Tesis profesional presentada por Ricardo Pérez
Águila
Doctorado en Ciencias de la
Computación. Departamento de Computación,
Electrónica, Física e
Innovación. Escuela
de Ingeniería y Ciencias, Universidad de las Américas
Puebla.
Jurado Calificador
Presidente: Dra. Dolors Ayala Vallespí
Vocal y Director: Dr. Fernando Antonio Aguilera
Ramírez
Secretario: Dr. Daniel Vallejo
Rodríguez
Vocal: Dr. Isaac Juan Rudomín Goldberg
Vocal: Dr. Mauricio Javier Osorio Galindo
Cholula, Puebla, México a 13 de noviembre de
2006.
Resumen
The Extreme Vertices Model (3D-EVM) was originally
presented, and widely described,
by Aguilera & Ayala for representing 2-manifold
Orthogonal Polyhedra (1997) and later considering
both Orthogonal Polyhedra (3D-OPs) and
Pseudo-Polyhedra (3D-OPPs, 1998). This model has
enabled the development of simple and robust
algorithms for performing the most usual and
demanding tasks on solid modeling, such as closed and
regularized Boolean operations, solid splitting, set
membership classification operations and measure
operations on 3D-OPPs.
It is natural to ask...
Resumen (archivo pdf, 21 kb).
Índice de contenido
Portada (archivo pdf, 54 kb)
Agradecimientos y Dedicatorias
(archivo pdf, 27 kb)
Índices (archivo pdf, 37 kb)
Capítulo 1. Introduction
(archivo pdf, 50 kb)
Capítulo 2. Theoretical
frame and previous work (archivo pdf, 223 kb)
-
2.1 Terminology
-
2.2 Schemes for the modeling of n-Dimensional
Polytopes
-
2.3 Topological properties of 4D Orthogonal
Pseudo-Polytopes
-
2.4 Conclusions
Capítulo 3. Configurations
in the n-Dimensional Orthogonal
Pseudo-Polytopes (archivo pdf, 285 kb)
-
3.1 Introduction
-
3.2 Configurations for the nD-OPP´s and the
equivalence relation Rf
-
3.3 The problem of determining the configurations
for the nD-OPP´s (n > 4)
-
3.4 Binary representation for the configurations
in the nD-OPP´s
-
3.5 Pólya´s countings and the number
of configurations for the nD-OPP´s
-
3.6 Four equivalence relations in the set Bn
-
3.7 Fast comparison of combinations of nD
hyper-boxes through relations Radj, RH & RE
-
3.8 The ´Test-Box´ algorithm
-
3.9 Conclusions
Capítulo 4. The odd
edge characterization and its role in the
combinatorial topology of the n-Dimensional
Orthogonal Pseudo-Polytopes (archivo pdf, 336 kb)
-
4.1 Local analysis over the nD-OPP´s
-
4.2 Spivak´s k-chains fundamental Concepts
-
4.3 Linking k-chains with Topological Local
Analysis of Odd Edges
-
4.4 Conclusions
Capítulo 5. Orthogonal
polytopes modeling through the Extreme Vertices Model
in the n-Dimensional Space (nD-EVM) (archivo
pdf, 864 kb)
-
5.1 Preliminary background
-
5.2 Brinks and extreme vertices in the
nD-OPP´s
-
5.3 Local analysis over extreme vertices in the
nD-OPP´s
-
5.4 Global analysis over the nD-OPP´s and
the extreme vertices model
-
5.5 Relating sections and couplets
-
5.6 Regularized boolean operations on the nD-EVM
-
5.7 nD-EVM properties
-
5.8 Conclusions
Capítulo 6. Algorithms
in the nD-EVM and their performance (archivo
pdf, 1 mb)
-
6.1 Basic algorithms for the nD-EVM
-
6.2 The boolean operations algorithm for the
nD-EVM
-
6.3 Computing the content of an nD-OPP
-
6.4 Computing the content of the boundary of an
nD-OPP
-
6.5 Computing forward and backward differences of
an nD-OPP
-
6.6 Algorithms for converting the nD-EVM to and
from other schemes
-
6.7 Conclusions
Capítulo 7. Applications
(archivo pdf, 2 mb)
-
7.1 Application 1: Representing color
2D-animations through 4D-OPP´s and the EVM
-
7.2 Application 2: A procedure for comparing
color 2-dimensional images through their
extrusions to the 5-dimensional colorspace
-
7.3 Application 3: Incorporating the nD-EVM to
image based reasoning
-
7.4 Application 4: Manipulating "Real World" 3D
datasets with the nD-EVM
-
7.5 Application 5: Collision detection
-
7.6 Conclusions
Capítulo 8. Conclusions
and future work (archivo pdf, 71 kb)
-
8.1 Main contributions
-
8.2 Future work
Referencias (archivo pdf, 65 kb)
Apéndice A. The vector
space Bn (archivo pdf,
43 kb)
Apéndice B. Configurations
for the nD-OPP´s obtained by the
´Test-Box´ algorithms (archivo
pdf, 46 kb)
Apéndice C. Some
adjacencies´ properties of the configurations
in the nD-OPP´s (archivo pdf, 38 kb)
Apéndice D. Some
characterizations of odd and even edges in the
nD-OPP´s (archivo pdf, 47 kb)
Apéndice E. Some
characterizations of extreme and non-extreme vertices
in the nD-OPP´s (archivo pdf, 85 kb)
Apéndice F. Characterization
of extreme vertices according their incident odd/even
edges and relating them with other edges´
characterizations (archivo pdf, 34 kb)
Apéndice G. Applying
nD-EVM concepts together: an example in 4D
space (archivo pdf, 56
kb)
Apéndice H. The
"L-Shaped" nD polytopes family (archivo
pdf, 43 kb)
Apéndice I. Extreme
vertices countings for two color
2D-animations (archivo pdf, 49 kb)
Apéndice J. Properties
of function (archivo pdf, 32 kb)
Pérez Águila, R. 2006.
Orthogonal polytopes: study and
application. Tesis Doctorado. Ciencias de la
Computación. Departamento de
Computación, Electrónica, Física
e Innovación, Escuela de Ingeniería y
Ciencias, Universidad de las Américas Puebla.
Noviembre. Derechos Reservados © 2006.