CONTENTS

Abstract

Acknowledgements

Acronyms and Abreviations

1 Introduction 1

1.1 Previous works .. 3

1.2 Aim of thesis .. 7

1.2.1 Specific Objectives 8

1.3 Contributions .. 9

1.3.1 Publications 10

1.4 Organization of this document 11

2 Theoretical Background 12

2.1 Epilepsy .. 12

2.1.1 Electroencephalogram (EEG) 14
Contents

2.1.2 Recording EEG .. 15

2.1.3 EEG Sub-bands .. 18

2.2 Wavelet Transforms ... 20

2.2.1 The Fourier Transform (FT) 21

2.2.2 The Continuous Wavelet Transform (CWT) 22

2.2.3 Translation and Scaling Parameters 23

2.2.4 The Discrete Wavelet Transform (DWT) 24

2.2.5 The Maximal Overlap Discrete Wavelet Transform (MODWT) 26

2.3 Wavelet Neural Networks 28

2.3.1 One-Dimensional Wavelet Neural Network 30

2.3.2 Multidimensional Wavelet Neural Network 32

2.3.3 Learning Algorithm ... 33

2.4 Discussion ... 35

3 Proposed Model for Analysing EEG Signals 37

3.1 Introduction ... 37

3.2 Experimental Data EEG. 38

3.3 Preprocessing ... 39

3.4 Feature extraction .. 40

3.5 Wavelet selection ... 41

3.6 Multi-class Classification of EEG Signals 49
4 Multidimensional Radial Wavelet - Feed-Forward Wavelet Neural Network (MRW-FFWNN) 55

4.1 Description of the MRW-FFWNN. 55

4.2 Learning algorithm of the MRW-FFWNN. 59

4.2.1 Pseudocode of learning algorithm. 63

4.3 Mother Wavelet Functions. 65

4.4 Classifiers based on neural networks and wavelet-based neural networks. 66

4.4.1 Classifier 1: FF-ANN. 69

4.4.2 Classifier 2: Elman Network. 70

4.4.3 Classifier 3: FFWNN. 71

4.4.4 Classifier 4: MRW-FFWNN. 71

4.4.5 Classifier 5: SRWNN. 72

4.4.6 Classifier 6: MRW-SRWNN. 73

4.5 Discussion. 74

5 Experimental results 76

5.1 Performance evaluation 76

5.2 Training and testing sets. 77

5.3 Results: FFANN and Elman classifiers. 79

5.4 Results: Binary tree classifier. 80
Contents

5.5 Results: OVO Decomposition ... 81

5.6 Discussion ... 84

6 Conclusions and Future work .. 88

6.1 Conclusions ... 88

6.2 Future work .. 90

Appendixes .. 92

A Experimental results by criterion 1 92

A.1 Results of the classification of three classes of EEG signals based on FF-ANN and Elman classifiers by decomposition using the criterion 1. .. 93

A.2 Results of the classification of three classes of EEG signals based on WNN classifiers using a binary-tree strategy with wavelet decomposition by criterion 1. .. 96

A.3 Results of the classification of three classes of EEG signals based on WNN classifiers using VOTE and WV in a OVO scheme with wavelet decomposition by criterion 1. .. 96

B Experimental results by criterion 2 106

B.1 Results of the classification of three classes of EEG signals based on FF-ANN and Elman classifiers with wavelet decomposition by criterion 2. .. 107

B.2 Results of the classification of three classes of EEG signals based on WNN classifiers using a binary-tree strategy with wavelet decomposition by criterion 2. .. 110
B.3 Results of the classification of three classes of EEG signals based on WNN classifiers using VOTE and WV in a OVO scheme with wavelet decomposition by criterion 2 110
List of Figures

2.1 A sagittal view of electrode placement according to the international 10-20 system [TAN11]. ... 16

2.2 An axial view of electrode placement according to the international 10-20 system [TAN11]. ... 17

2.3 Characteristic EEG rhythms, from the top: δ (0-4 Hz), θ (4-8 Hz), α (8-12 Hz), β (12-30 Hz). The lowest trace-EEG during epileptic seizure, note that the amplitude scale is an order of magnitude bigger than non-epileptic states [BLI06]. 18

2.4 Wavelet decomposition of MODWT. The wavelet coefficients $\{d_{j,n}^{(M)}\}$ and scaling coefficients $\{c_{j,n}^{(M)}\}$ are computed by cascading convolutions with filter $\{\tilde{h}_{j,l}, \tilde{g}_{j,l}\}$ [ALA09]. ... 28

