Appendix C Some Adjacencies' Properties of the Configurations in the nD-OPP's

The following propositions were presented originally in [Aguilera04].
Theorem C.1: The number of adjacencies for any combination with x hyper-boxes is:

$$
\frac{x(x-1)}{2}=\frac{1}{2}\left(x^{2}-x\right)
$$

Proof:
A first hyper-box of the configuration will have $x-1$ adjacencies (one for each $x-1$ hyper-boxes); a second hyper-box will have x-2 adjacencies (not including the adjacency with the first hyper-box because it is in that first hyper-box counting); a third hyper-box will have x - 3 adjacencies (not including the adjacencies with the first and second hyperboxes because they are in these hyper-boxes' respective counting); in general, a k-th hyper-box ($k<x$) will have $x-k$ adjacencies. The adjacencies' total counting (i.e. the sum of all hyper-boxes' adjacencies) is defined by the well known expression for the sum of the first $x-1$ positive integers:

$$
\sum_{k=1}^{x-1} k=\frac{x(x-1)}{2}=\frac{x^{2}-x}{2}
$$

Observation C.1: In a n-dimensional configuration consider a m-dimensional subspace ($0 \leq m<n$) that passes through the origin. The maximum number of adjacencies embedded in that m-dimensional subspace is 2^{n-1}.

Lemma C.1: In the n-dimensional space, the maximum number of m-dimensional adjacencies for the configuration with 2^{n} boxes (the configuration with a hyper-box in all its hyper-octants) is:

$$
\binom{n}{m} \cdot 2^{n-1}, \quad 0 \leq m<n
$$

Proof:
(n, m) is the number of m-dimensional subspaces, which are composed by the m axes from the n-dimensional space, and there are $2^{n-1} m$-dimensional adjacencies for each one (by Observation C.1).

Corollary C.1: The total number of adjacencies in a configuration with 2^{n} hyper-boxes (the configuration with a hyper-box in all its hyper-octants) is:

$$
\sum_{m=0}^{n-1}\binom{n}{m} \cdot 2^{n-1}
$$

Proof:
Each one of its terms will provide the number of m-dimensional adjacencies for the configuration with 2^{n} boxes. The upper limit for m is $n-1$ since $0 \leq m<n$ (see Observation C.1).

Corollary C.2: The sum of adjacencies for the n-dimensional configuration with 2^{n} hyper-boxes (i.e., with all its hyper-octants filled) is:

$$
\frac{1}{2}\left(2^{2 n}-2^{n}\right)
$$

Proof:
Theorem C. 1 provides a formula for the sum of adjacencies in a configuration with x boxes: $\left(x^{2}-x\right) / 2$. By letting $x=2^{n}$ then the sum of all adjacencies for the configuration with all its hyper-octants filled will be obtained:

$$
\frac{1}{2}\left(\left(2^{n}\right)^{2}-\left(2^{n}\right)\right)=\frac{1}{2}\left(2^{2 n}-2^{n}\right)
$$

Theorem C.2: A closed form for evaluating the sum in Corollary C. 1 is given by Corollary C. 2

$$
\sum_{m=0}^{n-1}\binom{n}{m} \cdot 2^{n-1}=\frac{1}{2}\left(2^{2 n}-2^{n}\right)
$$

Proof:
It is well known that $\sum_{m=0}^{n}\binom{n}{m}=2^{n}$ and since $\binom{n}{n}=1$, then $\sum_{m=0}^{n-1}\binom{n}{m}=2^{n}-1$. Therefore:

$$
\sum_{m=0}^{n-1}\binom{n}{m} \cdot 2^{n-1}=2^{n-1} \cdot\left(2^{n}-1\right)=\frac{1}{2}\left(2^{2 n}-2^{n}\right)
$$

Corollary C.3: The total number of adjacencies in a configuration with $2^{n}-1$ hyper-boxes is:

$$
\sum_{m=0}^{n-1}\binom{n}{m} \cdot\left(2^{n-1}-1\right)
$$

Proof:
We know by Observation C. 1 and Lemma C. 1 that there are at most $2^{\text {n-1 }}$ adjacencies in each one of the possible (n, m) m -dimensional subspaces in the configuration with 2^{n} hyper-boxes. By removing a hyper-box from this configuration we remove an adjacency in each one of these m-dimensional subspaces.

Corollary C.4: The sum of adjacencies for the n-dimensional configuration with $2^{n}-1$ hyper-boxes is:

$$
\left(2^{n}-1\right)\left(2^{n-1}-1\right)=2^{2 n-1}-2^{n}-2^{n-1}+1
$$

Proof:
Theorem C. 1 provides a formula for the sum of adjacencies in a configuration with x hyper-boxes: $\left(x^{2}-x\right) / 2$. By letting $x=2^{n}-1$ then the sum of all adjacencies for the configuration with $2^{n}-1$ hyper-boxes will be obtained:

$$
\frac{1}{2}\left(\left(2^{n}-1\right)^{2}-\left(2^{n}-1\right)\right)=2^{2 n-1}-2^{n}-2^{n-1}+1
$$

Theorem C.3: A closed form for evaluating the sum in Corollary C. 3 is given by Corollary C. 4

$$
\sum_{m=0}^{n-1}\binom{n}{m} \cdot\left(2^{n-1}-1\right)=2^{2 n-1}-2^{n}-2^{n-1}+1
$$

Proof:
It is well known that $\sum_{m=0}^{n}\binom{n}{m}=2^{n}$ and since $\binom{n}{n}=1$, then $\sum_{m=0}^{n-1}\binom{n}{m}=2^{n}-1$. Therefore:

$$
\sum_{m=0}^{n-1}\binom{n}{m} \cdot\left(2^{n-1}-1\right)=\left(2^{n-1}-1\right)\left(2^{n}-1\right)=2^{2 n-1}-2^{n}-2^{n-1}+1
$$

