Appendix A The Vector Space \mathbf{B}^{n}

Lets to explore some properties of the set B^{n} which was defined in Chapter 3. The following propositions (Lemmas A. 1 to A.4), which are related to Boolean operators XOR and AND, can be easily verified by considering the truth table of each operator. We list them in order to support the fact that set B^{n} is in fact a Vector Space under the given definitions of vector addition and scalar multiplication.

Lemma A.1: The set $\mathrm{G}=\{0,1\}$ under the $\mathrm{AND}(\wedge)$ operand forms a monoid.
Lemma A.2: The set $\mathrm{G}=\{0,1\}$ under the $\mathrm{XOR}(\otimes)$ operand forms an Abelian group.
Lemma A.3: (G, XOR, AND) form a ring.
Lemma A.4: The ring (G, XOR, AND) is a field.
Definition A.1: Let $\mathbf{x}=\left(x_{1}, \ldots, x_{2^{n}}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{2^{n}}\right)$ be vectors in B^{n}. The vector addition in B^{n} is defined as:

$$
\begin{aligned}
+: & \mathrm{B}^{n} \times \mathrm{B}^{n} & & \mathrm{~B}^{n} \\
(\mathbf{x}, \mathbf{y}) & & \mapsto & \mathbf{x}+\mathbf{y}
\end{aligned}
$$

Where $\mathbf{x}+\mathbf{y}=\left(x_{1} \otimes y_{1}, \ldots, x_{2^{n}} \otimes y_{2^{n}}\right)$

Definition A.2: Let $\mathbf{x}=\left(x_{1}, \ldots, x_{2^{n}}\right)$ a vector in B^{n} and let $\mathrm{a} \in \mathrm{G}$. The scalar multiplication in B^{n} is defined as:

$$
\begin{array}{lccl}
\cdot: & \mathrm{B}^{n} & \rightarrow & \mathrm{~B}^{n} \\
(\mathrm{a}, \mathbf{x}) & \mapsto & \mathrm{a} \cdot \mathbf{x}
\end{array}
$$

Where $\mathrm{a} \cdot \mathbf{x}=\mathrm{a} \cdot\left(x_{1}, \ldots, x_{2^{n}}\right)=\left(\mathrm{a} \wedge x_{1}, \ldots, \mathrm{a} \wedge x_{2^{n}}\right)$

Theorem 3.1: The set B^{n} is a vector space over the field (G, XOR, AND).
Proof:
Let $\mathbf{x}=\left(x_{1}, \ldots, x_{2^{n}}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{2^{n}}\right)$ and $\mathbf{z}=\left(z_{1}, \ldots, z_{2^{n}}\right)$ be vectors in B^{n} and let $\mathrm{a}, \mathrm{b} \in \mathrm{G}$. The following properties are satisfied:

1) Closure of vector addition:

By Definition A.1, $\mathbf{x}+\mathbf{y}=\left(x_{1} \otimes y_{1}, \ldots, x_{2^{n}} \otimes y_{2^{n}}\right)$. Because $x_{i}, y_{i} \in \mathrm{G}, \mathrm{i}=1, \ldots, 2^{\mathrm{n}} \Rightarrow x_{i} \otimes y_{i} \in \mathrm{G}$
$\therefore\left(\forall \mathbf{x}, \mathbf{y} \in \mathrm{B}^{n}\right)\left(\mathbf{x}+\mathbf{y} \in \mathrm{B}^{n}\right)$
2) Associativity of vector addition:

$$
\begin{aligned}
& \mathbf{x}+(\mathbf{y}+\mathbf{z})=\left(x_{1}, \ldots, x_{2^{n}}\right)+\left(y_{1} \otimes z_{1}, \ldots, y_{2^{n}} \otimes z_{2^{n}}\right)=\left(x_{1} \otimes\left(y_{1} \otimes z_{1}\right), \ldots, x_{2^{n}} \otimes\left(y_{2^{n}} \otimes z_{2^{n}}\right)\right) \\
& =\left(\left(x_{1} \otimes y_{1}\right) \otimes z_{1}, \ldots,\left(x_{2^{n}} \otimes y_{2^{n}}\right) \otimes z_{2^{n}}\right)=(\mathbf{x}+\mathbf{y})+\mathbf{z} \\
& \therefore\left(\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathrm{B}^{n}\right)(\mathbf{x}+(\mathbf{y}+\mathbf{z})=(\mathbf{x}+\mathbf{y})+\mathbf{z})
\end{aligned}
$$

