Appendix E Some Characterizations of Extreme and Non-Extreme Vertices in the nD-OPP's **Property E.1:** Consider configurations b and e for the 2D-OPP's. A configuration in the 2D-OPP's describes an extreme vertex if and only if the two 1D configurations embedded in the main axes describe extreme vertices. The segments in such 1D-OPP's are included in the boundary of the configuration. **Property E.2:** Consider configurations c, d and f for the 2D-OPP's. A configuration in the 2D-OPP's describes a non-extreme vertex if and only if the two 1D configurations embedded in the main axes describe non-extreme vertices. The segments in such 1D-OPP's are included in the boundary of the configuration. **Property E.3:** Consider configurations with an odd number of boxes for the 3D-OPP's. A configuration in the 3D-OPP's describes an extreme vertex if and only if the three 2D configurations embedded in the three main planes describe extreme vertices. The rectangles in such 2D-OPP's are included in the boundary of the configuration. | Configuration | 2D-OPP in X ₁ X ₂ | 2D-OPP in X ₁ X ₃ | 2D-OPP in X ₂ X ₃ | |-----------------|---|--|---| | -x ₃ | -x ₃ | -x ₃ | -x ₃ | | -x ₁ | -x ₁ | -x ₃ | -x ₃ | | -x ₃ | -x ₃ | -x ₁ -x ₂ x ₁ -x ₂ | -x ₃ | **Property E.4:** Consider configurations for the 3D-OPP's with an even number of boxes. A configuration in the 3D-OPP's describes a non-extreme vertex if and only if the three 2D configurations embedded in the three main planes describe non-extreme vertices. The rectangles in such 2D-OPP's are included in the boundary of the configuration. | Configuration | 2D-OPP in X ₁ X ₂ | 2D-OPP in X ₁ X ₃ | 2D-OPP in X ₂ X ₃ | |---|---|---|---| | x_2 x_3 x_4 x_3 x_4 x_5 x_5 x_6 x_1 x_2 x_3 x_4 x_5 x_6 x_6 x_6 x_6 x_6 x_6 x_6 x_6 | -x ₃ | -x ₃ | -X ₃ | **Property E.5:** Consider configurations with an odd number of hyper-boxes for the 4D-OPP's. A configuration in the 4D-OPP's describes an extreme vertex if and only if the four 3D configurations embedded in the main 3D hyperplanes describe extreme vertices. The boxes in such 3D-OPP's are included in the boundary of the configuration. Distribution of the incident 3D volumes (not included in volume adjacency) in the four main 3D hyperplanes | | T 11 (35) | | | nyperplanes | | |----------------------------|--|--------------------------------------|---|---|---| | Incident 4D
Hyper-boxes | Incident 3D volumes
not included in
volume adjacency | Hyperplane 1 | Hyperplane 2 | Hyperplane 3 | Hyperplane 4 | | 1 | 4 | 1 | 1 | 1 | 1 | | 3 | 8 | 1 | 1 | 3 | 5 | | 3 | 12 | 3 | 3 | 3 | 3 | | 3 | 10 | 1 | 3 | 3 | 3 | | 5 | 10 | 1 | 1 | 3 | 5 | | 5 | 12 | 1 | 3 | 3 | 5 | | 5 | 14 | 3 | 3 | 3 | 5
