
Chapter 2 

Theoretical Frame  

and Previous Work 
 

This chapter will introduce some results and concepts which are related with the study to be described in 

this work. In Section 2.1 we will focus in basic definitions related to the dominion of the objects we consider in our 

research. Section 2.2 describes some schemes for the Modeling of n-Dimensional Polytopes. We will briefly 

comment the n-Dimensional Boundary Representations, Hypervoxelizations, 2
n
-trees and the n-Dimensional 

Simplexation of Convex Polytopes (through the Cohen & Hickey’s Algorithm). Finally, Section 2.3 will summarize 

our previous work which is related to the topological characterization of the elements that compose the boundary of 

the 4D Orthogonal Pseudo-Polytopes. 
 

2.1. Terminology 
 

2.1.1. The n-Dimensional Euclidean Space 
 

 Banchoff points out that the term “dimension” is commonly used for specifying characteristics which are 

feasible to be measured [Banchoff96]. For example, an object’s list of dimensions would include width, height, 

weight, color, brightness, temperature, etc. 
 

Another perspective is offered by the Albert Einstein's Relativity Theory and the Space-Time Geometry as 

one of its main contributions. For the relativists, time is considered as the fourth dimension [Russell85] and it is fully 

linked with space. Einstein proposed that time and space are not independent because an event must be described in 

terms of the place and the time at which it occurs [Kaku94] (in other words, time and space compose the event’s list 

of dimensions). Consequently, space is a 3D cross section of the 4D Space-Time where 3D objects are moving 

forward in the direction of the remaining dimension, the time [Rucker77].  
 

In strict terms, the fourth dimension is spatial, represented by a line perpendicular to each of three other 

perpendicular lines and it leads out of the space defined by the other three and never intersects them [Robbin92]. 

Coxeter considers 4D Euclidean space as the space with four coordinates (x, y, z, w) instead of habitual two (x, y) 

or three (x, y, z) [Coxeter84]. And it is established by him that two distinct points determine a straight line, three 

vertices of a triangle determine a plane and four vertices of a tetrahedron determine a hyperplane which has only a 

lineal equation that relates to the four coordinates.  
 

The way that Coxeter builds the definition of 4D Euclidean space can be easily extended in order to define 

five, six, …., and n-dimensional spaces [Sommerville58]. However, we can appeal to the theory of metric spaces to 

define Euclidean spaces by specifying how the points are composed and their associated metric. Therefore, the  

n-Dimensional Euclidean Space is the set of all ordered n-tuples x = (x1, x2, …, xn) of real numbers x1, x2, …, xn 

with the distance 
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([Kolmogorov75] & [Shilov73]). In this work we will refer to Euclidean spaces which are based in the above 

definitions. 
 

2.1.2. Polyhedra 
 

 A polyhedron is a bounded subset of the 3D Euclidean Space enclosed by a finite set of plane polygons 

such that every edge of a polygon is shared by exactly one other polygon (adjacent polygons) [Preparata85]. 

Additionally, it can be established that the polygons that are incident to a vertex must compose a single circuit 

[Coxeter63]. 
 

Coxeter established that the polyhedron’s boundary is a simple and closed surface of a volume (therefore, 

“dangling” faces and edges are not accepted) [Coxeter63]. When the volume’s surface (i.e. the polyhedron’s 

boundary) is considered without aspects like areas, distances or angles but only taking the surface’s aspects not 

affected by deformation, then we will work with the surface’s topology [Weeks02]. In this context, the whole surface 

is called a two-dimensional manifold or a 2-manifold [Boltyanskii82]. 
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A 2-manifold has both local and global properties. Local properties are those observable inside a manifold’s 

small region, while global properties require considering the manifold entirely [doCarmo76]. For example, a  

2-manifold defines a 2D space with a local topology for a plane; however its global topology can correspond to a 

sphere’s surface or a torus’ surface (or any other). 
 

The polyhedron’s surface must fulfill two characteristics cited by Coxeter [Coxeter63]: to be simple and 

closed. The surface is closed, or in other words, the manifold is closed when it decomposes the space where it is 

embedded (3D space) into exactly two regions: the interior, which is finite [Coxeter63] and the outside. The interior 

and the outside both are connected sets in the sense that we can get from any point of the interior to any other point 

by drawing continuously a curve between them which never leaves the interior (and similarly for the outside), but 

one cannot draw continuously a curve from a point in the interior to a point in the exterior which does not contain at 

least one point of the polyhedron’s surface, which is in fact the boundary between the interior and the outside 

[Herman98]. A polyhedron that accomplishes this last property is said that satisfies the Jordan’s Theorem 

[Boltyanskii82]. The polyhedron’s surface is simple and closed, or the manifold is oriented and closed, when it is 

possible to distinguish both of its opposite sides in the 3D space, that is to say, it is clearly possible to distinguish 

between the interior and the outside (Klein’s bottle is a classic example of a closed not oriented surface) [Hansen93]. 
 

Edges and vertices, as boundary elements for polyhedra, are classified as 2-Manifold (or just Manifold) 

elements. A Manifold edge is adjacent to exactly two faces, and a Manifold vertex is the apex (i.e., the common 

vertex) of only one cone of faces (the faces compose a single circuit) [Rossignac91]. 
 

2.1.3. Pseudo-Polyhedra 
 

 A pseudo-polyhedron is a bounded subset of the 3D Euclidean Space enclosed by a finite collection of 

planar faces such that every edge has at least two adjacent faces, and if any two faces meet, they meet at a common 

edge [Tang91]. From this definition we have that polyhedra are a special case (a subset) of pseudo-polyhedra when 

exactly two faces are incident to each of its edges. The boundary’s Pseudo-Polyhedra also must fulfill to be a closed 

surface (“dangling” faces and edges are not accepted). 
 

From the topological’s point of view, only some regions of the pseudo-polyhedron’s surface are 2-manifold. 

This is because, contrary to polyhedra, the pseudo-polyhedra’s interior is composed by more than two quasi-disjoint 

regions. An interior region can be seen as limited by a surface. In a pseudo-polyhedron, at least two interior regions’ 

surfaces have common points, which compose the regions, from the surface seen globally (the pseudo-polyhedron’s 

whole surface) that are not 2-manifold, or in other words, these regions are non-manifold.  
 

 Edges and vertices, as boundary elements for pseudo-polyhedra, may be either two-manifold (or just 

manifold) or non-manifold elements. In the case of edges, they are (non) manifold elements when every points of it 

is also a (non) manifold point, except that either or both of its ending vertices might be a point of the opposite type 

[Aguilera98]. A manifold edge is adjacent to exactly two faces, and a manifold vertex is the apex (i.e., the common 

vertex) of only one cone of faces. Conversely, a non-manifold edge is adjacent to more than two faces, and a  

non-manifold vertex is the apex (i.e., the common vertex) of more than one cone of faces [Rossignac91]. 
 

2.1.4. Four-Dimensional Polytopes 
 

We will extend the polyhedron’s definition presented by Preparata (see section 2.1.2) for defining the 4D 

Polytopes: A 4D Polytope is a closed subset from the 4D Euclidean Space, which is delimited by finite set of  

three-dimensional cells or volumes (polyhedra) such that every volumes’ face is shared only with another volume 

(adjacent volumes) [Pérez-Aguila03c]. In the same way, it can be established that a 4D Polytope’s boundary will be 

a simple and closed hyper-surface of a hyper-volume, therefore, “dangling” volumes, faces and edges are not 

accepted. 
 

