n n c n

i i A i
c I i n c I R c I

βα
α α αα+∀ − ⋅ ≤ ≤ ∈� � �  

• Symmetry: 

If 
(1, , )

( , ) ' ( ', ')

jn c n

k i A k i
c I R c I

β

α α� �  

(1, , ) (1, , )

( , ) ' ( ', ')([ ([0,1]) ( ([0,1] ))] [ ([0,1]) ( ([0,1] ))])j n n j n n

k i k ic c I c c I
β β

α α⇒ ⊆ ∧ ⊆  

(1, , ) (1, , )

' ( ', ') ( , )([ ([0,1]) ( ([0,1] ))] [ ([0,1]) ( ([0,1] ))])j n n j n n

k i k ic c I c c I
β β

α α⇒ ⊆ ∧ ⊆  

(1, , )

' ( ', ') ( , )

jn c n

k i A k i
c I R c I

β

α α⇒ � �  

(1, , ) (1, , )

( , ) ' ( ', ')

( , ) ' ( ', ') ' ( ', ') ( , )

( ( 1) , 1 , {0,1})( ( 1) , 1 ' , ' {0,1})

( )
j j

i n i n

k i k i

n c n n c n

k i A k i k i A k i

c I i n c I i n

c I R c I c I R c I
β β

α α
α α

α α α α

α α+ +∴ ∀ − ⋅ ≤ ≤ ∈ ∀ − ⋅ ≤ ≤ ∈

⇒

� �

� � � �
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• Transitivity: 

If 
(1, , ) (1, , )

( , ) ' ( ', ') ' ( ', ') '' ( '', '')

j jn c n n c n

k i A k i k i A k i
c I R c I c I R c I

β β

α α α α∧� � � �  

(1, , ) (1, , )

( , ) ' ( ', ')

(1, , ) (1, , )

' ( ', ') '' ( '', '')

([ ([0,1]) ( ([0,1] ))] [ ([0,1]) ( ([0,1] ))])

([ ([0,1]) ( ([0,1] ))] [ ([0,1]) ( ([0,1] ))])

j n n j n n

k i k i

j n n j n n

k i k i

c c I c c I

c c I c c I

β β
α α

β β
α α

⇒ ⊆ ∧ ⊆ ∧

⊆ ∧ ⊆

 

(1, , ) (1, , )

( , ) '' ( '', '')
([ ([0,1]) ( ([0,1] ))] [ ([0,1]) ( ([0,1] ))])j n n j n n

k i k i
c c I c c Iβ β

α α⇒ ⊆ ∧ ⊆  

(1, , )

( , ) '' ( '', '')

jn c n

k i A k ic I R c I
β

α α⇒ � �  

(1, , ) (1, , )

( , ) ' ( ', ')

'' ( '', '')

( , ) ' ( ', ') ' ( ', ') '' ( '', '')

( ( 1) , 1 , {0,1})( ( 1) , 1 ' , ' {0,1})

( ( 1) , 1 '' , '' {0,1})

(
j j

i n i n

k i k i

i n

k i

n c n n c n

k i A k i k i A k i k

c I i n c I i n

c I i n

c I R c I c I R c I c I
β β

α α
α α

α
α

α α α α

α α

α

+ +

+

∴ ∀ − ⋅ ≤ ≤ ∈ ∀ − ⋅ ≤ ≤ ∈

∀ − ⋅ ≤ ≤ ∈

∧ ⇒

� �

�

� � � � �
(1, , )

( , ) '' ( '', '') )
jn c n

i A k iR c I
β

α α�

 

∴ Relation 
(1, , )j

c

A
R

β

 is an equivalence relation.         

 
Main Edge Adjacent Cells Equivalence Classes  

(1,1,0)

1 1( ) ( ,0,0)c x x=  

3

1 (2,0) 1 2( ( )) ( ,0, )c I x x x=  

3

1 (3,0) 1 2( ( )) ( , ,0)c I x x x=  

3

2 (3,0) 1 2( ( )) ( , 1,0)c I x x x= −  

3

2 (2,1) 1 2( ( )) ( ,0, )c I x x x=  

(1,1,0)

3

1 (2,0)1 ( ( ))
AR

c
c I x ⋅ 

= 

 { 3

1 (2,0)1 ( ( ))c I x⋅ , 3

1 (3,0)1 ( ( ))c I x− ⋅ ,  

3

2 (3,0)1 ( ( ))c I x− ⋅ , 3

2 (2,1)1 ( ( ))c I x− ⋅ } 

(c1 and c2 have common faces but 

with opposite orientations) 

-x1

x1

2x2

-x2 x3

-x3
c1

c2
c3

 

(1,1,1)

1 1( ) ( ,0,0)c x x= −  
3

3 (2,1) 1 2( ( )) ( 1,0, 1)c I x x x= − −  

3

3 (3,1) 1 2( ( )) ( 1, 1,0)c I x x x= − −  
(1,1,1)

3

3 (2,1)1 ( ( ))
AR

c
c I x − ⋅ 

 = 

 { 3

3 (2,1)1 ( ( ))c I x− ⋅ , 3

3 (3,1)1 ( ( ))c I x⋅ } 
-x1

x1

2x2

-x2 x3

-x3

c1

c2

c3

 

(1,2,0)

1 1( ) (0, ,0)c x x=  
3

1 (1,0) 1 2( ( )) (0, , )c I x x x=  

3

1 (3,0) 1 2( ( )) ( , ,0)c I x x x=  
(1,2,0 )

3

1 (1,0)1 ( ( ))
AR

c
c I x − ⋅ 

 =  

{ 3

1 (1,0)1 ( ( ))c I x− ⋅ , 3

1 (3,0)1 ( ( ))c I x− ⋅ } 
-x1

x1

2x2

-x2 x3

-x3

c1

c2

c3

 

(1,2,1)

1 1( ) (0, ,0)c x x= −  

3

2 (3,0) 1 2( ( )) ( , 1,0)c I x x x= −  

3

2 (1,0) 1 2( ( )) (0, 1, )c I x x x= −  

3

3 (3,1) 1 2( ( )) ( 1, 1,0)c I x x x= − −  

3

3 (1,1) 1 2( ( )) (0, 1, 1)c I x x x= − −  

(1,2,1)