5 | | 5 | 12 | 3 | 3 | 3 | 3 | | 5 | 16 | 3 | 3 | 5 | 5 | | 5 | 16 | 1 | 5 | 5 | 5 | | 5 | 18 | 3 | 5 | 5 | 5 | | 5 | 20 | 5 | 5 | 5 | 5 | | 5 | 14 | 1 | 3 | 5 | 5 | | 5 | 12 | 1 | 1 | 5 | 5 | | 7 | 10 | 1 | 1 | 1 | 7 | | 7 | 12 | 1 | 3 | 3 | 5 | | 7 | 14 | 3 | 3 | 3 | 5 | | 7 | 16 | 3 | 3 | 3 | 7 | | 7 | 14 | 1 | 3 | 3 | 7 | | 7 | 16 | 1 | 5 | 5 | 5 | | 7 | 12 | 3 | 3 | 3 | 3 | | 7 | 16 | 3 | 3 | 5 | 5 | | 7 | 18 | 3 | 5 | 5 | 5 | | 7 | 18 | 1 | 5 | 5 | 7 | | 7 | 14 | 1 | 3 | 5 | 5 | | 7 | 16 | 1 | 3 | 5 | 7 | | 7 | 20 | 5 | 5 | 5 | 5 | | 7 | 20 22 | 5 | 5 | 5 | 7 | | 7 | 20 | 3 | 5 | 5 | 7 | | 7 | 18 | 3 | 3 | 5 | 7 | | 7 | 20 | 3 | 3 | 7 | 7 | | 7 | 20 28 | 3
7 | 7 | 7 | | | 7 | 28 22 | 1 | | | 7
7 | | 7 | 22 22 | = | 7 | 7 | 7 | | 7 | 22 24 | 3
5 | 5
5 | 7
7 | 7 | | 7 | | 1 | 1 | 7 | / 7 | | 0 | 16 | 1
1 | 7 | | 7 | | 9 | 22
22
16 | 1
 | 7 | 7 | 7 | | 9
9 | 22
16 | 3 | 5 5 | 3 5 | / - | | 9 | 10 | 1 2 | 3 = | 3 | 3 | | 9
9
9
9
9 | 20 | 1
5
1
3
1
5
3
1 | 5
5
5
5
5
5
1
3
3 | 5
5
5
5
5
5
1
3
3 | 7
5
7
7
5
5
7
5
7 | | 9 | 18 | l | 3 5 | 3 | / | | 9 | 20 | 3 | 3 5 | 3 | 3 | | 9 | 18 | 5 | 5 | 5 | 3 | | 9 | 10 | 1 | | | / | | | 12 | | 3 | 3 | 2 | | 9 | 14 | 3
1 | 3 | 3 | 2 | | 9 | 14 | 1 | 3 | 3 | 7 | Distribution of the incident 3D volumes (not included in volume adjacency) in the four main 3D hyperplanes | Incident 4D | Incident 3D volumes | | | | | |-------------|----------------------------------|--------------|--------------|--------------|--------------| | Hyper-boxes | not included in volume adjacency | Hyperplane 1 | Hyperplane 2 | Hyperplane 3 | Hyperplane 4 | | 9 | 16 | 3 | 3 | 3 | 7 | | 9 | 12 | 3 | 3 | 3 | 3 | | 9 | 16 | 3 | 3 | 5 | 5 | | 9 | 14 | 1 | 3 | 5 | 5 | | 9 | 18 | 3 | 3 | 5 | 7 | | 9 | 16 | 1 | 3 | 5 | 7 | | 9 | 16 | 1 | 1 | 7 | 7 | | 9 | 22 | 3 | 5 | 7 | 7 | | 9 | 24 | 5 | 5 | 7 | 7 | | 9 | 28 | 7 | 7 | 7 | 7 | | 9 | 20 | 3 | 3 | 7 | 7 | | 11 | 10 | 1 | 1 | 3 | 5 | | 11 | 12 | 1 | 1 | 5 | 5 | | 11 | 12 | 1 | 3 | 3 | 5 | | 11 | 14 | 3 | 3 | 3 | 5 | | 11 | 12 | 3 | 3 | 3 | 3 | | 11 | 16 | 3 | 3 | 5 | 5 | | 11 | 20 | 5 | 5 | 5 | 5 | | 11 | 14 | 1 | 3 | 5 | 5 | | 11 | 16 | 1 | 5 | 5 | 5 | | 11 | 18 | 3 | 5 | 5 | 5 | | 13 | 10 | 1 | 3 | 3 | 3 | | 13 | 8 | 1 | 1 | 3 | 3 | | 13 | 12 | 3 | 3 | 3 | 3 | | 15 | 4 | 1 | 1 | 1 | 1 | **Property E.6:** Consider configurations with an even number of hyper-boxes for the 4D-OPP's. A configuration in the 4D-OPP's describes a non-extreme vertex if and only if the four 3D configurations embedded in the main 3D hyperplanes describe non-extreme vertices. The boxes in such 3D-OPP's are included in the boundary of the configuration. Distribution of the incident 3D volumes (not included in volume adjacency) in the four main 3D hyperplanes | | | | ng per primes | | | |----------------------------|--|--------------|---------------|--------------|--------------| | Incident 4D
Hyper-boxes | Incident 3D volumes
not included in