Authors such as Takala or Weeks point out that the definitions related to the 2-manifolds’ topology 

(surfaces) can be extended for defining the 3-manifolds’ topology ([Takala92] & [Weeks02]). A 2-manifold can be 

defined as a space with a plane’s local topology on its boundary, and analogously, a 3-manifold can be defined as a 

hyperspace with our “ordinary” three-dimensional space’s local topology on its boundary [Weeks02]. 
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We can appeal to Flatland [Abbott84] for a better understanding. Flatland is a two-dimensional Universe, 

therefore, it is a surface or a 2-manifold, which is inhabited by polygonal beings. A.Square’s interaction with his 

universe allowed him to determine that Flatland is a plane; however, this conclusion is topologically valid from a 

local point of view. Flatland’s global topology could belong to a sphere’s surface (as described in Sphereland 

[Burger83]) or a torus’ surface, for example. Our three-dimensional universe, which we inhabit, can be seen as 

Spaceland [Abbott84]. However, due to Einstein, our universe is seen as a hyper-surface, or better, a 3-manifold 

[Sagan80]. Our universe can be the hyper-sphere’s boundary, or a 4D torus’ boundary. Because we are embedded in 

a 3-manifold, our universe, we can not perceive the effects by its curvature, or in other words, by its global topology. 

Since the 4D Polytopes’ boundary is composed by three-dimensional cells, its topology will be related with a  

3-manifold. 
 

Faces, edges and vertices, as boundary elements for 4D polytopes, will be manifold. Hansen has established 

that a manifold face is adjacent to exactly two volumes [Hansen93], and Pérez & Aguilera have suggested that a 

manifold edge is the common edge of only one hyper-cone of volumes [Pérez-Aguila03c]. 

 

2.1.5. Four-Dimensional Pseudo-Polytopes 
 

 The pseudo-polyhedron’s definition presented by Tang is extended, in [Pérez-Aguila03d], for defining the 

4D Pseudo-Polytopes: A 4D Pseudo-Polytope is a bounded subset of the 4D Euclidean Space enclosed by a finite 

collection of volumes such that every face has at least two adjacent volumes, and if any two volumes meet, they meet 

at a common face. From this definition we have that 4D Polytopes are a special case (a subset) of Pseudo-Polytopes 

when exactly two volumes are incident to each of its faces. The boundary’s Pseudo-Polytopes also must fulfill to be 

a hyper-volume’s closed hyper-surface (“dangling” volumes, faces and edges are not accepted), i.e. polytopes with 

non-manifold faces, edges or vertices. 
 

Basically, the topological differences between 4D Polytopes and Pseudo-Polytopes are analogous to the 

Polyhedra and Pseudo-Polyhedra’s case. Certain regions from the 4D Pseudo-Polytopes’ boundary can be considered 

as not belong exclusively to just one 3-manifold, because, as analogously to Pseudo-Polyhedra, these regions (faces, 

edges or vertices) can be seen as shared by several hyper-surfaces. Therefore, faces, edges and vertices, as boundary 

elements for 4D polytopes, may be either manifold or non-manifold elements. We mentioned that a manifold face is 

adjacent to exactly two volumes, and a manifold edge is the common edge of only one hyper-cone of volumes. Pérez 

& Aguilera have proposed that a non-manifold face is adjacent to more than two volumes, and a non-manifold edge 

is the common edge of more than one hyper-cone of volumes [Pérez-Aguila03c]. 
 

2.1.6. The n-Dimensional Polytopes and Pseudo-Polytopes 
 

Coxeter defines an n-Dimensional Euclidean Polytope Πn as a finite region of n-dimensional Euclidean 

space enclosed by a finite number of (n-1)-dimensional hyperplanes [Coxeter63]. The finiteness of the region implies 

that the number Nn-1 of bounding hyperplanes satisfies the inequality Nn-1>n. The part of the polytope that lies on one 

of these hyperplanes is called a cell. Each cell of a Πn is an (n-1)-dimensional polytope, Πn-1. The cells of a Πn-1 are 

Πn-2's, and so on; we thus obtain a descending sequence of elements Πn-3, Πn-4, ... , Π3 (a volume), Π2 (a polygon), Π1 

(an edge), Π0 (a vertex).  
 

The way that the cells Πn-1, Πn-2, Πn-3, Πn-4, ... , Π1, Π0 are related is given by the following Sommerville’s 

observations [Sommerville58]: 

• The Πn-1’s share Πn-2’s, in that way, it is defined a Polytope Πn when two and only two Πn-1’s share a Πn-2; when 

more that two Πn-1’s share a Πn-2 then it is defined an n-Dimensional Pseudo-Polytope Πn (the notation Πn is 

common to polytopes and pseudo-polytopes). 

• Three or more Πn-1’s will have a common Πn-3. 

• p or more Πn-1’s will have a common Πn-p. 

• n or more Πn-1’s will have a common Π0 (a vertex). 
 

From the topological’s point of view, n-dimensional Polytopes are considered by Hansen as a closed set of  

(n-1)-manifolds, one for each cell Πn-1 [Hansen93]. In the previous sections, the 3D and 4D Polytopes’ boundary was 

entirely considered as a manifold. For example, a cube’s boundary is topologically equivalent to a sphere's surface, 

but from Hansen’s point of view, each face of the cube will be topologically equivalent to a plane, or in other words, 
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each one will be a 2-manifold [Hansen93]. Furthermore, Hansen states that each element on a cell Πn-1’s boundary 

will have its respective topologic equivalence [Hansen93]. In this way, the edges of a cube’s face will be 

topologically equivalent to a 1-manifold (a space with the local topology of a line [Weeks02]) and so forth. By 

representing the nD Polytopes by this way, Hansen presents the following properties [Hansen93]: 

1. A 0-manifold is a point, and it has no boundary. 

2. All boundary elements of an n-manifold are (n-1)-manifold elements. 

3. All (n-1)-dimensional elements belong to exactly two n-manifold elements (or twice to the same element). 

4. Manifold elements may not intersect each other except at common boundary elements. 
 

2.2. Schemes for the Modeling of n-Dimensional Polytopes 
 

2.2.1. Polytopes Modeling 
 

Solid Modeling is an area of wide development in several applications as the Computer Aided Design and 

Manufacturing (CAD/CAM), electronic prototypes, animation planning, etc. If a solid object can be modeled in a 

way that its geometry is appropriately captured, then it will be possible to apply, on such object, a range of useful 

operations. Due to the need of modeling objects as solids, the development of a variety of specialized mechanisms to 

represent them has arisen. The representation schemes for solid objects are frequently divided in some large 

categories (although not all the representations are completely inside in one of them): Boundary Representations, 

Spatial Partitioning Representations, Constructive Solid Geometry, etc. 
 

The extensions of the solid modeling schemes, by considering their application to spaces beyond the  

three-dimensional, have allowed the modeling of n-dimensional polytopes [Paoluzzi93]. Previously we mentioned 

the grouping of the representation schemes for solid objects: Boundary Representations, Spatial Partitioning 

Representations, Constructive Solid Geometry, etc. Related to the schemes for the Polytopes Modeling, in this work 

we will concentrate on two categories: 

• The n-Dimensional Boundary Representations: They describe an nD polytope in terms of the elements that 

compose its boundary: vertices, edges, faces, …, ∏n-2’s and ∏n-1’s. Moreover, these representations have the 

information about the connectivity between these elements. 

• Hyperspatial Partitioning Representations: Where a polytope is decomposed in a collection of attached  

n-dimensional cells, without intersections, and more primitive than the original polytope, although they are not 

necessarily of the same kind. Inside this category we can find schemes as the n-Dimensional Cell 

Decompositions, the Hypervoxelizations and the 2
n
-trees (hyperoctress). 