2.5 Structure of a Wavelet Neural Network [VEI05]. 29

2.6 A Wavelet Neuron [VEI05]. ... 30

2.7 A Wavelet Network [VEI05]. ... 31

2.8 A Wavelet Neuron with a Multidimensional Wavelet Activation Function [VEI05]. ... 33

3.1 General block diagram of proposed approach. 38
3.2 Filtered signals EEG by a FIR Least Squares filter and its frequency spectrum of: a) Healthy subject, b) Interictal subject, c) Ictal subject. Upper plots are samples from EEG signals and the lower plots show the frequency components of these EEG signals.

3.3 Average of correlation coefficients with different orders of Daubechies wavelet filters for Ictal, Interictal and Healthy EEG signals.

3.4 Average of correlation coefficients with different orders of Coiflet wavelet filters for Ictal, Interictal and Healthy EEG signals.

3.5 Average of correlation coefficients with different orders of Symlet wavelet filters for Ictal, Interictal and Healthy EEG signals.

3.6 Number of times with the best correlation coefficient using different orders of Daubechies wavelet filters and Ictal, Interictal and Healthy EEG signals.

3.7 Number of times with the best correlation coefficient using different orders of Coiflet wavelet filters and Ictal, Interictal and Healthy EEG signals.

3.8 Number of times with the best correlation coefficient using different orders of Symlet wavelet filters and Ictal, Interictal and Healthy EEG signals.

3.9 Decomposition of EEG in physiological sub-bands by DWT. This figure shows the name of sub-bands and its respective frequency ranges [JUA13b].

3.10 Decomposition of EEG in physiological sub-bands by MODWT. This figure shows the name of sub-bands and its respective frequency ranges [JUA13b].
3.11 Delta and Alpha sub-bands of an EEG signal by MODWT (Coif3) of an Ictal subject. The graphs on the left side show the obtained sub-bands and the graphs on the right side show its corresponding frequency spectrum................................. 48

3.12 Delta and Alpha sub-bands of an EEG signal by MODWT (Coif5) of an Interictal subject. The graphs on the left side show the obtained sub-bands and the graphs on the right side show its corresponding frequency spectrum................................. 48

3.13 Delta and Alpha sub-bands of an EEG signal obtained by MODWT (Db6) of a Healthy subject. The graphs on the left side show the obtained sub-bands and the graphs on the right side show its corresponding frequency spectrum................................. 49

3.14 Binary-tree using the evaluation order: Interictal-Healthy-Ictal (In-H-Ic). ... 52

4.1 The MRW unit.. 56

4.2 The proposed MRW-FFWNN structure.............................. 57

4.3 Flowchart of the learning algorithm.............................. 64

4.4 Mother Wavelet functions. a) Mexican hat wavelet. b) Derivative of the Gaussian wavelet. c) Morlet wavelet... 66

4.5 FF-ANN architecture.. 70

4.6 Elman Network architecture..................................... 70

4.7 The FFWNN architecture..................................... 72

4.8 The SRWNN architecture [SUN05]..................................... 73

4.9 The MRW-SRWNN architecture [ALA14], [SUN07]............................. 74
LIST OF TABLES

1.1 Relevant works related to detection of epilepsy evaluated with the Bonn’s database [GOM14].. 4

2.1 Frequency sub-bands from an EEG signal... 20

3.1 Summary of the EEG data collection provided by the University of Bonn [BON16], [AND01]... 39

3.2 Wavelet selected for feature extraction by criteria 1 and 2. 46

4.1 Partial derivatives for the proposed model MRW-FFWNN.................. 63

4.2 Parameters for classifiers used to identify EEG signals..................... 69

5.1 Class distributions of the samples in the training and testing data sets for classifiers FFANN and Elman Network......................... 78

5.2 Class distributions of the samples in the training and testing data sets for ictal binary classifier based on WNN................................. 78

5.3 Results obtained using the FF-ANN and Elman classifiers with wavelet decomposition to identify EEG signals by criterion 1........ 80