3

2 (3,0)1 ( ( ))
AR

c
c I x − ⋅ 

=  

{ 3

2 (3,0)1 ( ( ))c I x− ⋅ , 3

2 (1,0)1 ( ( ))c I x− ⋅ ,  

3

3 (3,1)1 ( ( ))c I x⋅ , 3

3 (1,1)1 ( ( ))c I x⋅ } -x1

x1

2x2

-x2 x3

-x3

c1

c2

c3

 

(1,3,0)

1 1( ) (0,0, )c x x=  

3

1 (2,0) 1 2( ( )) ( ,0, )c I x x x=  

3

1 (1,0) 1 2( ( )) (0, , )c I x x x=  

3

2 (2,1) 1 2( ( )) ( ,0, )c I x x x=  

3

2 (1,0) 1 2( ( )) (0, 1, )c I x x x= −  

(1,3,0 )

3

1 (3,0)1 ( ( ))
AR

c
c I x − ⋅ 

= 

{ 3

1 (2,0)1 ( ( ))c I x⋅ , 3

1 (1,0)1 ( ( ))c I x− ⋅ , 

 3

2 (2,1)1 ( ( ))c I x− ⋅ , 3

2 (1,0)1 ( ( ))c I x− ⋅ } 

(c1 and c2 have common faces but 

with opposite orientations) 

-x1

x1

2x2

-x2 x3

-x3

c1

c2c3

 

(1,3,1)

1 1( ) (0,0, )c x x= −  
3

3 (1,1) 1 2( ( )) (0, 1, 1)c I x x x= − −  

3

3 (2,1) 1 2( ( )) ( 1,0, 1)c I x x x= − −  
(1,3,1)

3

3 (1,1)1 ( ( ))
AR

c
c I x ⋅ 

 = 

 { 3

3 (1,1)1 ( ( ))c I x⋅ , 3

3 (2,1)1 ( ( ))c I x− ⋅ } 
-x1

x1

2x2

-x2 x3

-x3
c1

c2
c3

 
Table 4.5. Computing the Equivalence Classes under relation RA of the 3D combination whose cells are described in Table 4.2. 
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Definition 4.23: Consider equivalence relation 
(1, , )j

c

A
R

β

. The set 

(1, , )

(1, , )

' '

( , ) ' ( ', ') ' ( ', ') ( , )( 1) {( 1) : }
jA

j
c

R
i n i n n c n

k i k i k i A k ic I c I c I R c I
β

β

α α
α α α α

+ + − ⋅ = − ⋅ � � � �  

is the equivalence class under 
(1, , )j

c

AR
β

 of the oriented cell 
( , )( 1)i n

k ic I
α

α
+− ⋅ �  induced by the main edge (1, , )jc β  and whose 

representative is 
( , )( 1)i n

k ic I
α

α
+− ⋅ � . 

 For example, consider the 3D combination of boxes whose 2D cells are described in Table 4.2 (remember 

that these boxes and cells are defined in lattice 3

(1,1,1)
L ). Now, we identify the cells that are adjacent to each main edge 

in 3� . Based in this information we build the equivalence classes induced by these edges and cells. See Table 4.5. 
 

Definition 4.24: Consider the oriented cells 
( , ) 1 2

( 1) ( ( )) ( 1) ( , ,..., )i n i

k i n
c I x x x xα α

α
+ +− ⋅ = − ⋅  and 

' ' ' '

' ( ', ') 1 2
( 1) ( ( ')) ( 1) ( ' , ' ,..., ' )i n i

k i n
c I x x x xα α

α
+ +− ⋅ = − ⋅ , 1 , 'i i n≤ ≤ , , ' {0,1}α α ∈ . We will say that 

( , ) 1 2
( ( )) ( , ,..., )n

k i n
c I x x x xα =  and 

' ( ', ') 1 2
( ( ')) ( ', ',..., ')n

k i n
c I x x x xα =  are (n-1)D-coupled if and only if: 

a) ( ,1 )( ' )
i i

i i n x x∀ ≤ ≤ = , or well, if 

b) ( ! ,1 )( )( ' )
i i

j j n i j x x∃ ≤ ≤ ∀ ≠ =  

 The above definition is in fact establishing that when we are referring to a pair of 1D-coupled oriented cells 

in 2�  we denote collinear cells; if we are referring to a pair of 2D-coupled cells in 3�  we denote coplanar cells, and 

so on.  
 

Definition 4.25: A set of various (n-1)D-coupled oriented cells will be called an (n-1)D-couplet. 
 

Definition 4.26: Let 
(1, , )( , )( 1)
A

j

R
i n

i
c

c I
β

α
α

+ − ⋅ �  be an equivalence class induced by relation 
(1, , )j

c

A
R

β

. The partition of 

(1, , )( , )( 1)
A

j

R
i n

i
c

c I
β

α
α

+ − ⋅ �  is given by 2n-2 subsets 
(1, , )

1

jcP
β

+
, 

(1, , )

1

jcP
β

−
, 

(1, , )

2

jcP
β

+
, 

(1, , )

2

jcP
β

−
, …, (1, , )

( 1)

j
c

n
P

β

+−
, (1, , )

( 1)

j
c

n
P

β

+−
 such that two cells are in 

(1, , )jc

k
P

β

+
 if and only if they are nD-coupled and they have positive orientation. In the other hand, two cells are in 

(1, , )jc

k
P

β

+
 

if and only if they are nD-coupled and they have negative orientation. Then 

(1, , ) (1, , )

(1, , )

1 1

( , )

1 1

[( 1) ]
j j

A
j

n n
Ri n c c

i c k k
k k

c I P P
β β

β

α
α + −

− −
+

= =

   
− ⋅ = ∪   

   
� ∪ ∪  

  

 Consider the 3D combination of boxes whose 2D cells are described in Table 4.2. We have the partitions 

presented in Table 4.6. 