3) Existence of zero vector in vector addition:

Let $0=(\underbrace{0, \ldots 0}_{2^{n}}) \in \mathrm{B}^{n} \Rightarrow$
$\mathbf{x}+0=\left(x_{1} \otimes 0, \ldots, x_{2^{n}} \otimes 0\right)=\left(x_{1}, \ldots, x_{2^{n}}\right)=\mathbf{x}$ and $0+\mathbf{x}=\left(0 \otimes x_{1}, \ldots, 0 \otimes x_{2^{n}}\right)=\left(x_{1}, \ldots, x_{2^{n}}\right)=\mathbf{x}$
$\therefore\left(\exists 0 \in \mathrm{~B}^{n}\right)\left(\mathbf{x}+0=0+\mathbf{x}=\mathbf{x}, \forall \mathbf{x} \in \mathrm{B}^{n}\right)$
4) Existence of an inverse element for each element in B^{n} in vector addition:

Let $(-\mathbf{x})=\mathbf{x} \Rightarrow \mathbf{x}+(-\mathbf{x})=\left(x_{1} \otimes x_{1}, \ldots, x_{2^{n}} \otimes x_{2^{n}}\right)=(-\mathbf{x})+\mathbf{x}=(\underbrace{0, \ldots 0}_{2^{n}})$
$\therefore\left(\forall \mathbf{x} \in \mathrm{B}^{n}\right)\left(\exists(-\mathbf{x}) \in \mathrm{B}^{n}\right)(\mathbf{x}+(-\mathbf{x})=(-\mathbf{x})+\mathbf{x}=0)$
5) Commutativity of vector addition:

$$
\mathbf{x}+\mathbf{y}=\left(x_{1} \otimes y_{1}, \ldots, x_{2^{n}} \otimes y_{2^{n}}\right)=\left(y_{1} \otimes x_{1}, \ldots, y_{2^{n}} \otimes x_{2^{n}}\right)=\mathbf{y}+\mathbf{x}
$$

$\therefore\left(\forall \mathbf{x}, \mathbf{y} \in \mathrm{B}^{n}\right)(\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x})$
6) Closure of scalar multiplication:

By Definition A.2, $\mathrm{a} \cdot \mathbf{x}=\left(\mathrm{a} \wedge x_{1}, \ldots, \mathrm{a} \wedge x_{2^{n}}\right)$ Because $x_{i}, \mathrm{a} \in \mathrm{G}, \mathrm{i}=1, \ldots, 2^{\mathrm{n}} \Rightarrow \mathrm{a} \wedge x_{i} \in \mathrm{G}$
$\therefore(\forall \mathrm{a} \in \mathrm{G})\left(\forall \mathbf{x} \in \mathrm{B}^{n}\right)\left(\mathrm{a} \cdot \mathbf{x} \in \mathrm{B}^{n}\right)$
7) Associativity of scalar multiplication:
$(\mathrm{a} \wedge \mathrm{b}) \cdot \mathbf{x}=\left((\mathrm{a} \wedge \mathrm{b}) \wedge x_{1}, \ldots,(\mathrm{a} \wedge \mathrm{b}) \wedge x_{2^{n}}\right)=\left(\mathrm{a} \wedge\left(\mathrm{b} \wedge x_{1}\right), \ldots, \mathrm{a} \wedge\left(\mathrm{b} \wedge x_{2^{n}}\right)\right)=\mathrm{a} \cdot\left(\mathrm{b} \wedge x_{1}, \ldots, \mathrm{~b} \wedge x_{2^{n}}\right)$
$=\mathrm{a} \cdot\left(\mathrm{b} \cdot\left(x_{1}, \ldots, x_{2^{n}}\right)\right)=\mathrm{a} \cdot(\mathrm{b} \cdot \mathbf{x})$
$\therefore(\forall \mathrm{a}, \mathrm{b} \in \mathrm{G})\left(\forall \mathbf{x} \in \mathrm{B}^{n}\right)((\mathrm{a} \wedge \mathrm{b}) \cdot \mathbf{x}=\mathrm{a} \cdot(\mathrm{b} \cdot \mathbf{x}))$
8) Distributivity of vector sums:
$\mathrm{a} \cdot(\mathbf{x}+\mathbf{y})=\mathrm{a} \cdot\left(x_{1} \otimes y_{1}, \ldots, x_{2^{n}} \otimes y_{2^{n}}\right)=\left(\mathrm{a} \wedge\left(x_{1} \otimes y_{1}\right), \ldots, \mathrm{a} \wedge\left(x_{2^{n}} \otimes y_{2^{n}}\right)\right)$
$=\left(\mathrm{a} \wedge x_{1} \otimes \mathrm{a} \wedge y_{1}, \ldots, \mathrm{a} \wedge x_{2^{n}} \otimes \mathrm{a} \wedge y_{2^{n}}\right)=\mathrm{a} \cdot \mathbf{x}+\mathrm{a} \cdot \mathbf{y}$
$\therefore(\forall \mathrm{a} \in \mathrm{G})\left(\forall \mathbf{x}, \mathbf{y} \in \mathrm{B}^{n}\right)(\mathrm{a} \cdot(\mathbf{x}+\mathbf{y})=\mathrm{a} \cdot \mathbf{x}+\mathrm{a} \cdot \mathbf{y})$
9) Distributivity of scalar sums:

$$
\begin{aligned}
& (\mathrm{a} \otimes \mathrm{~b}) \cdot \mathbf{x}=\left((\mathrm{a} \otimes \mathrm{~b}) \wedge x_{1}, \ldots,(\mathrm{a} \otimes \mathrm{~b}) \wedge x_{2^{n}}\right)=\left(\mathrm{a} \wedge x_{1} \otimes \mathrm{~b} \wedge x_{1}, \ldots, \mathrm{a} \wedge x_{2^{n}} \otimes \mathrm{~b} \wedge x_{2^{n}}\right) \\
& =\left(\mathrm{a} \wedge x_{1}, \ldots, \mathrm{a} \wedge x_{2^{n}}\right)+\left(\mathrm{b} \wedge x_{1}, \ldots, \mathrm{~b} \wedge x_{2^{n}}\right)=\mathrm{a} \cdot \mathbf{x}+\mathrm{b} \cdot \mathbf{x} \\
& \therefore(\forall \mathrm{a}, \mathrm{~b} \in \mathrm{G})\left(\forall \mathbf{x} \in \mathrm{B}^{n}\right)((\mathrm{a} \otimes \mathrm{~b}) \cdot \mathbf{x}=\mathrm{a} \cdot \mathbf{x}+\mathrm{b} \cdot \mathbf{x})
\end{aligned}
$$

10) Existence of the multiplicative identity element:

Let $1 \in \mathrm{G} \Rightarrow 1 \cdot \mathbf{x}=\left(1 \wedge x_{1}, \ldots, 1 \wedge x_{2^{n}}\right)=\left(x_{1}, \ldots, x_{2^{n}}\right)=\mathbf{x}$
$\therefore(1 \in \mathrm{G})\left(1 \cdot \mathbf{x}=\mathbf{x}, \forall \mathbf{x} \in \mathrm{B}^{n}\right)$
$\therefore \mathrm{B}^{n}$ is vector space over the field $(\mathrm{G}, \otimes, \wedge)$.
Definition A.3: Let $\underline{\mathrm{A}}^{\mathrm{n}} \subset \mathrm{B}^{\mathrm{n}}$ be the set of vectors that contains the 2^{n} permutations of $(\underbrace{1,0, \ldots 0}_{2^{n}})$.