5.4 Results obtained using the FF-ANN and Elman classifiers with wavelet decomposition to identify EEG signals by criterion 2........ 80
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>Best results of the classification of EEGs based on WNN using binary-tree structures with wavelet decomposition by criterion 1.</td>
<td>82</td>
</tr>
<tr>
<td>5.6</td>
<td>Best results of the classification of EEGs based on WNN using binary-tree structures with wavelet decomposition by criterion 2.</td>
<td>83</td>
</tr>
<tr>
<td>5.7</td>
<td>Results of the classification of EEGs based on WNN using VOTE and WV strategies in a OVO decomposition scheme with wavelet decomposition by criterion 1.</td>
<td>84</td>
</tr>
<tr>
<td>5.8</td>
<td>Results of the classification of EEGs based on WNN using VOTE and WV strategies in a OVO decomposition scheme with wavelet decomposition by criterion 2.</td>
<td>85</td>
</tr>
<tr>
<td>5.9</td>
<td>Studies reporting automated detection of three classes of EEG signals using (Z,F,S) same database reported in this work.</td>
<td>87</td>
</tr>
<tr>
<td>A.1</td>
<td>Results of the classification of three classes of EEG signals based on FF-ANN with Sigmoid and Hyperbolic tangent as activation functions with wavelet decomposition by criterion 1.</td>
<td>94</td>
</tr>
<tr>
<td>A.2</td>
<td>Results of the classification of three classes of EEG signals based on Elman with Sigmoid and Hyperbolic tangent as activation functions with wavelet decomposition by criterion 1.</td>
<td>95</td>
</tr>
<tr>
<td>A.3</td>
<td>Classification of EEGs based on WNN with binary-tree structure: Ictal-Interictal-Healthy (Ic-In-H) by criterion 1.</td>
<td>97</td>
</tr>
<tr>
<td>A.4</td>
<td>Classification of EEGs based on WNN using binary-tree structure: Ictal-Healthy-Interictal (Ic-H-In) with wavelet decomposition by criterion 1.</td>
<td>98</td>
</tr>
</tbody>
</table>
A.5 Classification of EEGs based on WNN using binary-tree structure: Interictal-Ictal-Healthy (In-Ic-H) with wavelet decomposition by criterion 1. 99

A.6 Classification of EEGs based on WNN using binary-tree structure: Interictal-Healthy-Ictal (In-H-Ic) with wavelet decomposition by criterion 1. .. 100

A.7 Classification of EEGs based on WNN using binary-tree structure: Healthy-Ictal-Interictal (H-Ic-In) with wavelet decomposition by criterion 1. .. 101

A.8 Classification of EEGs based on WNN using binary-tree structure: Healthy-Interictal-Ictal (H-In-Ic) with wavelet decomposition by criterion 1. .. 102

A.9 Classification of EEGs based on WNN using Vote strategy (VOTE) in a OVO decomposition scheme with wavelet decomposition by criterion 1. .. 104

A.10 Classification of EEGs based on WNN using Weighted voting strategy (WV) in a OVO decomposition scheme with wavelet decomposition by criterion 1. ... 105

B.1 Results of the classification of three classes of EEG signals based on FF-ANN using Sigmoid and Hyperbolic tangent as activation functions with wavelet decomposition by criterion 2. 108

B.2 Results of the classification of three classes of EEG signals based on Elman using Sigmoid and Hyperbolic tangent as activation functions with wavelet decomposition by criterion 2. 109
B.3 Classification of EEGs based on WNN using binary-tree structure:
Ictal-Interictal-Healthy (Ic-In-H) with wavelet decomposition by criterion 2. .. 111

B.4 Classification of EEGs based on WNN using binary-tree structure:
Ictal-Healthy-Interictal (Ic-H-In) with wavelet decomposition by criterion 2. .. 112

B.5 Classification of EEGs based on WNN using binary-tree structure:
Interictal-Ictal-Healthy (In-Ic-H) with wavelet decomposition by criterion 2. .. 113

B.6 Classification of EEGs based on WNN using binary-tree structure:
Interictal-Healthy-Ictal (In-H-Ic) with wavelet decomposition by criterion 2. .. 114

B.7 Classification of EEGs based on WNN using binary-tree structure:
Healthy-Ictal-Interictal (H-Ic-In) with wavelet decomposition by criterion 2. .. 115

B.8 Classification of EEGs based on WNN using binary-tree structure:
Healthy-Interictal-Ictal (H-In-Ic) with wavelet decomposition by criterion 2. .. 116

B.9 Classification of EEGs based on WNN using Vote strategy (VOTE) in a OVO decomposition scheme with wavelet decomposition by criterion 2. .. 118

B.10 Classification of EEGs based on WNN using Weighted voting strategy (WV) in a OVO decomposition scheme with wavelet decomposition by criterion 2. .. 119