
Appendix C 

Some Adjacencies’ Properties of 

the Configurations in the nD-OPP’s 
 

 The following propositions were presented originally in [Aguilera04]. 

 

Theorem C.1: The number of adjacencies for any combination with x hyper-boxes is: 
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Proof:  

A first hyper-box of the configuration will have x-1 adjacencies (one for each x-1 hyper-boxes); a second hyper-box 

will have x-2 adjacencies (not including the adjacency with the first hyper-box because it is in that first hyper-box 

counting); a third hyper-box will have x-3 adjacencies (not including the adjacencies with the first and second hyper-

boxes because  they  are  in these hyper-boxes' respective counting); in general, a k-th hyper-box (k < x) will have x-k 

adjacencies. The adjacencies' total counting (i.e. the sum of all hyper-boxes' adjacencies) is defined by the well 

known expression for the sum of the first x-1 positive integers: 
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Observation C.1: In a n-dimensional configuration consider a m-dimensional subspace ( nm <≤0 ) that passes 

through the origin. The maximum number of adjacencies embedded in that m-dimensional subspace is 2
n-1

. 

 

Lemma    C.1:   In   the   n-dimensional    space,   the   maximum number of m-dimensional adjacencies for the 

configuration with 2
n
 boxes (the configuration with a hyper-box in all its hyper-octants) is: 
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, nm <≤0  

Proof:  

(n,m) is the number of m-dimensional subspaces, which are composed by the m axes from the n-dimensional space, 

and there are 2
n-1

 m-dimensional adjacencies for each one (by Observation C.1).      

 

Corollary C.1: The total number of adjacencies in a configuration with 2
n
 hyper-boxes (the configuration with a 

hyper-box in all its hyper-octants) is: 
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Proof:  

Each one of its terms will provide the number of m-dimensional adjacencies for the configuration with 2
n
 boxes. The 

upper limit for m is n-1 since nm <≤0  (see Observation C.1).         

 

Corollary C.2: The sum of adjacencies for the n-dimensional configuration with 2
n
 hyper-boxes (i.e., with all its 

hyper-octants filled) is: 
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Proof:  

Theorem C.1 provides a formula for the sum of adjacencies in a configuration with x boxes: (x
2
 - x)/2. By letting x=2

n
 

then the sum of all adjacencies for the configuration with all its hyper-octants filled will be obtained: 
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Theorem C.2: A closed form for evaluating the sum in Corollary C.1 is given by Corollary C.2 
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Proof:  

It is well known that 
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Corollary C.3: The total number of adjacencies in a configuration with 2
n
-1 hyper-boxes is: 
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Proof:  

We know by Observation C.1 and Lemma C.1 that there are at most 2
n-1

 adjacencies in each one of the possible (n,m) 

m-dimensional subspaces in the configuration with 2
n
 hyper-boxes. By removing a hyper-box from this configuration 

we remove an adjacency in each one of these m-dimensional subspaces.       

 

Corollary C.4:  The sum of adjacencies for the n-dimensional configuration with 2
n
-1 hyper-boxes is: 
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Proof:  

Theorem C.1 provides a formula for the sum of adjacencies in a configuration with x hyper-boxes: (x
2
-x)/2. By letting 

x=2
n
-1 then the sum of all adjacencies for the configuration with 2

n
-1 hyper-boxes will be obtained: 
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Theorem C.3: A closed form for evaluating the sum in Corollary C.3 is given by Corollary C.4 
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Proof:  

It is well known that 
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