Theorem 3.2: The set of vectors A^{n} is linearly independent.
Proof:
Let $a_{i} \in \mathrm{G}, \mathrm{i}=1, \ldots, 2^{\mathrm{n}}$. Let vector $0 \in \mathrm{~B}^{\mathrm{n}}$ be described as a linear combination of the vectors in the set A^{n} :
$a_{1} \cdot(\underbrace{1,0, \ldots 0}_{2^{n}})+\ldots+a_{2^{n}} \cdot(\underbrace{0, \ldots, 1}_{2^{n}})=0 \Rightarrow(\underbrace{a_{1} \wedge 1,0, \ldots, 0}_{2^{n}})+\ldots+(\underbrace{0, \ldots, 0, a_{1} \wedge 1}_{2^{n}})=0$
$\Rightarrow\left(a_{1} \wedge 1, \ldots, a_{2^{n}} \wedge 1\right)=0 \Rightarrow\left\{\begin{array}{c}a_{1} \wedge 1=0 \\ \vdots \\ a_{2^{n}} \wedge 1=0\end{array} \Rightarrow a_{i}=0, \mathrm{i}=1, \ldots, 2^{\mathrm{n}}\right.$.
\therefore The set A^{n} is linearly independent.
Theorem 3.3: The set $\mathrm{A}^{\mathrm{n}} \subset \mathrm{B}^{\mathrm{n}}$ forms a basis for B^{n}.
Proof:

1) By Theorem 2.2 the set A^{n} is linearly independent.
2) Let $\left\langle\mathrm{A}^{\mathrm{n}}\right\rangle=\{a_{1} \cdot(\underbrace{1,0, \ldots 0}_{2^{n}})+\ldots+a_{2^{n}} \cdot(\underbrace{0, \ldots, 1}_{2^{n}}): a_{i} \in \mathrm{G}, \mathrm{i}=1, \ldots, 2^{\mathrm{n}}\}$

$$
\text { If }\left(x_{1}, \ldots, x_{2^{n}}\right) \in<\mathrm{A}^{\mathrm{n}}>\Rightarrow\left(x_{1}, \ldots, x_{2^{n}}\right)=a_{1} \cdot(\underbrace{1,0, \ldots 0}_{2^{n}})+\ldots+a_{2^{n}} \cdot(\underbrace{0, \ldots, 0,1}_{2^{n}})
$$

$$
\Rightarrow\left\{\begin{array}{c}
x_{1}=a_{1} \wedge 1=a_{1} \in G \\
\vdots \\
x_{2^{n}}=a_{2^{n}} \wedge 1=a_{2^{n}} \in G
\end{array} \Rightarrow<\mathrm{A}^{\mathrm{n}}>=\left\{\left(a_{1}, \ldots, a_{2^{n}}\right): a_{i} \in \mathrm{G}, \mathrm{i}=1, \ldots, 2^{\mathrm{n}}\right\} \Rightarrow<\mathrm{A}^{\mathrm{n}}>=\mathrm{B}^{\mathrm{n}}\right.
$$

$\therefore \mathrm{A}^{\mathrm{n}}$ forms a basis for B^{n}. For example, consider vector space B^{2} :

- $B^{2}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right): x_{i} \in\{0,1\}, i=1,2,3,4\right\}=$ $\{(0,0,0,0),(1,0,0,0),(0,1,0,0),(1,1,0,0),(0,0,1,0),(1,0,1,0),(0,1,1,0),(1,1,1,0),(0,0,0,1),(1,0,0,1),(0,1,0,1)$, $(1,1,0,1),(0,0,1,1),(1,0,1,1),(0,1,1,1),(1,1,1,1)\}$
- With basis $\mathrm{A}^{2}=\{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)\} \subset \mathrm{B}^{2}$.
- $\operatorname{Dim}\left(\mathrm{B}^{2}\right)=\operatorname{Card}\left(\mathrm{A}^{2}\right)=4$.

