Appendix D Some Characterizations of Odd and Even Edges in the nD-OPP's

Property D.1: In 1D space an odd edge is equivalent to a manifold edge (1D-OPP's are segments and themselves are odd edges).

Property D.2: In 2D space an odd edge is equivalent to a manifold edge. In this space an even number of incident rectangles defines a non-valid edge (an edge not included in the final 2D-OPP described by the rectangles).

Property D.3: In 3D space an odd edge is equivalent to a manifold edge. In this space an even number of incident boxes defines a non-manifold edge or a non-valid edge (an edge not included in the final 3D-OPP described by the boxes).

Property D.4: In 4D space an odd edge is equivalent to an extreme edge. Moreover, the following characterizations, of odd/extreme edges in the 4D-OPP's, are identified in terms of the boundary elements (the possible 65,536 combinations of 4D hyper-boxes were exhaustively verified):

Incident 4D Hyper-boxes	Number of incident 3D volumes not included in volume adjacency
1	3
3	5
3	7
3	9
5	5
5	7
5	9
7	3

Property D.5: In the 4D-OPP's we have identified the following characterizations for odd edges (the possible 65,536 combinations of 4D hyper-boxes were exhaustively verified):

			Distribution of the incident 3D volume (not included in volume adjacency) in the three hyperplanes where the odd edge is embedded.		
Edge Classification	Incident 4D Hyper-boxes	Incident 3D volumes not included in volume adjacency	Hyperplane 1	Hyperplane 2	Hyperplane 3
Odd	1	3	1	1	1
Odd	3	5	1	1	3
Odd	3	9	3	3	3
Odd	3	7	1	3	3
Odd	5	5	1	1	3
Odd	5	7	1	3	3
Odd	5	9	3	3	3
Odd	7	3	1	1	1

Property D.6: In the 4D-OPP's we have identified the following characterizations for even edges (the possible 65,536 combinations of 4D hyper-boxes were exhaustively verified):

			Distribution of the incident 3D volumes (not included in volume adjacency) in the three hyperplanes where the even edge is embedded.		
Edge Classification	Incident 4D Hyper-boxes	Incident 3D volumes not included in volume adjacency	Hyperplane 1	Hyperplane 2	Hyperplane 3
Even	0	0	0	0	0
Even	2	4	0	2	2
Even	2	6	2	2	2
Even	4	4	0	0	4
Even	4	6	2	2	2
Even	4	8	2	2	4
Even	4	8	0	4	4
Even	4	12	4	4	4
Even	6	4	0	2	2
Even	6	6	2	2	2
Even	8	0	0	0	0

Property D.7: In the 5D-OPP's we have identified the following characterizations for odd edges (the possible $2^{32}=4,294,967,296$ combinations of 5D hyper-boxes were exhaustively verified):

			Distribution of the incident 4D hypervolumes (not included in 4D hypervolume adjacency) in the four hyperplanes where the odd edge is embedded.			
Edge Classification	Incident 5D Hyper-boxes	Incident 4D hypervolumes not included in 4D hypervolume adjacency	Hyperplane 1	Hyperplane 2	Hyperplane 3	Hyperplane 4
Odd	1	4	1	1	1	1
Odd	3	8	1	1	3	3
Odd	3	10	1	3	3	3
Odd	3	12	3	3	3	3
Odd	5	10	1	1	3	5
Odd	5	12	1	3	3	5
Odd	5	12	3	3	3	3
Odd	5	12	1	1	5	5
Odd	5	14	3	3	3	5
Odd	5	14	1	3	5	5
Odd	5	16	3	3	5	5
Odd	5	16	1	5	5	5
Odd	5	18	3	5	5	5
Odd	5	20	5	5	5	5
Odd	7	10	1	1	1	7

