Appendix C
Some Adjacencies’ Properties of
the Configurations in the nD-OPP’s

The following propositions were presented originally in [Aguilera04].

Theorem C.1: The number of adjacencies for any combination with x hyper-boxes is:
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Proof:
A first hyper-box of the configuration will have x-1 adjacencies (one for each x-1 hyper-boxes); a second hyper-box
will have x-2 adjacencies (not including the adjacency with the first hyper-box because it is in that first hyper-box
counting); a third hyper-box will have x-3 adjacencies (not including the adjacencies with the first and second hyper-
boxes because they are in these hyper-boxes' respective counting); in general, a k-th hyper-box (k < x) will have x-k
adjacencies. The adjacencies' total counting (i.e. the sum of all hyper-boxes' adjacencies) is defined by the well
known expression for the sum of the first x-/ positive integers:

ikzx(x—l) :)c2 —x

= 2 2

I

Observation C.1: In a n-dimensional configuration consider a m-dimensional subspace (0<m<n) that passes
through the origin. The maximum number of adjacencies embedded in that m-dimensional subspace is 2"".

Lemma C.1: In the n-dimensional space, the maximum number of m-dimensional adjacencies for the
configuration with 2" boxes (the configuration with a hyper-box in all its hyper-octants) is:
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Proof:
(n,m) is the number of m-dimensional subspaces, which are composed by the m axes from the n-dimensional space,
and there are 2" m-dimensional adjacencies for each one (by Observation C.1). ]

Corollary C.1: The total number of adjacencies in a configuration with 2" hyper-boxes (the configuration with a
hyper-box in all its hyper-octants) is:
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Proof:

Each one of its terms will provide the number of m-dimensional adjacencies for the configuration with 2" boxes. The
upper limit for m is n-1 since 0<m<n (see Observation C.1). ]

Corollary C.2: The sum of adjacencies for the n-dimensional configuration with 2" hyper-boxes (i.e., with all its
hyper-octants filled) is:
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Proof:
Theorem C.1 provides a formula for the sum of adjacencies in a configuration with x boxes: (x° - x)/2. By letting x=2"
then the sum of all adjacencies for the configuration with all its hyper-octants filled will be obtained:
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Theorem C.2: A closed form for evaluating the sum in Corollary C.1 is given by Corollary C.2
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Proof:
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It is well known that 2( ]= 2" and since [n] =1, then Z{m] =2"-1, Therefore:
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Corollary C.3: The total number of adjacencies in a configuration with 2"-1 hyper-boxes is:
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Proof:
We know by Observation C.1 and Lemma C.1 that there are at most 2" adjacencies in each one of the possible (n,m)
m-dimensional subspaces in the configuration with 2" hyper-boxes. By removing a hyper-box from this configuration
we remove an adjacency in each one of these m-dimensional subspaces. P

Corollary C.4: The sum of adjacencies for the n-dimensional configuration with 2"-1 hyper-boxes is:
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Proof:
Theorem C.1 provides a formula for the sum of adjacencies in a configuration with x hyper-boxes: (x’-x)/2. By letting
x=2"-1 then the sum of all adjacencies for the configuration with 2"-1 hyper-boxes will be obtained:
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Theorem C.3: A closed form for evaluating the sum in Corollary C.3 is given by Corollary C.4
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