 

In the following sections we will describe the fundaments behind the nD boundary representations (2.2.3), 

the n-Dimensional Simplexation of Convex Polytopes (a specific cell decomposition; section 2.2.4), the 

hypervoxelizations (2.2.5) and, finally, the 2
n
-trees (2.2.6). 

 

2.2.2. Regularized Boolean Operations 
 

Independently of the polytopes' representation, it should be feasible to combine them to compose new 

objects [Foley95]. One of the most common methods to combine polytopes are the set theoretical Boolean 

operations, as the union, difference, intersection and exclusive OR. However, the application of an ordinary set 

theoretical Boolean operation on two polytopes doesn't necessarily produce a polytope. For example, the ordinary 

intersection between two cubes with only a common vertex is a point. 
 

Instead of using ordinary set theoretical Boolean operators, The Regularized Boolean Operators 

([Putnam86] & [Requicha77]) will be used. The practical purpose of regularization of polytope models is to make 

them dimensionally homogeneous [Takala92]. The regularization operation can be defined as 

Regularized(S) = Closure(Interior(S)) 

which results in a closed regular set [Arbab90]. 
 

Each regularized Boolean operator is defined in function of an ordinary operator in the following way: 

A op* B = Closure (Interior(A op B)) 
 

In such way we will have: 

A *∪  B = Closure (Interior(A ∪  B))  Regularized Union 

A *∩  B = Closure (Interior(A ∩  B))  Regularized Intersection 

A *⊗  B = Closure (Interior(A ⊗  B))  Regularized Exclusive OR 

A   -*   B = Closure (Interior(A   -   B))  Regularized Difference 
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These operators are defined as the closure of the interior of the corresponding set theoretical Boolean 

operation ([Requicha77] & [Mäntylä86]). In this way, the regularized operations between polytopes always will 

generate polytopes [Takala92]. Recapturing the previous example, the regularized intersection between two cubes 

with a common vertex is the null object (the empty set). 
 

2.2.3. The n-Dimensional Boundary Representations 
 

A boundary model for a three-dimensional solid object is a description of the faces, edges and vertices that 

compose its boundary together with the information about the connectivity between those elements [Requicha80]. 

However, the boundary representations can be recursively applied not only to solids or surfaces or segments, but to 

hyperdimensional objects, or in other words, n-dimensional Polytopes [Hansen93]. 
 

Hansen describes that this type of representation is equivalent to a graph structure, called Incidence Graph 

[Hansen93], whose nodes belong to the cells Πn, Πn-1,...,Π1, Π0 on the polytope's boundary. The edges between the 

graph's nodes express the information about the connectivity. Together, they constitute the combinatorial structure 

(the topology) of the representation. The vertices' n coordinates contain the metric information (the geometry) 

associated with the representation. Figure 2.1.a presents the incidence graph of a 4D simplex. 
   

 

 
a) b) 

Figure 2.1. The incidence graph (a) and the boundary tree (b) for the elements on the boundary of a 4D simplex. 
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Another point of view is provided by Putnam & Subrahmanyan, where a boundary representation can be 

seen as a Boundary Tree [Putnam86]. In the tree, each node is split into a component for each element that it 

bounds. An element (vertex, edge, etc.) will be represented several times inside the tree, one for each boundary that it 

belongs to. See Figure 2.1.b for a 4D simplex’s boundary tree. 

 

Independently of the representation to use, we must consider the hyperdimensional entities to be modeled. 

For example, the boundary models defined in [Hansen93] or [Gomes99] allow the representation of n-dimensional 

objects whose boundary can be orientable or not orientable or even incomplete. Therefore, in our context we must 

consider restrictions for guaranteeing that a represented object is a valid polytope. For example, a restriction that can 

be considered is the Euler's formulae. Every one-component convex nD polytope must fulfill that [Sommerville58]: 
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where Nn-1 is the number of (n-1)-dimensional cells (the Πn-1’s), Nn-2 is the number of (n-2)-dimensional cells  

(Πn-2’s) and so forth until N0 which is the number of vertices in the polytope.  
 

A Boolean operation between two n-dimensional polytopes represented under a boundary representation 

scheme can be performed, according to the procedure described in [Hansen93] and [Luo92], through two general 

main steps, that is, "cuts" and "sewings": 

 

• The polytopes are subdivided (or "cut") in their intersecting boundary elements. 

• Later on, the polytopes' subdivided elements are alternated and "sewn", after the consideration of which of them 

are preserved (according to the Boolean operation), to compose the new boundary or boundaries. 

 

A wide range of algorithms to perform Boolean operations, under 2D or 3D boundary representations, can 

be found in the literature (see [Turner84], [Requicha85], [Putnam86] and [Laidlaw86]). Some of these algorithms 

consider only convex polygons, in the 2D case, because of their simplicity; see for example [Toussaint85]. There 

exist algorithms than consider non-manifold polygons, see [Greiner98] or [Maillot92], however, some of these 

procedures provide solutions under specific situations and some of them include mechanisms to avoid extreme cases. 

In the 3D case, we can found very difficult situations to aboard. Some algorithms consider brute force methods by 

detecting the intersections between all the faces of a polyhedron with all the faces of another polyhedron. Through 

this detection, a procedure could classify the boundaries of the solids, and according to the Boolean operation to 

perform, to determine faces, edges or vertices to preserve, to add to the representation, or to “cut” and “sewn”. 

However, there are many extreme and degenerate cases to consider and sometimes there is supported only a limited 

domain. For example, [Mäntylä86] provides algorithms on boundary representations of planar polyhedra, i.e., 

polyhedra topologically equivalent to 2-manifolds. The complexity of the problem is substantially elevated when we 

consider non-convex and/or non-manifold polyhedra. In order to provide partial solutions there are procedures that 

consider decomposition of non-convex polyhedra into sets of convex polyhedra, see for example [Rupper92] and 

[Edelsbrunner95], however, these procedures sometimes only consider a specific number of situations. In the nD 

boundary representations, some algorithms are given assuming that polytopes are subdivided into sets of primitive 

simplexes previous to perform the corresponding Boolean operation, see for example [Luo92]; and there are many 

general descriptions to perform these operations but whose specific details are not given.  

 

2.2.4. The n-Dimensional Simplexation of Convex Polytopes 
 

In this section we will describe the Cohen & Hickey's algorithm for the n-dimensional Simplexation of 

convex polytopes [Cohen79]. In this scheme, an nD polytope is subdivided in a set of nD quasidisjoint simplexes 

(i.e., those that do not intersect between them. In fact, a polygon's 2D simplexation is a triangulation; and a 

polyhedron's 3D simplexation is a tetrahedrization. Being quasidisjoint imply that these simplexes can share some of 

their boundary elements, that is, we can find vertex, edge, face, etc. adjacencies). In first place we will consider some 

definitions: 

• Generic Cell: A generic cell is denoted by 
dimensionsΠ  

• Specific Cell: An specific cell is denoted by index

dimensionsΠ . 

Then we have that: i

0Π  denotes the i-th vertex of a polytope; j

1Π  denotes the j-th edge of a polytope; k

2Π  denotes 

the k-th face of a polytope, …, 1

nΠ  denotes to the polytope itself. 
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• The function ψ : Let ( )i

dΠψ  be the set of vertices in the i-th cell of d dimensions, i.e. every 
0Π ’s in i

dΠ .  

