
Appendix A 

The Vector Space B
n 

 
Lets to explore some properties of the set B

n
 which was defined in Chapter 3. The following propositions 

(Lemmas A.1 to A.4), which are related to Boolean operators XOR and AND, can be easily verified by considering 

the truth table of each operator. We list them in order to support the fact that set B
n
 is in fact a Vector Space under 

the given definitions of vector addition and scalar multiplication. 

 

Lemma A.1: The set G={0,1} under the AND (∧) operand forms a monoid.      

 

Lemma A.2: The set G={0,1} under the XOR (⊗) operand forms an Abelian group.     

 

Lemma A.3: (G, XOR, AND) form a ring.          

 

Lemma A.4: The ring (G, XOR, AND) is a field.         

  

Definition A.1: Let x=(
1x ,...,

nx
2

) and y=(
1y ,...,

ny
2

) be vectors in B
n

. The vector addition in B
n

 is defined as: 

+: B
n
 × B

n
 → B

n
 

 (x, y) �  x + y 

Where x + y = (
1x ⊗

1y , ..., 
nx

2
⊗ 

ny
2

) 

 

Definition A.2: Let x = (
1x ,...,

nx
2

) a vector in B
n
 and let a ∈ G. The scalar multiplication in B

n
 is defined as: 

⋅ : B
n
 → B

n
 

 (a, x) �  a ⋅ x 

Where a ⋅ x = a⋅(
1x ,...,

nx
2

) = (a ∧ 
1x , ..., a ∧ 

nx
2

) 

 

Theorem 3.1: The set B
n
 is a vector space over the field (G, XOR, AND). 

Proof:  

Let x=(
1x ,...,

nx
2

), y=(
1y ,...,

ny
2

) and z=(
1z ,...,

nz
2

) be vectors in B
n
 and let a, b ∈ G. The following properties are 

satisfied: 
1) Closure of vector addition: 

By Definition A.1, x + y = (
1x ⊗

1y , ..., 
nx

2
⊗ 

ny
2

). Because
ix , 

iy  ∈ G, i = 1,…, 2
n
 ⇒ 

ix ⊗
iy  ∈ G 

∴(∀x, y ∈ B
n
)(x + y ∈ B

n
) 

2) Associativity of vector addition: 

x + (y + z) = (
1x ,...,

nx
2

) + (
1y ⊗

1z , ..., 
ny

2
⊗ 

nz
2

) = (
1x  ⊗ (

1y ⊗
1z ), ..., 

nx
2

⊗ (
ny

2
⊗

nz
2

)) 

= ((
1x ⊗

1y )⊗
1z , ..., (

nx
2

⊗
ny

2
)⊗

nz
2

) = (x + y) + z  

∴(∀x, y, z ∈ B
n
)(x + (y + z) = (x + y) + z) 

3) Existence of zero vector in vector addition: 

Let 0 = (
�

n2

0,...0 ) ∈ B
n
 ⇒  

x + 0 = (
1x  ⊗ 0, ..., 

nx
2

⊗ 0) = (
1x ,...,

nx
2

) = x and 0 + x = (0 ⊗ 
1x , ..., 0 ⊗ 

nx
2

) = (
1x ,...,

nx
2

) = x  

∴(∃0 ∈ B
n
)(x + 0 = 0 + x = x, ∀x ∈ B

n
) 

4) Existence of an inverse element for each element in B
n
 in vector addition: 

Let (-x) = x ⇒ x + (-x) =  (
1x  ⊗

1x , ..., 
nx

2
⊗ 

nx
2

) = (-x) + x = (
�

n2

0,...0 ) 

∴(∀x ∈ B
n
)(∃(-x) ∈ B

n
)(x + (-x) = (-x) + x = 0) 
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5) Commutativity of vector addition: 

x + y = (
1x  ⊗ 

1y , ..., 
nx

2
 ⊗ 

ny
2

) = (
1y  ⊗ 

1x , ..., 
ny

2
 ⊗ 

nx
2

) = y + x 

 ∴(∀x, y ∈ B
n
)(x + y = y + x) 

6) Closure of scalar multiplication: 

By Definition A.2, a ⋅ x = (a ∧ 
1x , ..., a ∧ 

nx
2

) Because
ix , a ∈ G, i = 1,…, 2

n
 ⇒ a ∧ 

ix  ∈ G 

∴(∀a ∈ G)(∀x ∈ B
n
)(a ⋅ x ∈ B

n
) 

7) Associativity of scalar multiplication: 

(a ∧ b) ⋅ x = ((a ∧ b) ∧ 
1x ,..., (a ∧ b) ∧ 

nx
2

) = (a∧(b∧
1x ),...,a∧(b∧

nx
2

)) = a ⋅ (b∧
1x ,...,b∧

nx
2

) 