Equivalence Class Subsets (1, , )

1

j
cP

β

+
, (1, , )

1

j
cP

β

−
 Subsets (1, , )

2

j
cP

β

+
, (1, , )

2

j
cP

β

−
 Partition of the  

Equivalence Class 

(1,1,0)

3

1 (2,0)1 ( ( ))
AR

c
c I x ⋅ 

= 

{ 3

1 (2,0)1 ( ( ))c I x⋅ , 3

1 (3,0)1 ( ( ))c I x− ⋅ , 

 3

2 (3,0)1 ( ( ))c I x− ⋅ , 3

2 (2,1)1 ( ( ))c I x− ⋅ } 

(1,1,0 )

1

c
P+

 = ∅ 

(1,1,0 )

1

c
P−

={ 3

1 (3,0)1 ( ( ))c I x− ⋅ ,  

3

2 (3,0)1 ( ( ))c I x− ⋅ } 

(1,1,0 )

2

c
P +

= { 3

1 (2,0)1 ( ( ))c I x⋅ } 

(1,1,0 )

2

c
P −

= { 3

2 (2,1)1 ( ( ))c I x− ⋅ } 

(1,1,0)

3

1 (2,0)1 ( ( ))
AR

c
c I x ⋅ 

 = 

[ (1,1,0 )

1

c
P+

∪ (1,1,0 )

2

c
P +

] ∪ [ (1,1,0)

1

cP−
∪ (1,1,0)

2

cP −
] 

(1,1,1)

3

3 (2,1)1 ( ( ))
AR

c
c I x − ⋅ 

 = 

 { 3

3 (2,1)1 ( ( ))c I x− ⋅ , 3

3 (3,1)1 ( ( ))c I x⋅ } 

(1,1,1)

1

c
P+

 = ∅ 

(1,1,1)

1

c
P−

={ 3

3 (2,1)1 ( ( ))c I x− ⋅ } 

(1,1,1)

2

c
P +

= { 3

3 (3,1)1 ( ( ))c I x⋅ } 

(1,1,1)

2

c
P −

= ∅ 
(1,1,1)

3

3 (2,1)1 ( ( ))
A

c

R

c I x − ⋅ 
 = 

[ (1,1,1)

1

c
P+

∪ (1,1,1)

2

c
P +

] ∪ [ (1,1,1)

1

cP−
∪ (1,1,1)

2

c
P −

] 

(1,2,0 )

3

1 (1,0)1 ( ( ))
AR

c
c I x − ⋅ 

 = 

{ 3

1 (1,0)1 ( ( ))c I x− ⋅ , 3

1 (3,0)1 ( ( ))c I x− ⋅ } 

(1,2,0)

1

cP+
 = ∅ 

(1,2,0)

1

cP−
={ 3

1 (1,0)1 ( ( ))c I x− ⋅ } 

(1,2,0)

2

cP +
= ∅ 

(1,2,0)

2

cP −
= { 3

1 (3,0)1 ( ( ))c I x− ⋅ } 

(1,2,0 )

3

1 (1,0)1 ( ( ))
AR

c
c I x − ⋅ 

 = 

[ (1,2,0)

1

cP+
∪ (1,2,0)

2

cP +
] ∪ [ (1,2,0)

1

cP−
∪ (1,2,0)

2

cP −
] 

(1,2,1)

3

2 (3,0)1 ( ( ))
AR

c
c I x − ⋅ 

 = 

{ 3

2 (3,0)1 ( ( ))c I x− ⋅ , 3

2 (1,0)1 ( ( ))c I x− ⋅ , 

 3

3 (3,1)1 ( ( ))c I x⋅ , 3

3 (1,1)1 ( ( ))c I x⋅ } 

(1,2 ,1)

1

c
P+

 = { 3

3 (3,1)1 ( ( ))c I x⋅ } 

(1,2 ,1)

1

c
P−

={ 3

2 (3,0)1 ( ( ))c I x− ⋅ } 

(1,2 ,1)

2

c
P +

= { 3

3 (1,1)1 ( ( ))c I x⋅ } 

(1,2 ,1)

2

c
P −

= { 3

2 (1,0)1 ( ( ))c I x− ⋅ } 

(1,2,1)

3

2 (3,0)1 ( ( ))
AR

c
c I x − ⋅ 

 = 

[ (1,2 ,1)

1

c
P+

∪ (1,2 ,1)

2

c
P +

] ∪ [ (1,2 ,1)

1

c
P−

∪ (1,2 ,1)

2

c
P −

] 

(1,3,0 )

3

1 (3,0)1 ( ( ))
AR

c
c I x − ⋅ 

= 

{ 3

1 (2,0)1 ( ( ))c I x⋅ , 3

1 (1,0)1 ( ( ))c I x− ⋅ ,  

3

2 (2,1)1 ( ( ))c I x− ⋅ , 3

2 (1,0)1 ( ( ))c I x− ⋅ } 

(1,3,0 )

1

cP+
 = { 3

1 (2,0)1 ( ( ))c I x⋅ } 

(1,3,0 )

1

cP−
={ 3

2 (2,1)1 ( ( ))c I x− ⋅ } 

(1,3,0 )

2

cP +
= ∅ 

(1,3,0 )

2

cP −
= { 3

1 (1,0)1 ( ( ))c I x− ⋅ , 

3

2 (1,0)1 ( ( ))c I x− ⋅ } 

(1,3,0 )

3

1 (3,0)1 ( ( ))
AR

c
c I x − ⋅ 

 = 

[ (1,3,0 )

1

cP+
∪ (1,3,0 )

2

cP +
] ∪ [ (1,3,0 )

1

cP−
∪ (1,3,0 )

2

cP −
] 

(1,3,1)

3

3 (1,1)1 ( ( ))
AR

c
c I x ⋅ 

 = 

 { 3

3 (1,1)1 ( ( ))c I x⋅ , 3

3 (2,1)1 ( ( ))c I x− ⋅ } 

(1,3,1)

1

c
P+

 = ∅ 

(1,3,1)

1

c
P−

={ 3

3 (2,1)1 ( ( ))c I x− ⋅ } 

(1,3,1)

2

c
P +

= { 3

3 (1,1)1 ( ( ))c I x⋅ } 

(1,3,1)

2

c
P −

= ∅ 

(1,3,1)

3

3 (1,1)1 ( ( ))
AR

c
c I x ⋅ 

 = 

[ (1,3,1)

1

c
P+

∪ (1,3,1)

2

c
P +

] ∪ [ (1,3,1)

1

c
P−

∪ (1,3,1)

2

c
P −

] 

Table 4.6. Computing the partitions of the equivalence classes induced by relation (1, , )jc