• The function η : The mapping of a cell to a vertex is given by the function 

( ) jk

d 0Π=Πη  where ( ),|min{ 0

k

d

i
ij Π∈Π= ψ  i.e. the vertex with the minimum index} 

• The function Fi: Let Fi be: 

( )i

niF 1−Π=ψ  

 

In other words, Fi is the set of vertices in a (n-1)-dimensional cell i. See Figure 2.2 for the application of the 

above definition over a polygon. 
 

The Cohen & Hickey’s algorithm performs the simplexation of a polytope p by choosing any vertex pv ∈  

as an apex and connecting it with the (n-1)-dimensional simplexes that are the result of the simplexation of all the 

cells in p that do not contain v. Then, the pyramids with apex )(
n

Πη  (remember that function η  returns the vertex 

with the least index) and the bases among the cells 
1−

Π
n

 with 
1

)(
−

Π∉Π
nn

η  will compose a dissection of the polytope 

[Büeler00]. 
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Figure 2.2. Definition of the functions ψ , η  and Fi over a polygon 
1

2Π and its cells i

0Π  and 
j

1Π . 

 

The recursive application of this procedure on all the 
1−

Π
n

 will form a set of decreasing cells 

011
... Π⊃Π⊃⊃Π⊃Π

−nn
 such that )()(

ji
Π≠Π ηη  for ji ≠  and nji ≤≤ ,1 . Then, the corresponding set of simplexes 

S={ )(
0

Πη , …, )(
n

Πη } defines a simplexation of p. See in Figure 2.3 how this process composes a tetrahedron 

inside a cube. 
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a) b) 
Figure 2.3. Forming a tetrahedron inside a cube. 
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The implementation of this recursive procedure requires that the cells 
1−

Π
n

 be represented as sets of vertices, 

i.e. through function Fi. By starting from this representation we pass from a cell 
k

Π  to 
1−

Π
k

 by intersecting the set of 

vertices in 
k

Π  with the cells 
1−

Π
n

 from p that not contain the vertex )(
k

Πη . To avoid the multiple generation of a cell 

we maintain a list that contains all the cells 
k

Π  earlier generated; only the cells not included in the list are processed 

[Büeler00]. 

 
The algorithm will require initially three input parameters: 

 

• d: Number of dimensions. 

• last: A set that contains all the vertices from the polytope, i.e. ( )1

nΠψ . 

• S: The set that contains the vertices of the nD simplex in construction. In the algorithm's main call S={
1

0Π }. 

 

simplexation (d, last, S) 

{ 

// m: the number of (n-1)-dimensional cells in the original polytope. 

// Fk: The set of vertices of each (n-1)-dimensional cell in the original polytope. 

// L: A list of sets. 

If (d > 0) 

{ 

L = {{ }} 

For k = 1 until m 

{ 

I = kFlast ∩  // I is a candidate set to represent ( )j

dΠψ . 

If ( LI ∉ ) // It is evaluated if the set was not earlier obtained. 

{ 

L = {I} ∪  L // The set ( )j

dΠψ  is added to the list L. 

If ( SI ∉)(η ) /* Verifying if vertex )(Iη  is not contained in current simplex. */ 

simplexation (d-1, I, SI ∪)(η ) 

} 

} 

} 

else 

S contains the vertices of an n-dimensional simplex. 

} 

 

 The time complexity of the Cohen & Hickey’s Algorithm applied to an n-Dimensional hyper-box is O(n
3
n!) 

[Büeler00].  

 

2.2.5. Hypervoxelizations 

 
 The representation of a polytope through a scheme of Hyperspatial Occupancy Enumeration is essentially a 

list of identical hyperspatial cells occupied by the polytope. Specific types of cells, called hypervoxels [Jonas95] are 

hyper-boxes (hypercubes, for example) of a fixed size that lie in a fixed grid in the n-dimensional space. Jonas 

defines two kinds of hypervoxels [Jonas95]:  

• Centered Hypervoxel: an n-dimensional hyper-box whose dimensions are given by x1Side, x2Side, ..., xnSide and 

it is represented by the coordinates of its centroid. 

• Shifted Hypervoxel: whose characteristics are same that those for the centered hypervoxel, except that its 

representation is given by some of its 2
n
 vertices. 

By instantiation, we know that a 2D hypervoxel is a pixel while a 3D hypervoxel is a voxel; the term rexel is 

suggested for referencing a 4D hypervoxel [Jonas95].  
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The collection of hyperboxes can be codified as an n-dimensional array 
nxxxC ,...,, 21
 of binary data. The array 

will represent the coloration of each hypervoxel: 

• If 1,...,, 21
=

nxxx
C , the black hypervoxel 

nxxx
C ,...,, 21

 represents an occupied region from the n-dimensional space. 

• If 0,...,, 21
=

nxxx
C , the white hypervoxel 

nxxx
C ,...,, 21

 represents an empty region from the n-dimensional space. 

 

By using the representation through a binary array, the computation of the Boolean set operations just 

control the operations between bits for all the elements. Let C
1
 and C

2
 be two n-dimensional grids of hypervoxels, 

then the Boolean operations between their respective cells, 1

,...,1 nxxC  op 2

,...,1 nxxC , are defined as shown in the Figure 2.4. 

 
2

,...,

1

,..., 11 nn xxxx CC ∪  1 0  2

,...,

1

,..., 11 nn xxxx CC ∩  1 0  2

,...,

1

,..., 11 nn xxxx CC ⊗  1 0 

1 1 1  1 1 0  1 0 1 

0 1 0  0 0 0  0 1 0 

 
2

,...,

1

,..., 11 nn xxxx CC −  1 0  
nxxC ,...,1

 
nxxC ,...,1

 

1 0 1  1 0 

0 0 0  0 1 
Figure 2.4. Boolean operations between two hypervoxels' grids C1 and C2. 

  

 As can be seen, Boolean set operations are trivial under this scheme, however, the spatial complexity of an 

hypervoxelization is 

1

n

i

i

m
=

∏  where mi, 1 ≤ i ≤ n, is the length of the grid along the xi-axis. For example, a  

three-dimensional grid with m1 = m2 = m3 = 1000 requires to store 1 billion (1×10
9
) voxels. 

 
2.2.6. The 2

n
-trees (Hyperoctrees) 

 

 It is well known that the Octrees are composed starting from the recursive subdivision of a 3D cubic space 

in eight octants until each octant is reduced in the possible simplest way. The consideration of this method of 

recursive subdivision was originated as an extension of Quadtrees for the 2D spaces and this leads us to the 

definition of a hextree of 16 hyper-octants in the 4D space. Moreover, the generalization of this hierarchical tree 

structure leads us to the recursive division of an n-dimensional space in 2
n
 hyper-octants which is called a 2

n
-tree or 

hyperoctree [Srihari83]. 

 

 Analogously as the quadtrees and the octrees, the 2
n
-tree will have three types of nodes: 

• Black Nodes: The nodes that correspond to hyper-octants completely occupied by a polytope.  

• White Nodes: The nodes that correspond to hyper-octants completely empty. 

• Gray Nodes: The nodes that correspond to hyper-octants not completely occupied nor completely empty. These 

nodes must be subdivided. 
 

 The root node of the 2
n
-tree corresponds to an n-dimensional hypercube that contains (or encloses) an  

n-dimensional polytope. The conceptual procedure for the building of the tree is the same that is applied to the 

quadtrees or octtrees: If a cell is full or empty, then it must be marked as black or white, respectively; otherwise it 

must be marked as gray and subdivide it recursively [Requicha00]. 
 

