Appendix \mathbf{F}
 Characterization of Extreme Vertices According Their Incident Odd/Even Edges and Relating Them With Other Edges' Characterizations

Property F.1: By Property D. 1 we have that an odd edge is equivalent to a manifold edge in the 1D-OPP's. By considering such equivalence we obtain the following relation between vertices described through odd edges and vertices described through manifold edges (these last vertices were previously identified in [Aguilera98]):

Vertices characterized by their incident odd edges $\left(\frac{\text { Odd edge })}{}\right.$	Vertices characterized by their incident manifold edges $\left(\begin{array}{l}\text { Manifold edge })\end{array}\right.$ Extreme Vertex \bullet
Extreme Vertex	
0	

Property F.2: By Property D. 2 we have that an odd edge is equivalent to a manifold edge in the 2D-OPP's. Moreover, by the same property, an even edge is equivalent to a non-valid edge. By considering such equivalences we obtain the following relation between vertices described through odd/even edges and vertices described through manifold edges (these last vertices were previously identified in [Aguilera98]):

Vertices characterized by their incident odd/even edges (- : Odd edge, $\cdots \cdots \cdot-\cdots$: Even edge) $)$	Vertices characterized by their incident manifold edges (- : Manifold edge)
Extreme Vertex	Extreme Vertex (V2)
Non-extreme Vertex ($\mathrm{V}_{2,2,0}$)	Non-extreme Vertex (V4)
Non-extreme Vertex ($\mathrm{V}_{2,1,1}$)	Non-extreme Vertex (Non-valid vertex)
Non-extreme Vertex ($\mathrm{V}_{2,0,2}$)	Non-extreme Vertex (Non-valid vertex)

Property F.3: By Property D. 3 we have that an odd edge is equivalent to a manifold edge in the 3D-OPP's. Moreover, by the same property, an even edge is equivalent to a non-manifold edge or a non-valid edge. By considering such equivalences we obtain the following relation between vertices described through odd/even edges and vertices described through manifold/non-manifold edges (these last vertices were previously identified in [Aguilera98]):

Vertices characterized by their incident odd/even edges (- : Odd edge, ${ }^{-\cdots-\ldots . . .}$: Even edge)	Vertices characterized by their incident manifold/non-manifold edges (- : Manifold edge, $-\cdots \cdot-\quad$: Non-manifold edge)
Non-extreme Vertex ($\mathrm{V}_{3,0,3}$)	
Non-extreme Vertex ($\mathrm{V}_{3,1,2}$)	
	Non-extreme Vertex (V6)

Property F.4: By Property D. 4 we have that an odd edge is equivalent to an extreme edge in the 4D-OPP's. Moreover, by the same property, an even edge is equivalent to a non-extreme edge or a non-valid edge. By considering such equivalences we obtain the following relation between vertices described through odd/even edges and vertices described through extreme/non-extreme edges (these last vertices were previously identified in [Pérez-Aguila03d]):

Vertices characterized by their incident odd/even 	Vertices characterized by their incident extreme/non-extreme edges (- : Extreme edge, : Non-extreme edge)
	Extreme Vertices VX4N2-2

Vertices characterized by their incident odd/even edges (- : Odd edge, $\cdots \cdots \cdot{ }^{-}$: Even edge)	Vertices characterized by their incident extreme/non-extreme edges ($-\quad$: Extreme edge, : Non-extreme edge)
Non-extreme Vertex ($\mathrm{V}_{4,0,4}$)	
Non-extreme Vertex $\left(\mathrm{V}_{4,1,3}\right)$	
Non-extreme Vertex $\left(\mathrm{V}_{4,2,2}\right)$	
Non-extreme Vertex $\left(\mathrm{V}_{4,3,1}\right)$	Non-extreme Vertices
Non-extreme Vertex ($\mathrm{V}_{4,4,0}$)	Non-Extreme Vertex (VX8)