= a ⋅ (b ⋅ (
1x ,..., nx

2
)) = a ⋅ (b ⋅ x) 

∴(∀a, b ∈ G)(∀x ∈ B
n
)((a ∧ b) ⋅ x = a ⋅ (b ⋅ x)) 

8) Distributivity of vector sums: 

a ⋅ (x + y) = a ⋅ (
1x  ⊗ 

1y , ..., 
nx

2
 ⊗ 

ny
2

) = (a∧(
1x ⊗

1y ),...,a∧(
nx

2
⊗

ny
2

)) 

= (a∧
1x ⊗a∧

1y ,...,a∧
nx

2
⊗a∧

ny
2

) = a ⋅ x + a ⋅ y 

∴(∀a ∈ G)(∀x,y ∈ B
n
)( a ⋅ (x + y) = a ⋅ x + a ⋅ y) 

9) Distributivity of scalar sums: 

(a ⊗ b) ⋅ x = ((a ⊗ b) ∧ 
1x ,..., (a ⊗ b) ∧ 

nx
2

) = (a∧
1x ⊗b∧

1x ,...,a∧
nx

2
⊗b∧

nx
2

) 

= (a∧
1x ,...,a∧

nx
2

)+(b∧
1x ,...,b∧

nx
2

) = a ⋅ x + b ⋅ x 

∴(∀a,b ∈ G)(∀x ∈ B
n
)((a ⊗ b) ⋅ x = a ⋅ x + b ⋅ x) 

10) Existence of the multiplicative identity element: 

Let 1∈G ⇒ 1⋅x = (1∧
1x ,..., 1∧

nx
2

) = (
1x , ..., 

nx
2

) = x 

∴(1 ∈ G)(1 ⋅ x = x, ∀x ∈ B
n
) 

 

∴ B
n
 is vector space over the field (G, ⊗, ∧).         

 

Definition A.3: Let A
n
 ⊂ B

n
 be the set of vectors that contains the 2

n
 permutations of  (

���
n

2

0,...0,1 ). 

 

Theorem 3.2: The set of vectors A
n
 is linearly independent. 

Proof: 

Let ia  ∈ G, i = 1, ..., 2
n
. Let vector 0 ∈ B

n
 be described as a linear combination of the vectors in the set A

n
: 

1a  ⋅ (
���

n
2

0,...0,1 ) + ... + 
na

2
⋅ (

���
n

2

1,0,...0 ) = 0 ⇒ (
�����

n

a

2

1 0,...,0,1∧ ) + ... + (
�����

n

a

2

1 1,0,...,0 ∧ ) = 0 

⇒ ( 1,...,1
21 ∧∧ naa ) = 0 ⇒ 

1

2

1 0

1 0n

a

a

 ∧ =





∧ =

�
 ⇒ ia  = 0, i = 1, ..., 2

n
. 

∴ The set A
n
 is linearly independent.           

 

Theorem 3.3: The set A
n
 ⊂ B

n
 forms a basis for B

n
. 

Proof: 

1) By Theorem 2.2 the set A
n
 is linearly independent. 

2) Let <A
n
> = { 1a  ⋅ (

���
n

2

0,...0,1 ) + ... + na
2 ⋅ (

���
n

2

1,0,...0 ): ia  ∈ G, i = 1, ..., 2
n
} 

If ( 1x , ..., nx
2

) ∈ <A
n
> ⇒ ( 1x , ..., nx

2
) = 1a  ⋅ (

���
n

2

0,...0,1 ) + ... + na
2

⋅ (
���

n
2

1,0,...0 ) 



Orthogonal Polytopes: Study and Application 

   

⇒ 
1 1 1

2 2 2

1

1n n n

x a a G

x a a G

 = ∧ = ∈





= ∧ = ∈

�
⇒ <A

n
> = {( 1a , ..., na

2
): ia  ∈ G, i = 1, ..., 2

n
} ⇒ <A

n
> = B

n
 

∴ A
n
 forms a basis for B

n
.            

 

For example, consider vector space B
2
: 

• B
2
 = {(x1, x2, x3, x4): xi ∈ {0,1}, i = 1, 2, 3, 4} =  

{(0,0,0,0), (1,0,0,0), (0,1,0,0), (1,1,0,0), (0,0,1,0), (1,0,1,0), (0,1,1,0), (1,1,1,0), (0,0,0,1), (1,0,0,1), (0,1,0,1), 

(1,1,0,1), (0,0,1,1), (1,0,1,1), (0,1,1,1), (1,1,1,1)}  

• With basis A
2
 = {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)} ⊂ B

2
.  

• Dim(B
2
) = Card(A

2
) = 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


