Appendix C

Some Adjacencies' Properties of the Configurations in the nD-OPP's

The following propositions were presented originally in [Aguilera04].

Theorem C.1: *The number of adjacencies for any combination with x hyper-boxes is:*

$$\frac{x(x-1)}{2} = \frac{1}{2} (x^2 - x)$$

Proof:

$$\sum_{k=1}^{x-1} k = \frac{x(x-1)}{2} = \frac{x^2 - x}{2}$$

Observation C.1: In a n-dimensional configuration consider a m-dimensional subspace $(0 \le m < n)$ that passes through the origin. The maximum number of adjacencies embedded in that m-dimensional subspace is 2^{n-1} .

Lemma C.1: In the n-dimensional space, the maximum number of m-dimensional adjacencies for the configuration with 2^n boxes (the configuration with a hyper-box in all its hyper-octants) is:

$$\binom{n}{m} \cdot 2^{n-1}, \qquad 0 \le m < n$$

Proof

(n,m) is the number of *m*-dimensional subspaces, which are composed by the *m* axes from the n-dimensional space, and there are 2^{n-1} *m*-dimensional adjacencies for each one (by Observation C.1).

Corollary C.1: The total number of adjacencies in a configuration with 2^n hyper-boxes (the configuration with a hyper-box in all its hyper-octants) is:

$$\sum_{m=0}^{n-1} \binom{n}{m} \cdot 2^{n-1}$$

Proof

Each one of its terms will provide the number of m-dimensional adjacencies for the configuration with 2^n boxes. The upper limit for m is n-1 since $0 \le m < n$ (see Observation C.1).

Corollary C.2: The sum of adjacencies for the n-dimensional configuration with 2^n hyper-boxes (i.e., with all its hyper-octants filled) is:

$$\frac{1}{2}\left(2^{2n}-2^n\right)$$

Proof:

Theorem C.1 provides a formula for the sum of adjacencies in a configuration with x boxes: $(x^2 - x)/2$. By letting $x=2^n$ then the sum of all adjacencies for the configuration with all its hyper-octants filled will be obtained:

$$\frac{1}{2} \left(\left(2^{n} \right)^{2} - \left(2^{n} \right) \right) = \frac{1}{2} \left(2^{2n} - 2^{n} \right)$$

Theorem C.2: A closed form for evaluating the sum in Corollary C.1 is given by Corollary C.2

$$\sum_{m=0}^{n-1} \binom{n}{m} \cdot 2^{n-1} = \frac{1}{2} (2^{2n} - 2^n)$$

Proof:

It is well known that $\sum_{m=0}^{n} {n \choose m} = 2^n$ and since ${n \choose n} = 1$, then $\sum_{m=0}^{n-1} {n \choose m} = 2^n - 1$. Therefore:

$$\sum_{m=0}^{n-1} \binom{n}{m} \cdot 2^{n-1} = 2^{n-1} \cdot (2^n - 1) = \frac{1}{2} (2^{2n} - 2^n)$$

Corollary C.3: The total number of adjacencies in a configuration with 2^n -1 hyper-boxes is:

$$\sum_{m=0}^{n-1} \binom{n}{m} \cdot (2^{n-1} - 1)$$

Proof:

We know by Observation C.1 and Lemma C.1 that there are at most 2^{n-1} adjacencies in each one of the possible (n,m)m-dimensional subspaces in the configuration with 2ⁿ hyper-boxes. By removing a hyper-box from this configuration we remove an adjacency in each one of these m-dimensional subspaces.

Corollary C.4: The sum of adjacencies for the n-dimensional configuration with 2^n -1 hyper-boxes is:

$$(2^{n}-1)(2^{n-1}-1) = 2^{2n-1}-2^{n}-2^{n-1}+1$$

Proof:

Theorem C.1 provides a formula for the sum of adjacencies in a configuration with x hyper-boxes: $(x^2-x)/2$. By letting $x=2^n-1$ then the sum of all adjacencies for the configuration with 2^n-1 hyper-boxes will be obtained: $\frac{1}{2}\left(\left(2^n-1\right)^2-\left(2^n-1\right)\right)=2^{2n-1}-2^n-2^{n-1}+1$

$$\frac{1}{2}\left(\left(2^{n}-1\right)^{2}-\left(2^{n}-1\right)\right)=2^{2n-1}-2^{n}-2^{n-1}+1$$

Theorem C.3: A closed form for evaluating the sum in Corollary C.3 is given by Corollary C.4

$$\sum_{m=0}^{n-1} {n \choose m} \cdot (2^{n-1} - 1) = 2^{2n-1} - 2^n - 2^{n-1} + 1$$

Proof:

It is well known that $\sum_{m=0}^{n} {n \choose m} = 2^n$ and since ${n \choose n} = 1$, then $\sum_{m=0}^{n-1} {n \choose m} = 2^n - 1$. Therefore:

$$\sum_{m=0}^{n-1} \binom{n}{m} \cdot (2^{n-1} - 1) = (2^{n-1} - 1)(2^n - 1) = 2^{2n-1} - 2^n - 2^{n-1} + 1$$