AR
β  in the 3D combination of cells described in Table 4.2. 
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Definition 4.27: Let 
(1, , )jc

k
P

β

+
 and 

(1, , )jc

k
P

β

−
, 1 ≤ k < n, be sets of oriented cells in the partition of equivalence class 

(1, , )( , )
[( 1) ] A

j

Ri n

i c
c I β

α
α

+− ⋅ � . We define the sets (1, , )jc

k

β

+�  and (1, , )jc

k

β

−�  as follows: 

 
(1, , )

(1, , )

(1, , )

( , )

' ' ' '

( , ) ( ', ') ( ', ')

( 1) :

( 1) ( 1) 0, ( 1)

j

j

j

i n c

i kc

k i n i n i n c

i i i k

c I P

c I c I c I P

β

β

β

α
α

α α α
α α α

+

−

+

+ + +

 − ⋅ ∈ 
=  

− ⋅ + − ⋅ = − ⋅ ∈  

�
�

� � �

 

(1, , )

(1, , )

(1, , )

( , )

' ' ' '

( , ) ( ', ') ( ', ')

( 1) :

( 1) ( 1) 0, ( 1)

j

j

j

i n c

i kc

k i n i n i n c

i i i k

c I P

c I c I c I P

β

β

β

α
α

α α α
α α α

−

+

+

+ + +

 − ⋅ ∈ 
=  

− ⋅ + − ⋅ = − ⋅ ∈  

�
�

� � �

 

 
 That is, the set 

(1, , )j
c

k

β

+� ( )(1, , )j
c

k

β

−�  contains the cells in 
(1, , )jc

k
P

β

+
 ( )(1, , )j

c

k
P

β

−
 that are also in 

(1, , )jc

k
P

β

−
 ( )(1, , )j

c

k
P

β

+
 but with 

opposite orientation. Such cells are not included in ∂(c). 

 
 Consider the partitions over the equivalence classes induced by relation 

(1, , )j
c

A
R

β

 which were shown in Table 

4.6. The Table 4.7 shows their corresponding sets 
(1, , )

1

j
c

β

+� , 
(1, , )

1

j
c

β

−� , 
(1, , )

2

j
c

β

+�  and 
(1, , )

2

j
c

β

−� . 

 
Subsets (1, , )

1

j
cP

β

+
,  and (1, , )

1

j
cP

β

−
 (1, , )

1

j
c

β

+�  and (1, , )

1

j
c

β

−�  Subsets (1, , )

2

j
cP

β

+
, and (1, , )

2

j
cP

β

−
 (1, , )

2

j
c

β

+�  and (1, , )

2

j
c

β

−�  

(1,1,0 )

1

c
P+

 = ∅ 

(1,1,0 )

1

c
P−

={
1 21 ( , ,0)x x− ⋅ , 

1 21 ( , 1,0)x x− ⋅ − } 

(1,1,0 )

1

c
+�  = ∅ 

(1,1,0 )

1

c
−�  = ∅ 

(1,1,0 )

2

c
P +

= {
1 2

1 ( ,0, )x x⋅ } 

(1,1,0 )

2

c
P −

= {
1 2

1 ( ,0, )x x− ⋅ } 

(1,1,0 )

2

c
+� = {

1 2
1 ( ,0, )x x⋅ } 

(1,1,0 )

2

c
−� = {

1 2
1 ( ,0, )x x− ⋅ } 

(1,1,1)

1

c
P+

 = ∅ 

(1,1,1)

1

c
P−

={
1 21 ( 1,0, 1)x x− ⋅ − − } 

(1,1,1)

1

c
+� = ∅ 

(1,1,1)

1

c
−� = ∅ 

(1,1,1)

2

c
P +

= {
1 21 ( 1, 1,0)x x⋅ − − } 

(1,1,1)

2

c
P −

= ∅ 

(1,1,1)

2

c
+� = ∅ 

(1,1,1)

2

c
−� = ∅ 

(1,2,0)

1

cP+
 = ∅ 

(1,2,0)

1

cP−
={

1 21 (0, , )x x− ⋅ } 

(1,2,0)

1

c
+� = ∅ 

(1,2,0)

1

c
−� = ∅ 

(1,2,0)

2

cP +
= ∅ 

(1,2,0)

2

cP −
= {

1 2
1 ( , ,0)x x− ⋅ } 

(1,2,0)

2

c
+� = ∅ 

(1,2,0)

2

c
−� = ∅ 

(1,2 ,1)

1

c
P+

 = {
1 21 ( 1, 1,0)x x⋅ − − } 

(1,2 ,1)

1

c
P−

={
1 21 ( , 1,0)x x− ⋅ − } 

(1,2,1)

1

c
+� = ∅ 

(1,2,1)

1

c
−� = ∅ 

(1,2 ,1)

2

c
P +

= {
1 21 (0, 1, 1)x x⋅ − − } 

(1,2 ,1)

2

c
P −

= {
1 21 (0, 1, )x x− ⋅ − } 

(1,2,1)

2

c
+� = ∅ 

(1,2,1)

2

c
−� = ∅ 

(1,3,0 )

1

cP+
 = {

1 21 ( ,0, )x x⋅ } 

(1,3,0 )

1

cP−
={

1 21 ( ,0, )x x− ⋅ } 

(1,3,0)

1

c
+� = {

1 2
1 ( ,0, )x x⋅ } 

(1,3,0)

1

c
−� = {

1 21 ( ,0, )x x− ⋅ } 

(1,3,0 )

2

cP +
= ∅ 

(1,3,0 )

2

cP −
={

1 21 (0, , )x x− ⋅ ,

1 21 (0, 1, )x x− ⋅ − } 

(1,3,0)

2

c
+� = ∅ 

(1,3,0)

2

c
−� = ∅ 

(1,3,1)

1

c
P+

 = ∅ 

(1,3,1)

1

c
P−

={
1 21 ( 1,0, 1)x x− ⋅ − − } 

(1,3,1)

1

c
+� = ∅ 

(1,3,1)

1

c
−� = ∅ 

(1,3,1)

2

c
P +

= {
1 21 (0, 1, 1)x x⋅ − − } 

(1,3,1)

2

c
P −

= ∅ 

(1,3,1)

2

c
+� = ∅ 

(1,3,1)

2

c
−� = ∅ 

Table 4.7. Computing the sets (1, , )

1

j
c

β

+� , (1, , )

1

j
c

β

−� , (1, , )

2

j
c

β

+�  and (1, , )

2

j
c

β

−�  for the 3D combination of cells described in Table 4.2. 