 By representing a 2
n
-tree through a Tree Codification with Pointers we would have to consider the 

following characteristics [Srihari83]: 

• Each node of the tree will contain 2
n
 + 1 or 2

n
 + 2 fields. 

• One of the fields will indicate the kind of node (white, black or gray). 

• 2
n
 fields will be pointers to the hyper-octants in which the given node is divided. If the node is a leaf then these 

2
n
 pointers will be nil. 

• It is possible to have an additional field that is a pointer to the parent node. 
 



Chapter 2 - Theoretical Frame and Previous Work 

  

 The achievement of Boolean operations between two 2
n
-trees follows the same procedures that are 

applicable to quadtrees or octtrees [Srihari83]. Only one consideration must be observed, that is, the initial nD 

hypercubic universe from both trees to operate must have the same size and location. The achievement of the 

complement operation consists in traverse the codification of a 2
n
-tree changing the white nodes by black nodes and 

vice versa. Now, the procedure for the computing of the union or intersection T3 between two trees T1 and T2 will be 

described (specifically the union's case): 

1. A synchronous descending traverse in both trees is performed. 

2. Each corresponding homologous pair of nodes (that is, with the same size and location) is examined. If some of 

the nodes in the pair is black, then it is added a corresponding black node in T3. 

3. If one of the nodes in the pair is white, then it is created in T3 the corresponding node with the value of the other 

node in the pair. 

4. If both nodes in the pair are gray, then it is added a gray node in T3 and the algorithm is recursively applied to 

the pair's sons. In this case the sons of the new node in T3 must be inspected after the application of the 

algorithm. If all are black, then they are eliminated and its father in T3 changes from gray to black.  

The intersection between two trees follows the same procedure before described only considering the criteria to 

apply according to the corresponding pair of nodes. In the Figure 2.5 are presented the results of the operations of 

union and intersection between two nodes and the complement for a node. 

 

T1 ∩ T2 B W G  T1 ∪ T2 B W G  T T  

B B W G  B B B B  B W 

W W W W  W B W G  W B 

G G W G*  G B G G*  G G* 
Figure 2.5. The operations of union, intersection and complement for the nodes from 2n-trees 

(B: Black node, W: White node, G: Gray node, G*: recursive case). 

 

Other operations such as the Difference or Exclusive OR can be easily derived through the three operations 

before described (union, intersection and complement). By this way, the difference can be determined starting from 

the well known expression: 

BABA ∩=−  

While the Exclusive OR is calculated through: 

)()( BABABA ∩−∪=⊗  

 

 In Figure 2.6 are presented the results of the Difference and Exclusive OR operations between two nodes. 
 

T1 - T2 B W G  T1 ⊗ T2 B W G 

B W W W  B B W G 

W W B G   W W B G  

G W G G*  G G  G G* 
Figure 2.6. The operations of difference and Exclusive OR for the nodes from 2n-trees 

(B: Black node, W: White node, G: Gray node, G : Gray node's complement, G*: recursive case). 

 

Consider an n-dimensional hypercube whose sides have length 2
m
 and it is positioned in the hyper-octant in 

n
�  defined by the positive part of the axes X1, …, Xn. In this case variable m refers to the resolution to consider. The 

number of nodes in a complete hyperoctree, whose universe is the hypercube we have defined, is given by 

[Srihari83]: 
( 1)

2 1

2 1

m n

n

+ −

−
 

For example, if m = 100 and n = 3 then we have approximately 2.328 × 10
90

 nodes in the corresponding octree. 

Although this is an upper-bound, the implementations of algorithms related with hyperoctrees must consider this 

worst case for spatial complexity. 

 

2.3. Topological Properties of 4D Orthogonal Pseudo-Polytopes  
 

 This section will describe some of our previous results related to the 4D Orthogonal Pseudo-Polytopes. We 

will cover the analysis related to the configurations that can represent the 4D-OPP’s. Moreover, the procedures for 

classifying edges and faces as manifold or non-manifold elements in 4D-OPP’s will be described. We will quote our 
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conditions for classifying faces in the 4D-OPP’s as manifold or non-manifold. For the edges’ analysis in the  

4D-OPP’s our two approaches will be described: 1) The analogy between incident (manifold and non-manifold) 

edges to a vertex in 3D-OPP’s with incident (manifold and non-manifold) faces to an edge in 4D-OPP’s; and 2) The 

extension of Rossignac’s “Cones of Faces” to “Hypercones of Volumes” for classifying an edge as manifold or  

non-manifold in 4D-OPP’s. Finally, we will describe the characterization of edges in the 4D-OPP’s as Extreme or 

Non-Extreme. 
 

2.3.1. Dimensional Analogies 
 

 Our previous work has its procedural foundations in the Method of the “Dimensional Analogies” (Sagan 

called them “Interdimensional Contemplations” [Sagan80]). When we are trying to visualize and understand the 4D 

space, the situation is similar for Flatland’s inhabitants (flatlanders) trying to visualize and understand the 3D space. 

Due to this, it results very useful to consider the analogous situations with a reduced number of dimensions 

[Zhou91]. For example, try to answer the following question: What is a 4D being able to see in the 3D beings? In 

order to get the answer, first it must be referenced the interaction between a 3D being with a 2D being. A.Sphere is 

the 3D being that makes contact with A.Square in Flatland. From his 3D space, A.sphere can visualize the Flatland 

polygons’ boundary, but additionally, he is able to see their interior (and therefore, their internal organs, if they have 

them). But in Flatland it is also referred Lineland, a one-dimensional universe. Lineland’s inhabitants were segments 

whose interior was visualized by A.Square. By analogy, we can expect that a 4D being, interacting with our 3D 

universe, could visualize our “boundary” (the skin), but furthermore, he could visualize our internal organs (in other 

words, the 4D being’s vision could work as the systems of X rays, tomography or magnetic resonance [Pickover99]). 
 

Fundamentally, the method of the analogies considers the contemplation of an analogy between 1D and 2D 

spaces, as well as between 2D and 3D spaces, then (through some extrapolation) between 3D and 4D spaces; and so 

forth. In this way the expected results can be suggested (a hypothesis is established) [Coxeter63]. Once the 

hypothesis is demonstrated, it is possible to suggest a generalization of the characteristic that has been demonstrated 

in n-dimensional space. 
 

At this point, the relation between the method of the analogies and the scientific method results obvious 

[Pérez-Aguila03d]: 

• Analysis: Observation of the analogies between 1D and 2D spaces; and between 2D and 3D spaces. 

• Hypothesis: Proposal of an analogy between 3D and 4D spaces. 

• Synthesis: Selection of a mechanism to demonstrate the analogy. 

• Validation: The process of demonstration. 

• Argumentation: The proposal of an n-dimensional generalization based in the analogies previously observed and 

the demonstration already achieved. 
 

Along the remaining sections in this chapter, which resume our previous work, the continuous application of 

the Method of the Analogies could be contemplated. 
 

2.3.2. Definitions 
 

Orthogonal Polyhedra (3D-OP) are defined as polyhedra with all their edges (Π1’s) and faces (Π2’s) 

oriented in three orthogonal directions ([Juan-Arinyo88] & [Preparata85]). Orthogonal Pseudo-Polyhedra (3D-OPP) 

will refer to regular and orthogonal polyhedra with non-manifold boundary [Aguilera98]. 
 

Similarly, 4D Orthogonal Polytopes (4D-OP) are defined as 4D polytopes with all their edges (Π1’s), faces 

(Π2’s) and volumes (Π3’s) oriented in four orthogonal directions and 4D Orthogonal Pseudo-Polytopes (4D-OPP) 

will refer to 4D regular and orthogonal polytopes with non-manifold boundary [Aguilera02].  
 