volume adjacency | Hyperplane 1 | Hyperplane 2 | Hyperplane 3 | Hyperplane 4 | | 0 | 0 | 0 | 0 | 0 | 0 | | 2 | 6 | 0 | 2 | 2 | 2 | | 2 | 8 | 2 | 2 | 2 | 2 | | 4 | 8 | 0 | 0 | 4 | 4 | | 4 | 10 | 2 | 2 | 2 | 4 | | 4 | 12 | 2 | 2 | 4 | 4 | | 4 | 12 | 0 | 4 | 4 | 4 | | 4 | 16 | 4 | 4 | 4 | 4 | | 4 | 14 | 2 | 4 | 4 | 4 | | 6 | 10 | 0 | 2 | 2 | 6 | | 6 | 12 | 2 | 2 | 2 | 6 | | 6 | 12 | 2 | 2 | 4 | 4 | Distribution of the incident 3D volumes (not included in volume adjacency) in the four main 3D hyperplanes | Incident 3D volumes | | ny per planes | | | | |----------------------------|----------------------------------|---------------|--------------------------------------|--------------|--------------| | Incident 4D
Hyper-boxes | not included in volume adjacency | Hyperplane 1 | Hyperplane 2 | Hyperplane 3 | Hyperplane 4 | | 6 | 14 | 2 | 4 | 4 | 4 | | 6 | 16 | 2 | 4 | 4 | 6 | | 6 | 16 | 4 | 4 | 4 | 4 | | 6 | 18 | 4 | 4 | 4 | 6 | | 6 | 14 | 2 | 2 | 4 | 6 | | 6 | 18 | 0 | 6 | 6 | 6 | | 6 | 20 | 4 | 4 | 6 | 6 | | 6 | 18 | 2 | 4 | 6 | 6 | | 6 | 14 | 0 | 2 | 6 | 6 | | 6 | 16 | 2 | 2 | 6 | 6 | | 6 | 24 | 6 | 6 | 6 | 6 | | 6 | 20 | 2 | 6 | 6 | 6 | | 6 | 20 22 | 4 | 6 | 6 | | | | | 0 | 8 | 8 | 6
8 | | 8 | 24 | | | | | | 8
8 | 20 | 2 | 6 | 6 | 6 | | | 22 | 4 | 6 | 6 | 6 | | 8 | 26 | 6 | 6 | 6 | 8 | | 8 | 22 | 2 | 6 | 6 | 8 | | 8 | 24 | 4 | 4 | 8 | 8 | | 8 | 32 | 8 | 8 | 8 | 8 | | 8 | 16 | 0 | 0 | 8 | 8 | | 8 | 12 | 2 | 2 | 2 | 6 | | 8 | 14 | 2 | 2 | 2 | 8 | | 8 | 12 | 0 | 4 | 4 | 4 | | 8 | 12 | 2 | 2 | 4 | 4 | | 8 | 14 | 2 | 4 | 4 | 4 | | 8 | 16 | 2 | 4 | 4 | 6 | | 8 | 8 | 0 | 0 | 0 | 8 | | 8 | 14 | 2 | 2 | 4 | 6 | | 8 | 16 | 0 | 4 | 4 | 8 | | 8 | 20 | 4 | 4 | 4 | 8 | | 8 | 20 | 4 | 4 | 6 | 6 | | 8 | 18 | 2 | 4 | 6 | 6 | | 8 | 16 | 4 | 4 | 4 | 4 | | 8 | 18 | 4 | 4 | 4 | 6 | | 8 | 16 | 2 | 2 | 6 | 6 | | 8 | 18 | 2 | 2 | 6 | 8 | | 8 | 24 | 6 | 6 | 6 | 6 | | 10 | 12 | 2 | 2
2
2
2
2
2
2
4 | 2 | 6 | | 10 | 10 | 0
2
2 | 2 | 2
4 | 6 | | 10 | 12 | 2 | 2 | 4 | 4 | | 10 | 14 | 2 | 2 | 4 | 6 | | 10 | 14 | 0 | 2 | 6 | 6 | | 10 | 16 | 2 | 2 | 6 | 6 | | 10 | 16 | 4 | | 4 | 4 | | 10 | 18 | 4 | 4 | 4 | 6 | | 10 | 14 | 2 | 4 | 4 | 4 | | 10 | 16 | 2
2
4 | 4 | 4 | 6 | | 10 | 20 | 4 | 4 | 6 | 6 | | 10 | 18 | 2 | 4 | 6 | 6 | | Distribution of the incident 3D volumes (not | |---| | included in volume adjacency) in the four main 3D | | hyperplanes | | | | | nyperplanes | | | |----------------------------|--|--------------|--------------|--------------|--------------| | Incident 4D
Hyper-boxes | Incident 3D volumes
not included in
volume adjacency | Hyperplane 1 | Hyperplane 2 | Hyperplane 3 | Hyperplane 4 | | 10 | 18 | 0 | 6 | 6 | 6 | | 10 | 20 | 2 | 6 | 6 | 6 | | 10 | 22 | 4 | 6 | 6 | 6 | | 10 | 24 | 6 | 6 | 6 | 6 | | 12 | 12 | 0 | 4 | 4 | 4 | | 12 | 14 | 2 | 4 | 4 | 4 | | 12 | 16 | 4 | 4 | 4 | 4 | | 12 | 8 | 0 | 0 | 4 | 4 | | 12 | 10 | 2 | 2 | 2 | 4 | | 12 | 12 | 2 | 2 | 4 | 4 | | 14 | 6 | 0 | 2 | 2 | 2 | | 14 | 8 | 2 | 2 | 2 | 2 | | 16 | 0 | 0 | 0 | 0 | 0 |