			Distribution of the incident 4D hypervolumes (not included in 4D hypervolume adjacency) in the four hyperplanes where the odd edge is embedded.			
Edge Classification	Incident 5D Hyper-boxes	\qquad	Hyperplane 1	Hyperplane 2	Hyperplane 3	Hyperplane 4
Odd	7	12	1	3	3	5
Odd	7	12	3	3	3	3
Odd	7	14	3	3	3	5
Odd	7	14	1	3	3	7
Odd	7	14	1	3	5	5
Odd	7	16	1	3	5	7
Odd	7	16	3	3	3	7
Odd	7	16		5	5	5
Odd	7	16	3	3	5	5
Odd	7	16	1	1	7	7
Odd	7	18	3	5	5	5
Odd	7	18		5	5	7
Odd	7	18	3		5	7
Odd	7	20	5	5	5	5
Odd	7	20	3	5	5	7
Odd	7	20	3	3	7	7
Odd	7	22	5	5	5	7
Odd	7	22	1	7	7	7
Odd	7	22	3	5	7	7
Odd	7	24	5	5	7	7
Odd	7	28	7	7	7	7
Odd	9	10	1	1	1	7
Odd	9	12	1	3	3	5
Odd	9	12	3	3	3	3
Odd	9	14	1	3	3	7
Odd	9	14	3	3	3	5
Odd	9	14	1	3	5	5
Odd	9	16	3	3	3	7
Odd	9	16	3	3	5	5
Odd	9	16	1	3	5	7
Odd	9	16	1	1	7	7
Odd	9	16	1	5	5	5
Odd	9	18	3	3	5	7
Odd	9	18	3	5	5	5
Odd	9	18	1	5	5	7
Odd	9	20	5	5	5	5
Odd	9	20	3	5	5	7
Odd	9	20	3	3	7	7
Odd	9	22	1	7	7	7
Odd	9	22	5	5	5	7
Odd	9	22	3	5	7	7
Odd	9	24	5	5	7	7
Odd	9	28	7	7	7	7
Odd	11	10	1	1	3	5
Odd	11	12	1	1	5	5
Odd	11	12	3	3	3	3
Odd	11	12	1	3	3	5
Odd	11	14	1	3	5	5
Odd	11	14	3	3	3	5
Odd	11	16	3	3	5	5
Odd	11	16	1	5	5	5
Odd	11	18	3	5	5	5
Odd	11	20	5	5	5	5
Odd	13	8	1	1	3	3
Odd	13	10	1	3	3	3
Odd	13	12	3	3	3	3
Odd	15	4	1	1	1	1

Property D.8: In the 5D-OPP's we have identified the following characterizations for even edges (the possible $2^{32}=4,294,967,296$ combinations of 5D hyper-boxes were exhaustively verified):

			Distribution of the incident 4D hypervolumes (not included in 4D hypervolume adjacency) in the four hyperplanes where the even edge is embedded.			
Edge Classification	Incident 5D Hyper-boxes	Incident 4D hypervolumes not included in 4D hypervolume adjacency	Hyperplane 1	Hyperplane 2	Hyperplane 3	Hyperplane 4
Even	0	0	0	0	0	0
Even	2	6	0	2	2	2
Even	2	8	2	2	2	2
Even	4	8	0	0	4	4
Even	4	10	2	2	2	4
Even	4	12	2	2	4	4
Even	4	12	0	4	4	4
Even	4	14	2	4	4	4
Even	4	16	4	4	4	4
Even	6	10	0	2	2	6
Even	6	12	2	2	2	6
Even	6	12	2	2	4	4
Even	6	14	2	4	4	4
Even	6	14	2	2	4	6
Even	6	14	0	2	6	6
Even	6	16	2	2	6	6
Even	6	16	2	4	4	6
Even	6	16	4	4	4	4
Even	6	18	4	4	4	6
Even	6	18	0	6	6	6
Even	6	18	2	4	6	6
Even	6	20	4	4	6	6
Even	6	20	2	6	6	6
Even	6	22	4	6	6	6
Even	6	24	6	6	6	6
Even	8	8	0	0	0	8
Even	8	12	2	2	2	6
Even	8	12	0	4	4	4
Even	8	12	2	2	4	4
Even	8	14	2	4	4	4
Even	8	14	2	2	2	8
Even	8	14	2	2	4	6
Even	8	16	2	4	4	6
Even	8	16	0	4	4	8
Even	8	16	4	4	4	4
Even	8	16	2	2	6	6
Even	8	16	0	0	8	8
Even	8	18	2	2	6	8
Even	8	18	2	4	6	6
Even	8	18	4	4	4	6
Even	8	20	4	4	4	8
Even	8	20	4	4	6	6
Even	8	20	2	6	6	6
Even	8	22	4	6	6	6
Even	8	22	2	6	6	8
Even	8	24	6	6	6	6
Even	8	24	4	4	8	8
Even	8	24	0	8	8	8
Even	8	26	6	6	6	8
Even	8	32	8	8	8	8
Even	10	10	0	2	2	6
Even	10	12	2	2	2	6
Even	10	12	2	2	4	4
Even	10	14	2	2	4	6
Even	10	14	0	2	6	6

			Distribution of the incident 4D hypervolumes (not included in 4D hypervolume adjacency) in the four hyperplanes where the even edge is embedded.			
Edge Classification	Incident 5D Hyper-boxes	Incident 4D hypervolumes not included in 4D hypervolume adjacency	Hyperplane 1	Hyperplane 2	Hyperplane 3	Hyperplane 4
Even	10	14	2	4	4	4
Even	10	16	2	4	4	6
Even	10	16	2	2	6	6
Even	10	16	4	4	4	4
Even	10	18	4	4	4	6
Even	10	18	2	4	6	6
Even	10	18	0	6	6	6
Even	10	20	2	6	6	6
Even	10	20	4	4	6	6
Even	10	22	4	6	6	6
Even	10	24	6	6	6	6
Even	12	8	0	0	4	4
Even	12	10	2	2	2	4
Even	12	12	2	2	4	4
Even	12	12	0	4	4	4
Even	12	14	2	4	4	4
Even	12	16	4	4	4	4
Even	14	6	0	2	2	2
Even	14	8	2	2	2	2
Even	16	0	0	0	0	0