2.3.3. The Πn-2 Analysis for 2D, 3D and 4D-OPP's 
 

2.3.3.1. The Π0 Analysis for 2D-OPP's 
 

A set of quasi-disjoint rectangles determines a 2D-OPP whose vertices must coincide with some of the 

rectangles' vertices [Aguilera98]. Each of these rectangles' vertices can be considered as the origin of a 2D local 

coordinate system, and they may belong to up to four rectangles, one for each local quadrant. The two possible 
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adjacency relations between the four possible rectangles can be of edge or vertex. There are 2
4
 = 16 possible 

combinations which, by applying symmetries and rotations, may be grouped into six equivalence classes, also called 

configurations [Srihari81]. 
 

Because we are interested in the vertex analysis, we will consider only those configurations where all their 

rectangles are incident to the origin. According to the configurations’ nomenclature presented in [Aguilera98], the 

studied configurations are b, c, d, e and f (see Table 2.1). There are only two types of vertices in the 2D-OPP’s: the 

manifold vertex with two incident edges (configurations b and e), and the non-manifold vertex with four 

incident edges (configuration d) [Aguilera98]. The remaining configurations represent no vertex because 

configuration c has only two incident and collinear edges, and in configuration f there are no incident edges. 

 
 

 
b 

 
c 

 
d 

 
e 

 
f 

Table 2.1. The 2D configurations with all their rectangles incident to the origin. 

 

2.3.3.2. The Π1 Analysis for 3D-OPP's 

 
A set of quasi-disjoint boxes determines a 3D-OPP whose vertices must coincide with some of the boxes' 

vertices [Aguilera98]. Each of these boxes' vertices can be considered as the origin of a 3D local coordinate system, 

and they may belong to up to eight boxes, one for each local octant. There are 2
8
 = 256 possible combinations which, 

by applying symmetries and rotations, may be grouped into 22 equivalence classes [Lorensen87], also called 

configurations [Srihari81]. Each configuration has its complementary configuration which is the class that contains 

the complementary combinations of all the combinations in the given class [Aguilera98]. Grouping complementary 

configurations leads to the 14 major cases
 
[VanGelder94]. The configurations with 5, 6, 7 and 8 surrounding boxes 

are complementary, and thus analogous, to combinations with 3, 2, 1 and 0 surrounding boxes, respectively 

[Aguilera98]. Finally, each configuration, with four surrounding boxes is self-complementary. 

 

 
b 

 
c 

 
d 

 
f 

 

 
i 

Table 2.2. The 3D configurations where all their boxes are incident to a same edge (the arrows show the analyzed edge). 

 

Because we are interested in the edge analysis, we will consider only those configurations where all their 

boxes are incident to a same edge. According to the configurations’ associated nomenclature presented in 

[Aguilera98], the studied configurations are b, c, d, f and i (see Table 2.2). In [Aguilera98] is concluded that there 

are only two types of edges in the 3D-OPP’s: 

• The manifold edge with two incident faces. This type of edges is found in configurations b and f. The edge’s 

two incident faces in configuration b belong to one cube’s boundary and they are perpendicular to each other. 

The edge’s two incident faces in configuration f belong to two different cubes with edge adjacency and they 

result perpendicular to each other.  

• The non-manifold edge with four incident faces. This type of edges is found in configuration d, where two of 

its faces belong to a cube and the remaining belong to a second cube with edge adjacency. 

• The remaining configurations represent no edge because in configuration c there are only two incident and 

coplanar faces, and in configuration i there are no incident faces.  

 

2.3.3.3. The Π2 Analysis For 4D-OPP's 

 

A set of quasi-disjoint hyper-boxes (i.e., hypercubes) determines a 4D-OPP whose vertices must coincide 

with some of the hyper-boxes’ vertices. We will consider the hyper-boxes’ vertices as the origin of a 4D local 

coordinate system, and they may belong to up to 16 hyper-boxes, one for each local hyper-octant. The 4D-OPP’s 

vertices are determined according to the presence of absence of each of these 16 surrounding hyper-boxes. The four 

possible adjacency relations between the 16 possible hyper-boxes can be of volume, face, edge or vertex. There are 
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2
16

=65,536 possible combinations of vertices in 4D-OPP’s which can be grouped, applying symmetries and 

rotations, into 402 equivalence classes, also called configurations [Hill98]. Each configuration has its complementary 

configuration which is the class that contains the complementary combinations of all the combinations in the given 

class. Grouping complementary configurations leads to the 222 major cases [Hill98]. The combinations with 9, 10, 

11, 12, 13, 14, 15 and 16 surrounding hyper-boxes are complementary, and thus analogous, to combinations with 7, 

6, 5, 4, 3, 2, 1 and 0 surrounding hyper-boxes, respectively. Finally, each configuration, with eight surrounding 

hyper-boxes is self-complementary [Pérez-Aguila01]. 
 

We will consider only those configurations whose hyper-boxes are incident to a same face. According to the 

configurations’ associated nomenclature presented in [Pérez-Aguila01], the studied configurations are 2, 3, 4, 7 and 

13 (Table 2.3). In [Aguilera02] is concluded that there are only two types of faces in the 4D-OPP’s:  

• The manifold faces with two incident volumes. The face’s two incident volumes in configuration 2 belong to 

the boundary of only one hypercube and they are perpendicular to each other. While in configuration 7, The 

face’s two incident volumes belong to two different hypercubes with face adjacency and they result 

perpendicular to each other.  

• The non-manifold faces with four incident volumes. This type of faces is found in configuration 4, where two 

of its incident volumes belong to a hypercube and the remaining two belong to a second hypercube with face 

adjacency. 

• The remaining configurations represent no face because in configuration 3 there are only two incident and  

co-hyperplanar volumes, and in configuration 13 there are no incident volumes (analogous to 3D configurations 

c and i in Table 2.2). 

 

 

 
 

2 

 

 
3 

 

 
4 

 

 
7 

 

 
13 

Table 2.3. Configurations 2, 3, 4, 7 and 13 for the 4D-OPP's. 

 

2.3.4. The Πn-3 Analysis for 3D and 4D-OPP’s 
 

2.3.4.1. The Π0 Analysis for 3D-OPP’s 

 

There are eight types of vertices (also two non valid vertices are identified) for 3D-OPP's [Aguilera98]. 

These vertices can be classified depending on the number of two-manifold and non-manifold edges incident to them 

and they are referred as V3, V4, V4N1, V4N2, V5N, V6, V6N1 and V6N2
 
[Aguilera98] (Table 2.4). In this 

nomenclature "V" means vertex, the first digit shows the number of incident edges, the "N" is present if at least one 

non-manifold edge is incident to the vertex and the second digit is included to distinguish between two different 

types that otherwise could receive the same name. In [Pérez-Aguila03c] the properties for each vertex are described 

with detail. 
 

V3 

 

V4 

 

V4N1 

 

 

V4N2 

 

 

V5N 

 

 

V6 

 
 

V6N1 

 

 

V6N2 

 

 

Non valid 

vertex 1 

 

Non valid 

vertex 2 

 
 

Table 2.4. Vertices present in 3D-OPP's (dotted lines indicate non-manifold edges and continuous lines indicate manifold edges). 