 
Definition 4.28: Let (1, , )jc

k
P

β

+
 and 

(1, , )jc

k
P

β

−
, 1 ≤ k < n, be the sets of oriented cells that are included in the partition of the 

equivalence class 
(1, , )( , )

[( 1) ] A
j

Ri n

i c
c I β

α
α

+− ⋅ � . We define to the sets 
(1, , )j

c

k

β

+
  and 
(1, , )j

c

k

β

−
  as follows: 

 
(1, , ) (1, , ) (1, , )

\
j j jc c c

k k k
P

β β β

+ + +=
 �  

(1, , ) (1, , ) (1, , )

\
j j jc c c

k k k
P

β β β

− − −=
 �  
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As can be seen, set 
(1, , )j

c

k

β

+
  ( )(1, , )jc

k

β

−
  contains to all the cells in 
(1, , )jc

k
P

β

+
 ( )(1, , )j

c

k
P

β

−
 except those which are included, 

with opposite orientation, in (1, , )jc

k
P

β

−
 ( )(1, , )j

c

k
P

β

+
. Consider for example the 3D combination, under lattice 3

(1,1,1)
L , whose 

cells are described in Table 4.2. For each one of the sets that compose the partition of its equivalence classes we 

have their corresponding sets 
(1, , )

1

j
c

β

+
  and 
(1, , )

1

j
c

β

−
  which are described in Table 4.8, while Table 4.9 shows its 

corresponding sets 
(1, , )

2

j
c

β

−
  and 
(1, , )

2

jc β

+
 . 

 

 

Sets (1, , )

1

j
cP

β

+
 and (1, , )

1

j
cP

β

−
 

Sets (1, , )

1

j
c

β

+�   

and (1, , )

1

j
c

β

−�  

(1, , ) (1, , ) (1, , )

1 1 1
\

j j j
c c cP

β β β

+ + +=
 �   

and (1, , ) (1, , ) (1, , )

1 1 1
\

j j j
c c cP

β β β

− − −=
 �  
 

2D cells in (1, , )

1

j
c

β

+
  

 
2D cells in (1, , )

1

j
c

β

−
  
 

(1,1,0 )

1

c
P+

 = ∅ 

(1,1,0 )

1

c
P−

={
1 21 ( , ,0)x x− ⋅ , 

1 21 ( , 1,0)x x− ⋅ − } 

(1,1,0)

1

c
+� = ∅ 

(1,1,0 )

1

c
−�  = ∅ 

(1,1,0 )

1

c
+
 = ∅ \ ∅ = ∅ 

(1,1,0 )

1

c
−
 = {

1 21 ( , ,0)x x− ⋅ ,
1 21 ( , 1,0)x x− ⋅ − } \ ∅ 

= {
1 21 ( , ,0)x x− ⋅ ,

1 21 ( , 1,0)x x− ⋅ − } -x1

x1

2x2

-x2 x3

-x3

c1

c2c3

 

(1,1,1)

1

c
P+

 = ∅ 

(1,1,1)

1

c
P−

={
1 21 ( 1,0, 1)x x− ⋅ − − } 

(1,1,1)

1

c
+� = ∅ 

(1,1,1)

1

c
−� = ∅ 

(1,1,1)

1

c
+
 = ∅ \ ∅ = ∅ 

(1,1,1)

1

c
−
 = {

1 21 ( 1,0, 1)x x− ⋅ − − } \ ∅  

= {
1 21 ( 1,0, 1)x x− ⋅ − − } -x1

x1

2x2

-x2 x3

-x3
c1

c2

c3

 

(1,2,0)

1

cP+
 = ∅ 

(1,2,0)

1

cP−
={

1 21 (0, , )x x− ⋅ } 

(1,2 ,0)

1

c
+� = ∅ 

(1,2,0)

1

c
−� = ∅ 

(1,2,0 )

1

c
+
 = ∅ \ ∅ = ∅ 

(1,2,0 )

1

c
−
 = {

1 21 (0, , )x x− ⋅ } \ ∅  

= {
1 21 (0, , )x x− ⋅ } -x1

x1

2x2

-x2 x3

-x3

c1

c2
c3

 

(1,2 ,1)

1

c
P+

 = {
1 21 ( 1, 1,0)x x⋅ − − } 

(1,2 ,1)

1

c
P−

={
1 21 ( , 1,0)x x− ⋅ − } 

(1,2,1)

1

c
+� = ∅ 

(1,2,1)

1

c
−� = ∅ 

(1,2 ,1)

1

c
+
 = {

1 21 ( 1, 1,0)x x⋅ − − } \ ∅  

= {
1 21 ( 1, 1,0)x x⋅ − − } 

(1,2 ,1)

1

c
−
 = {

1 21 ( , 1,0)x x− ⋅ − } \ ∅  

= {
1 21 ( , 1,0)x x− ⋅ − } 

-x1

x1

2x2

-x2 x3

-x3
c1

c2

c3

 

(1,3,0 )

1

cP+
 = {

1 21 ( ,0, )x x⋅ } 

(1,3,0 )

1

cP−
={

1 21 ( ,0, )x x− ⋅ } 

(1,3 ,0)

1

c
+� ={

1 21 ( ,0, )x x⋅ } 

(1,3,0)

1

c
−� ={

1 21 ( , 0, )x x− ⋅ } 

(1,3,0)

1

c
+
 = {

1 21 ( ,0, )x x⋅ } \  {
1 21 ( ,0, )x x⋅ }  

= ∅ 
(1,3,0)

1

c
−
 = {

1 21 ( ,0, )x x− ⋅ } \ {
1 21 ( ,0, )x x− ⋅ }  

= ∅ 
-x1

x1

2x2

-x2 x3

-x3
c1

c2
c3

 

(1,3,1)

1

c
P+

 = ∅ 

(1,3,1)

1

c
P−

={
1 21 ( 1,0, 1)x x− ⋅ − − } 

(1,3,1)

1

c
+� = ∅ 

(1,3,1)

1

c
−� = ∅ 

(1,3,1)

1

c
+
 = ∅ \ ∅ = ∅ 

(1,3,1)

1

c
−
 = {

1 21 ( 1,0, 1)x x− ⋅ − − } \ ∅  

= {
1 21 ( 1,0, 1)x x− ⋅ − − } -x1

x1

2x2

-x2 x3

-x3
c1

c2
c3

 
Table 4.8. Computing the sets (1, , )

1

j
c

β

+
  and (1, , )

1

j
c

β

−
  for the 3D combination of cells described in Table 4.2. 
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Sets (1, , )

2

j
cP

β

+
 and (1, , )

2

j
cP

β

−
 

Sets (1, , )

2

j
c

β

+�   

and (1, , )

2

j
c

β

−�  

(1, , ) (1, , ) (1, , )

2 2 2
\

j j j
c c cP

β β β

+ + +=
 �   

and (1, , ) (1, , ) (1, , )

2 2 2
\

j j j
c c cP

β β β

− − −=
 �  
 

2D cells in (1, , )

2

j
c

β

+
  

 
2D cells in (1, , )

2

j
c

β

−
  
 

(1,1,0 )

2

c
P +

= {
1 2

1 ( ,0, )x x⋅ } 

(1,1,0 )

2

c
P −

= {
1 2

1 ( ,0, )x x− ⋅ } 

(1,1,0 )

2

c
+� ={

1 2
1 ( ,0, )x x⋅ } 

(1,1,0 )

2

c
−� ={

1 21 ( ,0, )x x− ⋅ } 

(1,1,0)

2

c
+
 = {

1 2
1 ( ,0, )x x⋅ }\{

1 2
1 ( ,0, )x x⋅ }  

= ∅ 
(1,1,0)

2

c
−
 = {

1 2
1 ( ,0, )x x− ⋅ } \ {

1 2
1 ( ,0, )x x− ⋅ }  

= ∅ 
-x1

x1

2x2

-x2 x3

-x3
c1

c2
c3

 

(1,1,1)

2

c
P +

= {
1 21 ( 1, 1,0)x x⋅ − − } 

(1,1,1)

2

c
P −

= ∅ 

(1,1,1)

2

c
+� = ∅ 

(1,1,1)

2

c
−� = ∅ 

(1,1,1)

2

c
+
 = {

1 21 ( 1, 1,0)x x⋅ − − } \ ∅  

= {
1 21 ( 1, 1,0)x x⋅ − − } 

(1,1,1)

2

c
−
 = ∅ \ ∅ = ∅ -x1

x1

2x2

-x2 x3

-x3
c1

c2

c3

 

(1,2,0)

2

cP +
= ∅ 

(1,2,0)

2

cP −
= {

1 2
1 ( , ,0)x x− ⋅ } 

(1,2,0)

2

c
+� = ∅ 

(1,2,0)

2

c
−� = ∅ 

(1,2,0)

2

c
+
 = ∅ \ ∅ = ∅ 

(1,2,0 )

2

c
−
 = {

1 2
1 ( , ,0)x x− ⋅ } \ ∅  

= {
1 2

1 ( , ,0)x x− ⋅ } -x1

x1

2x2

-x2 x3

-x3

c1

c2
c3

 

(1,2 ,1)

2

c
P +

= {
1 21 (0, 1, 1)x x⋅ − − } 

(1,2 ,1)

2

c
P −

= {
1 21 (0, 1, )x x− ⋅ − } 

(1,2,1)

2

c
+� = ∅ 

(1,2,1)

2

c
−� = ∅ 

(1,2,1)

2

c
+
 = {

1 21 (0, 1, 1)x x⋅ − − } \ ∅  

= {
1 21 (0, 1, 1)x x⋅ − − } 

(1,2,1)

2

c
−
 = {

1 21 (0, 1, )x x− ⋅ − } \ ∅  

= {
1 21 (0, 1, )x x− ⋅ − } 

-x1

x1

2x2

-x2 x3

-x3

c1

c2c3

 

(1,3,0 )

2

cP +
= ∅ 

(1,3,0 )

2

cP −
={

1 21 (0, , )x x− ⋅ , 

1 21 (0, 1, )x x− ⋅ − } 

(1,3,0)

2

c
+� = ∅ 

(1,3,0)

2

c
−� = ∅ 

(1,3,0 )

2

c
+
 = ∅ \ ∅ = ∅ 

(1,3,0 )

2

c
−
 = {

1 21 (0, , )x x− ⋅ ,
1 21 (0, 1, )x x− ⋅ − } \ ∅ 

 = {
1 21 (0, , )x x− ⋅ ,

1 21 (0, 1, )x x− ⋅ − } -x1

x1

2x2

-x2 x3

-x3

c1

c2c3

 

(1,3,1)

2

c
P +

= {
1 21 (0, 1, 1)x x⋅ − − } 

(1,3,1)

2

c
P −

= ∅ 

(1,3,1)

2

c
+� = ∅ 

(1,3,1)

2

c
−� = ∅ 

(1,3,1)

2

c
+
 = {

1 21 (0, 1, 1)x x⋅ − − } \ ∅  

= {
1 21 (0, 1, 1)x x⋅ − − } 

(1,3,1)

2

c
−
 = ∅ \ ∅ = ∅ -x1

x1

2x2

-x2 x3

-x3

c1

c2
c3

 
Table 4.9. Computing the sets (1, , )

2

j
c

β

+
  and (1, , )

2

j
c

β

−
  for the 3D combination of cells described in Table 4.2. 

 

Although the following three propositions we will list are obvious (moreover, they are analogous to 

Properties 4.1, 4.2 and 4.3), we present them as Properties because they will be very useful in proving some next 

results. It is easy to see that the sets 
(1, , )jc

k

β

+
  and 
(1, , )jc

k

β

−
  do not have common cells (even ignoring orientations), hence 

 

Property 4.4: The sets 
(1, , )jc

k

β

+
  and 
(1, , )jc

k

β

−
  are disjoint sets, i.e., 
(1, , ) (1, , )j jc c

k k

β β

+ −∩ = ∅
 
 . 

 

By ignoring orientations we have that the sets 
(1, , )jc

k

β

+�  and 
(1, , )jc

k

β

−�  have exactly the same (n-1)D cells. 