 

2.3.4.2. The Π1 Analysis for 4D-OPP's 
 

Vertices can be defined in terms of the manifold or non-manifold edges that are incident to these vertices in  

3D-OPP's
 
[Aguilera98]. The same process will be extended to describe edges in terms of the manifold or  

non-manifold faces that are incident to those edges in 4D-OPP's. In this way, we have identified eight types of edges 

and two non valid edges. We will also extend the nomenclature used by Aguilera & Ayala to describe them 

[Aguilera98]. Such edges will be referred as E3, E4, E4N1, E4N2, E5N, E6, E6N1 and E6N2 (Table 2.5)  

[Pérez-Aguila03d]. The only difference with the nomenclature used to describe the vertices is that "E" means edge 

instead of "V" that means vertex. In [Pérez-Aguila03c] the properties for each edge are described.  
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E3 

 

 

E4 

 

 

E4N1 

 

 

E4N2 

 

 

E5N 

 

 

E6 

 

 
 

E6N1 

 

 

E6N2 

 

 

Non valid 

edge 1 

  

Non valid 

edge 2 

  

Table 2.5. Edges present in 4D-OPP's (dotted lines indicate non-manifold faces and continuous lines indicate manifold faces). 

 

2.3.4.3. Classifying the Π0’s in Polyhedra through its Cones of Faces 
 

As seen in section 2.1.2, a polyhedron is a bounded subset of the 3D Euclidean Space enclosed by a finite 

set of plane polygons such that every edge of a polygon is shared by exactly one other polygon (adjacent polygons) 

[Preparata85]. A pseudo-polyhedron is a bounded subset of the 3D Euclidean Space enclosed by a finite collection 

of planar faces such that every edge has at least two adjacent faces, and if any two faces meet, they meet at a 

common edge [Tang91] (section 2.1.3). Edges and vertices, as boundary elements for polyhedra, may be either  

two-manifold (or just manifold) or non-manifold elements. In the case of edges, they are (non) manifold elements 

when every points of it is also a (non) manifold point, except that either or both of its ending vertices might be a 

point of the opposite type [Aguilera98]. A manifold edge is adjacent to exactly two faces, and a manifold vertex is 

the apex (i.e., the common vertex) of only one cone of faces. Conversely, a non-manifold edge is adjacent to more 

than two faces, and a non-manifold vertex is the apex (i.e., the common vertex) of more than one cone of faces
 

[Rossignac91]. 

 

Using the concept of cones of faces it is easy to construct an algorithm to determine the classification of a 

vertex as manifold or non-manifold in any polyhedron or pseudo-polyhedron. Using this algorithm over the possible 

vertices in 3D-OPP's we have the results presented in Table 2.6 which coincide with those presented in 

[Aguilera98]. 

 

3D vertex Classification 

V3 Manifold 

V4 Manifold 

V4N1 Non-manifold 

V4N2 Non-manifold 

V5N Non-manifold 

V6 Non-manifold or manifold according to its geometric context. 

V6N1 Non-manifold 

V6N2 Non-manifold 
Table 2.6. 3D-OPP's vertices classification. 

 
2.3.4.4. Classifying the Π1’s in 4D Polytopes through its Hyper-Cones of Volumes 

 
Due to the analogy between 3D-OPP's vertices described in terms of their incident manifold or  

non-manifold edges, and 4D-OPP's edges described in terms of their incident manifold or non-manifold faces, the 

next logical step is to extend the concept of cones of faces presented in the previous section to classify 4D polytopes' 

edges as manifold or non-manifold [Pérez-Aguila03]. 

 
Faces, edges and vertices, as boundary elements for 4D polytopes, may be either manifold or non-manifold 

elements. Coxeter and Hansen have stated that a manifold face is adjacent to exactly two volumes ([Coxeter63] & 

[Hansen93]), and Aguilera & Pérez [Pérez-Aguila03d] have suggested that a manifold edge is the common edge 

(apex) of only one hyper-cone of volumes. Conversely, we have suggested that a non-manifold face is adjacent to 

more than two volumes, and now we suggest that a non-manifold edge is the common edge (apex) of more than one 

hyper-cone of volumes [Pérez-Aguila03d]. 

 
Using the concept of hyper-cones of volumes, it is easy to extend the algorithm for obtaining the vertex 

classification for 3D-OPP’s used for previous section, to allow us classifying an edge, as manifold or non-manifold, 

in any 4D polytope or 4D pseudo-polytope. The algorithm is defined with the following steps [Pérez-Aguila03c]: 
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1 Get the set of Π3’s that are incident to edge A (a Π1). 

2 From the set of Π3’s select one of them. 

3 The selected Π3 has two Π2’s that are incident to A, get one of them and label it as START and ANOTHER. 

4 Repeat 

4.1 If the number of Π3’s to ANOTHER is more than one, then A is a non-manifold Π1. End. 

4.2 The ANOTHER Π2 is common to another Π3, find it. 

4.3 The Π3 has another Π2 that is common to A, find it and label it as ANOTHER. 

4.4 Until START = ANOTHER (it has been found a hyper-cone of volumes). 

5 If there are more Π3’s to analyze then A is non-manifold (there are more hyper-cones of volumes). End. 

6 Otherwise, A is manifold (A is the common edge of only one hyper-cone of volumes). End. 

 

Using the algorithm over the possible edges in 4D-OPP's we have that the edges' classifications are 

analogous to the 3D-OPP's vertices' classifications [Pérez-Aguila03c]. Table 2.7 shows the edges' classifications 

given by the extended algorithm and their analogous 3D results. 

 

4D 

edge 

Classification through  

hyper-cones of volumes 

3D 

vertex 

Classification through 

cones of faces 

E3 Manifold V3 Manifold 

E4 Manifold V4 Manifold 

E4N1 Non-manifold V4N1 Non-manifold 

E4N2 Non-manifold V4N2 Non-manifold 

E5N Non-manifold V5N Non-manifold 

E6 Non-manifold or manifold according to 

its geometric context. 

V6 Non-manifold or manifold according to 

its geometric context. 

E6N1 Non-manifold V6N1 Non-manifold 

E6N2 Non-manifold V6N2 Non-manifold 
Table 2.7. 4D-OPP's edges classifications and their analogy with 3D-OPP's vertices. 

 

2.3.5. Extreme Edges in the 4D-OPP’s 
 

 In this section we will show how we have proceeded, as we have seen in the previous analogies between 

vertices in the 3D-OPP’s and edges in the 4D-OPP’s, to define the Extreme Edges. It will be described how this 

characterization is the result of a 3D analysis over the possible configurations for the 4D-OPP’s.  
 

2.3.5.1. The 2D Analysis for Vertices in the 3D-OPP's 
 

 We know that there are 22 configurations which determine a 3D-OPP through a set of quasi-disjoint boxes 

[Aguilera98]. Each of these boxes’ vertices can be considered as the origin of a 3D local coordinate system. In such 

3D local coordinate system can be identified three main planes: X1X2, X1X3 and X2X3. If the faces that are coplanar 

to such main planes are grouped, ignoring those faces that are shared by two cubes (face adjacency), they compose 

three 2D configurations (one for each main plane). For these 2D configurations the vertex can be classified as 

manifold or non-manifold [Pérez-Aguila03b]. By applying this analysis over the 22 configurations for the 3D-OPP’s, 

it results that for those configurations whose number of boxes is odd, the three vertex analysis for their 2D 

configurations classify the 2D vertex as manifold (see for example, in Figure 2.7, configuration f)  

[Pérez-Aguila03b]. 
 