Therefore 

 

Property 4.5: ( ) ( )(1, , ) (1, , )j j
c c

k k
Card Card

β β

+ −=� �  
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Finally, from the definition of 
(1, , )jc

k

β

+
  we have that 
(1, , )

(1, , )( , )
[( 1) ]

j
A

j

Rc i n

ik c
c I

β

β

α
α+

+⊆ − ⋅� � ; and from the definition of 

(1, , )jc

k

β

−
  we have that 
(1, , )

(1, , )( , )
[( 1) ]

j
A

j

Rc i n

ik c
c I

β

β

α
α−

+⊆ − ⋅� � . Hence 

 

Property 4.6: ( ) ( )(1, , ) (1, , )

(1, , )( , )[( 1) ]
j j

A
j

Rc i n c

ik c k
Card c I Card

β β

β

α
α+ +

+∩ − ⋅ =� � �  and ( ) ( )(1, , ) (1, , )

(1, , )( , )[( 1) ]
j j

A
j

Rc i n c

ik c k
Card c I Card

β β

β

α
α− −

+∩ − ⋅ =� � �  

 

Lemma 4.5: Consider a combination of nD hyper-boxes c. Let (1, , )jc β  be a main edge on axis xj, 1 ≤ j ≤ n. Then, the 

total number of cells in the (n-1)D-couplet in ∂(c) which are incident to (1, , )jc β  is given by 

( ) ( ) ( )(1, , ) (1, , ) (1, , )

2
j j j

c c c

k k k
Card P Card P Card

β β β

+ − ++ − ⋅ �  

Proof: 

Consider the following sets associated to (1, , )jc β : 

• 
(1, , )( , )[( 1) ] A

j

Ri n

i c
c I β

α
α

+− ⋅ �  

• (1, , )jc

k

β

+
  and 
(1, , )jc

k

β

−
  

• (1, , )j
c

k
P

β

+
 and 

(1, , )j
c

k
P

β

−
 

• (1, , )jc

k

β

+�  and 
(1, , )jc

k

β

−�  

The set of cells in the nD-couplet in ∂(c) which are incident to (1, , )jc β is given by 
(1, , ) (1, , )j jc c

k k

β β

+ −∪
 
 . We will show that 

( ) ( ) ( ) ( )(1, , ) (1, , ) (1, , ) (1, , ) (1, , )

2
j j j j j

c c c c c

k k k k k
Card Card P Card P Card

β β β β β

+ − + − +∪ = + − ⋅
 
 �  

 

( )(1, , ) (1, , )j j
c c

k k
Card

β β

+ −∪
 
  

( ) ( ) ( )(1, , ) (1, , ) (1, , ) (1, , )j j j j
c c c c

k k k k
Card Card Card

β β β β

+ − + −= + − ∩
 
 
 
  

Because 
(1, , )jc

k

β

+
  and 
(1, , )jc

k

β

−
  are disjoint sets (Property 4.4): 

( ) ( )(1, , ) (1, , )

0
j j

c c

k k
Card Card

β β

+ −= + −
 
  

By definition of 
(1, , )jc

k

β

+
  and 
(1, , )jc

k

β

−
  we have that: 

 ( ) ( )(1, , ) (1, , ) (1, , ) (1, , )

\ \
j j j j

c c c c

k k k k
Card P Card P

β β β β

+ + − −= +� �  

By a well known result in Set Theory (Card(A \ B) = Card(A) – Card(A ∩ B)): 

( ) ( ) ( ) ( )(1, , ) (1, , ) (1, , ) (1, , ) (1, , ) (1, , )j j j j j j
c c c c c c

k k k k k k
Card P Card P Card P Card P

β β β β β β

+ + + − − −
   = − ∩ + − ∩
   

� �  

By Property 4.6: 

( ) ( ) ( ) ( )(1, , ) (1, , ) (1, , ) (1, , )j j j j
c c c c

k k k k
Card P Card Card P Card

β β β β

+ + − −
   = − + −
   

� �  

Because Property 4.5 states that ( ) ( )(1, , ) (1, , )j j
c c

k k
Card Card

β β

+ −=� �  then: 

( ) ( ) ( )(1, , ) (1, , ) (1, , )

2
j j j

c c c

k k k
Card P Card P Card

β β β

+ − += + − ⋅ �  

Finally we have: 

( )(1, , ) (1, , )j j
c c

k k
Card

β β

+ −∪
 
 ( ) ( ) ( )(1, , ) (1, , ) (1, , )

2
j j j

c c c

k k k
Card P Card P Card

β β β

+ − += + − ⋅ �       

 

Lemma 4.6: Consider a combination of nD hyper-boxes c where there is an even e0 edge on axis xj, 1 ≤ j ≤ n. Then, 

the total number of cells in the (n-1)D-couplet in ∂(c) which are incident to e0 is even.  

Proof: 

The even edge e0 will be denoted by main edge (1, , )jc β . Consider the following sets associated to (1, , )jc β : 

• 
(1, , )( , )[( 1) ] A

j

Ri n

i c
c I β

α
α

+− ⋅ �  

• (1, , )jc

k

β

+
  and 
(1, , )jc

k

β

−
  

• (1, , )j
c

k
P

β

+
 and 

(1, , )j
c

k
P

β

−
 

• (1, , )jc

k

β

+�  and 
(1, , )jc

k

β

−�  
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We will show that ( )(1, , ) (1, , )j j
c c

k k
Card

β β

+ −∪
 
  is an even number. 

 

By Lemma 4.5 we have that  

( )(1, , ) (1, , )j j
c c

k k
Card

β β

+ −∪
 
 ( ) ( ) ( )(1, , ) (1, , ) (1, , )

2
j j j

c c c

k k k
Card P Card P Card

β β β

+ − += + − ⋅ �  

 

Because (1, , ) (1, , )

,
j jc c

k k
P P

β β

+ −
 contain the (n-1)D-coupled cells incident to (1, , )j

c
β  then each one of these cells belongs to 

only one nD hyper-box. By hypothesis (1, , )j
c

β  is an even edge and therefore the number of nD hyper-boxes incident to 
(1, , )j

c
β  is even. Hence, ( ) ( )(1, , ) (1, , )j jc c

k k
Card P Card P

β β

+ −+  is an even number.  

 

( )(1, , ) (1, , )j j
c c

k k
Card

β β

+ −∴ ∪
 
  is an even number.          

 

Theorem 4.6: Let c a combination of nD hyper-boxes. In combination c there is an odd e0 edge on axis xj, 1 ≤  j ≤  n, 

if and only if the total number of cells in the (n-1)D-couplet in ∂(c) which are incident to e0 is odd. 

Proof: 

⇒)  

Let the odd edge e0 be denoted by main edge (1, , )jc β . Consider the following sets associated to (1, , )jc β : 
• 

(1, , )( , )[( 1) ] A
j

Ri n

i c
c I β

α
α

+− ⋅ �  

• (1, , )jc

k

β

+
  and 
(1, , )jc

k

β

−
  

• (1, , )j
c

k
P

β

+
 and 

(1, , )j
c

k
P

β

−
 

• (1, , )jc

k

β

+�  and 
(1, , )jc

k

β

−�  

We will show that ( )(1, , ) (1, , )j j
c c

k k
Card

β β

+ −∪
 
  is an odd number.  

 

By Lemma 4.5 we have that  

( )(1, , ) (1, , )j j
c c

k k
Card

β β

+ −∪
 
 ( ) ( ) ( )(1, , ) (1, , ) (1, , )

2
j j j

c c c

k k k
Card P Card P Card

β β β

+ − += + − ⋅ �  

 

 Because (1, , ) (1, , )

,
j jc c

k k
P P

β β

+ −
 contain the (n-1)D-coupled cells incident to (1, , )jc β  then each one of these cells belongs 

to only one nD hyper-box. By hypothesis (1, , )jc β  is an odd edge and therefore the number of nD hyper-boxes incident 

to (1, , )j
c

β  is odd. Hence, ( ) ( )(1, , ) (1, , )j j
c c

k k
Card P Card P

β β

+ −+  is an odd number. Obviously ( )(1, , )

2
j

c

k
Card

β

+⋅ �  is an even number, 

however, it discards from our counting those pairs of (n-1)D cells that are included in 
(1, , )jc

k
P

β

+
 and 

(1, , )j
c

k
P

β

−
 but with 

opposite orientations. 

⇐) 

The reciprocal is the counterreciprocal of Lemma 4.6 (p ⇒ q ≡¬q ⇒ ¬p).      
 

Corollary 4.3: Let c a combination of nD hyper-boxes. In combination c there is an even e0 edge on axis xj,  

1 ≤  j ≤  n, if and only if the total number of cells in the (n-1)D-couplet in ∂(c) which are incident to e0 is even. 

Proof:  

The proposition is the counterreciprocal of Theorem 4.6 (p ⇔ q ≡ ¬p ⇔ ¬q).      
 

Theorem 4.7: Let c be a combination of nD hyper-boxes. Each odd edge of c is incident to: 

• An even number of (n-1)D cells in ∂(c) if n is odd, or 

• An odd number of (n-1)D cells in ∂(c) if n is even. 

Proof: 

By Theorem 4.6, an odd edge e0 embedded in axis xi, 1 ≤ i ≤ n, is incident to an odd number of (n-1)D-coupled cells 

in ∂(c). In n-Dimensional space we have n main (n-1)D hyperplanes which pass through the origin. The odd edge e0 

is embedded in all of these hyperplanes except one such that whose intersection with e0 is only the origin. Hence, if n 

is an even number then n-1 is an odd number and the total sum of (n-1)D cells in ∂(c) incident to e0 and embedded in 

each one of the n-1 hyperplanes is an odd number. In the other hand, if n is an odd number then n-1 is an even 

number and the total sum of (n-1)D cells in ∂(c) incident to e0 and embedded in each one of the n-1 hyperplanes is an 

even number.              
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Corollary 4.4: Let c be a combination of nD hyper-boxes. Each even edge of c is incident to an even number of 

 (n-1)D cells in ∂(c). 

Proof: 

By Corollary 4.3 an even edge e0 embedded in axis xi, 1 ≤ i ≤ n, is incident to an even number of (n-1)D-coupled 

cells in ∂(c). Therefore, the total sum of (n-1)D cells in ∂(c) incident to e0 and embedded in each one of the n-1 main 

(n-1)D hyperplanes, which pass through the origin, is an even number.       

 

4.4. Conclusions 
  

In this chapter we have defined some frameworks and equivalence relations in order to demonstrate some 

properties related with the Odd Edge Characterization and the way it interacts with its incident (n-1)D cells in a 

combination of nD hyper-boxes. In this sense, Spivak’s k-chains have been fruitful in providing the referred 

frameworks. Spivak’s k-chains have allowed us to select, in a unambiguously and formal way, which (n-1)D cells, 

included in the boundary of a combination of nD hyper-boxes, to consider in order to establish the properties of an 

Odd or an Even edge from the local point of view of the combinatorial topology in the nD-OPP’s.  

 

As observed in Appendix D, the concepts of Odd and Even edge were implicitly present in the 1D, 2D, 3D 

and 4D-OPP’s. Because Manifold edges in the 1D, 2D and 3D-OPP’s have an odd number of incident segments, 

rectangles and boxes respectively [Aguilera98]; while Extreme edges in the 4D-OPP’s have an odd number of 

incident 4D hyper-boxes [Pérez-Aguila03b], then all of them can be characterized as Odd Edges. As can be seen, the 

Odd Edge characterization have provide us an uniform framework based only in the fact of the oddity of the number 

of incident nD hyper-boxes to a given edge. Moreover the propositions 

• In combination c there is an odd e0 edge on axis xj, 1 ≤  j ≤  n, if and only if the total number of cells in the  

(n-1)D-couplet in ∂(c) which are incident to e0 is odd (Theorem 4.6) 

• In a combination c of nD hyper-boxes each odd edge of c is incident to an even number of (n-1)D cells in ∂(c) if 

n is odd; or, an odd number of (n-1)D cells in ∂(c) if n is even (Theorem 4.7) 

extend such oddity property relating (n-1)D cells, incident to an odd edge, in the boundary of a combination of 

hyper-boxes. This framework together with the identified properties will lead us to establish, in Chapter 5, the 

fundaments behind the Extreme Vertices Model in the n-Dimensional Space.  

 