3D configuration 
2D configuration 

on X1X2 Plane 

2D configuration 

on X1X3 Plane 

2D configuration 

on X2X3 Plane 

Analysis for 

2D vertex 

f

X2

X1

X3  e

X2

-X2

X1

-X1

 b

X1

-X1
X3

-X3

 b

X2

-X2

X3

-X3

 

X1X2: Manifold 

 

X1X3: Manifold 

 

X2X3: Manifold 

Figure 2.7. Vertex analysis for 2D configurations on the main planes in 3D configuration f. 
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2.3.5.2. The 3D Analysis for Edges in 4D-OPP's 
 

 The vertex analysis for 2D configurations embedded in the main planes of a 3D configuration (previous 

section) classifies the 2D vertex as manifold or non-manifold. For consequence, in analogous way, we can assume 

that the edges analysis for 3D configurations embedded in the main hyperplanes of a 4D configuration will classify 

to 3D edges as manifold or non-manifold, and through these 3D analysis we can infer, due to the analogy with 3D 

vertex, if the 4D edges are characterized, and named as suggested by Aguilera & Pérez, as Extreme or  

Non-Extreme edges [Pérez-Aguila03b]. 
 

 We know that there are 402 configurations which determine a 4D-OPP through a set of quasi-disjoint  

hyper-boxes [Hill98]. Each of these hyper-boxes’ vertices can be considered as the origin of a 4D local coordinate 

system. In such 4D local coordinate system can be identified four main hyperplanes: X1X2X3, X1X2X4, X1X3X4 and 

X2X3X4. If the volumes that are co-hyperplanar to such main hyperplanes are grouped, ignoring those volumes that 

are shared by two hypercubes (volume adjacency), they will compose four 3D configurations (one for each main 

hyperplane) [Pérez-Aguila03b]. In Table 2.8 there are shown the four 3D configurations that are present in some 4D 

configurations. 
 

4D 

configuration 

3D configuration 

on X1X2X3 

hyperplane 

3D configuration 

on X1X2X4 

hyperplane 

3D configuration 

on X1X3X4 

hyperplane 

3D configuration 

on X2X3X4 

hyperplane 

3 

X1

X2

X3
X4

 

b 

X1

X2

X3

 
 

b 

X1

X2

X4

 
 

a 

X1

X3
X4

 

b 

X3

X2

X4

 
4 

X1

X2

X3

X4

 

d 

X1

X2

X3

 

d 

X1

X2

X4

 
 

b 

X1

X3
X4

 

b 

X3

X2

X4

 

Table 2.8. Determining the 3D configurations on the main hyperplanes in 4D configurations 3 and 4. 
 

 For the 3D configurations that are embedded in the main hyperplanes it is possible to analyze their edges 

and classify them as manifold or non-manifold. In Table 2.9 are shown the edges analysis for the 3D configurations 

that are present in 4D configurations 3 and 4.  
 

 3D Edges Analysis 

4D 

Configuration 

Configuration on 

X1X2X3 hyperplane 

Configuration on 

X1X2X4 hyperplane 

Configuration on 

X1X3X4 hyperplane 

Configuration on 

X2X3X4 hyperplane 

3 X1: Non edge 

-X1: Non edge 

X2: Manifold 

-X2: Manifold 
X3: Non edge 

-X3: Non edge 

X1: Non edge 

-X1: Non edge 

X2: Manifold 

-X2: Manifold 
X4: Non edge 

-X4: Non edge 

X1: Non edge 

-X1: Non edge 

X3: Non edge 

-X3: Non edge 

X4: Non edge 

-X4: Non edge 

X2: Manifold 

-X2: Manifold 
X3: Non edge 

-X3: Non edge 

X4: Non edge 

-X4: Non edge 

4 X1: Manifold 

-X1: Manifold 

X2: Manifold 

-X2: Manifold 
X3: Non edge 

-X3: Manifold 

X1: Manifold 

-X1: Manifold 

X2: Manifold 

-X2: Manifold 
X4: Non manifold 

-X4: Non edge 

X1: Manifold 

-X1: Manifold 
X3: Non edge 

-X3: Non edge 

X4: Non edge 

-X4: Non edge 

X2: Manifold 

-X2: Manifold 
X3: Non edge 

-X3: Non edge 

X4: Non edge 

-X4: Non edge 
Table 2.9. Edges analysis for 3D configurations on the main hyperplanes in 4D configurations 3 and 4. 
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By applying these analyses over the 402 configurations for the 4D-OPP’s can be verified that  

[Pérez-Aguila03b]: 

• An edge in a 4D-OPP can be classified by three 3D analysis (a 4D edge can only be present in three of the four 

main hyperplanes) as: 

• 3 times as manifold and 0 times as non-manifold, or 

• 0 times as manifold and once as non-manifold, or 

• 0 times as manifold and 3 times as non-manifold, or 

• 0 times as manifold and 0 times as non-manifold. 

• The above patterns can be found in any 4D configuration because it can have from 0 to 8 incident edges to the 

origin. 

• Following the analogy with the vertex analysis for 2D configurations embedded in the main planes of a 3D 

configuration (previous section), it can be proposed that if a edge in a 4D-OPP has been classified in the 3D 

analysis three times as manifold, then it can be considered, and named as suggested by Aguilera & Pérez, as an 

Extreme Edge, and any other result will classify it as a Non-Extreme Edge [Pérez-Aguila03b]. 

• The manifold or non-manifold classification for a edge in a 4D-OPP is independent of its classification as extreme 

or non-extreme. 

Table 2.10 summarizes the identified characterizations for edges in the 4D-OPP’s. 
 

4D edge Classification (manifold or non-manifold) Classification (extreme or non-extreme) 

E3 Manifold Extreme 

E4 Manifold Non extreme 

E4N1 Non-manifold Extreme 

E4N2 Non-manifold Non extreme 

E5N Non-manifold Non extreme 

E6 Non-manifold 

Manifold 

Non extreme 

Non extreme 

E6N1 Non-manifold Extreme 

E6N2 Non-manifold Non extreme 

Table 2.10. The 4D-OPP's edges classifications. 
 

2.4 Conclusions 
 

 We summarize the drawbacks identified in the previously analyzed schemes for modeling nD polytopes: 

• The n-Dimensional Boundary Representations: The complexity imposed by geometry and topology to the 

algorithms that perform regularized Boolean operations. 

• The n-Dimensional Simplexation of Convex Polytopes (as a specific cell decomposition): The time complexity 

imposed by the conversion, of an nD hypercube for example, to a simplexation: O(n
3
n!). Regularized Boolean 

operations have also a high cost because the way they are performed is related with boundary representations. 

• The n-Dimensional Hypervoxelizations: Although regularized Boolean operations are trivial under this scheme, 

the memory complexity requires having space for storing 

1

n

i

i

m
=

∏  hypervoxels, where mi is the length of the 

hypervoxelization along Xi-axis. 

• The 2
n
-trees: In this scheme, regularized Boolean operations have a cost of linear time. However, when 

resolution’s value m increases a better approximation of the polytope is obtained, but with a memory complexity 

increasing considerably according to the formula 
( 1)

2 1

2 1

m n

n

+ −

−
 which provides us an upper bound. 

In conclusion, we can observe that as the number of dimensions increases, when we deal with the representation of 

n-Dimensional Polytopes we must consider: 

• The domain of polytopes must be taken in account by the algorithms associated with the representation. 

• The time complexity of the algorithms associated to the representation, and 

• The memory complexity of the representation. 
 

In the last section of this Chapter (section 2.3) we presented some geometrical and topological properties 

that characterize to the 2D, 3D and 4D-OPP’s. Moreover, this analysis summarizes our previous work. These 

properties associated with the drawbacks previously discussed, lead us to conclude that representing nD-OPP’s 

through these schemes could be problematic due to all the characteristics involved in the dominion of polytopes we 

are considering in this work.  


